title
  

An explicit tower of function fields over cubic finite fields and Zink`s lower bound

Warning The system is temporarily closed to updates for reporting purpose.

Bezerra, J. and Garcia, Arnaldo and Stichtenoth, Henning (2005) An explicit tower of function fields over cubic finite fields and Zink`s lower bound. Journal fur die Reine und Angewandte Mathematik, 589 . pp. 159-199. ISSN 0075-4102 (Print) 1435-5345 (Online)

This is the latest version of this item.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1515/crll.2005.2005.589.159

Abstract

For a function field F/F-l over a finite field of cardinality l, denote by g(F) (resp. N(F)) the genus ( resp. the number of rational places) of F/Fl. In this paper we present an explicit tower of function fields F-1 subset of F-2 subset of F-3 subset of (. . .) over F-l for l = q(3), such that lim(r ->infinity) N(F-r)/g(F-r) >= 2(q(2) - 1)/(q + 2).

Item Type:Article
Subjects:Q Science > QA Mathematics
ID Code:13989
Deposited By:Henning Stichtenoth
Deposited On:01 Jun 2010 10:56
Last Modified:25 May 2011 14:06

Available Versions of this Item

Repository Staff Only: item control page