Development of a micromanipulation system with force sensing

Warning The system is temporarily closed to updates for reporting purpose.

Khan, Shahzad and Nergiz, Ahmet Özcan and Şabanoviç, Asif and Patoğlu, Volkan (2007) Development of a micromanipulation system with force sensing. In: IEEE International Conference on Intelligent Robots and Systems, San Diego, CA

This is the latest version of this item.

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1109/IROS.2007.4399421


This article provides in-depth knowledge about our undergoing effort to develop an open architecture micromanipulation system with force sensing capabilities. The major requirement to perform any micromanipulation task effectively is to ensure the controlled motion of actuators within nanometer accuracy with low overshoot even under the influence of disturbances. Moreover, to achieve high dexterity in manipulation, control of the interaction forces is required. In micromanipulation, control of interaction forces necessitates force sensing in milli-Newton range with nano-Newton resolution. In this paper, we present a position controller based on a discrete time sliding mode control architecture along with a disturbance observer. Experimental verifications for this controller are demonstrated for 100, 50 and 10 nanometer step inputs applied to PZT stages. Our results indicate that position tracking accuracies up to 10 nanometers, without any overshoot and low steady state error are achievable. Furthermore, the paper includes experimental verification of force sensing within nano-Newton resolution using a piezoresistive cantilever endeffector. Experimental results are compared to the theoretical estimates of the change in attractive forces as a function of decreasing distance and of the pull off force between a silicon tip and a glass surface, respectively. Good agreement among the experimental data and the theoretical estimates has been demonstrated.

Item Type:Papers in Conference Proceedings
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
ID Code:11450
Deposited By:Asif Şabanoviç
Deposited On:15 Jun 2009 15:09
Last Modified:22 Jul 2019 15:39

Available Versions of this Item

Repository Staff Only: item control page