Novel observers for compensation of communication delay in bilateral control systems

Warning The system is temporarily closed to updates for reporting purpose.

Gadamsetty, Bindu and Bogosyan, Seta and Gokaşan, Metin and Şabanoviç, Asif (2009) Novel observers for compensation of communication delay in bilateral control systems. In: 35th Annual Conference of the IEEE Industrial Electronics Society - IECON 2009, Porto, Portugal

PDF (This is a RoMEO green publisher (author can archive publisher's version/PDF)) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


The problem of communication delay in bilateral or teleoperation systems is even more emphasized with the use of the internet for communication, which may give rise to loss of transparency and even instability. To address the problem, numerous methods have been proposed. This study is among the few recent studies taking a disturbance observer approach to the problem of time delay, and introduces a novel sliding-mode observer to overcome specifically the effects of communication delay in the feedback loop. The observer operates in combination with a PD+ controller which controls the system dynamics, while also compensating load torque uncertainties on the slave side. To this aim, an EKF based load estimation algorithm is performed on the slave side. The performance of this approach is tested with computer simulations for the teleoperation of a 1-DOF robotic arm. The simulations reveal an acceptable amount of accuracy and transparency between the estimated slave and actual slave position under both constant and random measurement delay and variable and step-type load variations on the slave side, motivating the use of the approach for internet-based bilateral control systems.

Item Type:Papers in Conference Proceedings
Subjects:T Technology > TA Engineering (General). Civil engineering (General) > TA168 Systems engineering
ID Code:12562
Deposited By:Asif Şabanoviç
Deposited On:09 Nov 2009 14:16
Last Modified:23 Jul 2019 15:01

Repository Staff Only: item control page