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Abstract— This article provides in-depth knowledge about
our undergoing effort to develop an open architecture mi-
cromanipulation system with force sensing capabilities. The
major requirement to perform any micromanipulation task
effectively is to ensure the controlled motion of actuators
within nanometer accuracy with low overshoot even under the
influence of disturbances. Moreover, to achieve high dexterity
in manipulation, control of the interaction forces is required.
In micromanipulation, control of interaction forces necessitates
force sensing in milli-Newton range with nano-Newton resolu-
tion . In this paper, we present a position controller based
on a discrete time sliding mode control architecture along
with a disturbance observer. Experimental verifications for this
controller are demonstrated for 100, 50 and 10 nanometer step
inputs applied to PZT stages. Our results indicate that position
tracking accuracies up to 10 nanometers, without any overshoot
and low steady state error are achievable. Furthermore, the
paper includes experimental verification of force sensing within
nano-Newton resolution using a piezoresistive cantilever end-
effector. Experimental results are compared to the theoretical
estimates of the change in attractive forces as a function of
decreasing distance and of the pull off force between a silicon
tip and a glass surface, respectively. Good agreement among
the experimental data and the theoretical estimates has been
demonstrated.

I. INTRODUCTION

The major goal of micromanipulation is to design and

build functional structures in micro scale using components

whose sizes range in the order of microns. Generally, in

these scales the laws of Newtonian mechanics are still valid

while atomic level effects may also come in play. Thus

the scale considered is at the boundary of two traditional

spaces whose limits are not well defined [1]–[4]. Since the

surface to volume ratio increases inversely proportional to the

length scaling factor, at these scales surface properties and

forces start to dominate bulk properties of micro particles,

a fact mainly called as scaling effect [5]. As a result, the

dynamics of micro-particles are mainly dominated by friction

and stiction forces as well as attractive or repulsive particle

level forces (van der Waals, Casimir, capillary, hydrogen

bonding, ... etc.) that act through long or short range effects.

Manipulating objects with higher dexterity requires not

only precise positioning of actuators with nanometer accu-

racy but also control and compensation of forces involved

in the manipulation process. Micromanipulation with force

control is an emerging area that appears certain to eventually

become an important component in microsystems technol-

ogy.
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Much of the research effort for micromanipulation in the

past has been directed to using piezoelectric stack (PZT)

actuators as nano positioners due to unique characteristics,

such as high resolution in nanometer range, high position

bandwidth up to several kilo hertz, large force output up

to few tons and appropriate working stroke within mil-

limeter range [6]. However, PZTs suffer from nonlinearities

between the input (voltage) and the output (position). The

major portion of nonlinearities arise due to the parasitic

hysteresis characteristics of the piezoelectric crystal while

other nonlinear effects are results of internal disturbances

from creep and thermal drift. Many attempts have been

done to model hysteresis and incorporate this model into the

control loop to eliminate aforementioned detrimental effects

of hysteresis helping to ensure nano-meter level positioning

accuracies [7]–[9].

Since manipulating an object requires not only the ability

to observe and position, but also to physically interact

with the object, micro manipulators solely based on visual

feedback and position control [10], [11] are not effective

for dexterous micromanipulation. For manipulating micro

objects, especially delicate structures or biological material,

pure position control is not even safe to ensure successful

operation. Force control is often needed to augment the

operation in order to achieve better manipulation results.

Moreover, in certain applications such as individual cell-

based diagnosis or pharmaceutical tests, obtaining the inter-

action force is the main objective. Such applications involve

probing or reconstructing the state of objects using the

micro/nano scale interaction forces between the manipulator

and the sample [12]. For example, the developmental stages

of zebrafish eggs can be estimated by examining micro/nano

scale forces required to penetrate inside the egg envelope

since this interaction force is proportional to the thickness

of egg envelope [13].

In the past, many researchers have developed microma-

nipulation systems [14]–[17]. In this paper, a microma-

nipulation system with open architecture is presented. The

unique features of the system include a discrete time sliding

mode controller utilized to drive the PZT stages and a

disturbance observer designed to cope up with the paramet-

ric changes and unmodeled nonlinearities. The system can

achieve nanometer level position accuracy under closed loop

position control and is capable of nano-Newton level force

sensing using piezoresistive cantilever.

The paper is organized as follows. Section II explains the

micromanipulation setup. Section III describes the model of

the piezostages used in model based controller. In Section

IV, the derivation of the discrete time sliding mode controller
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along with the disturbance observer is undertaken. Section V

demonstrates the experimental validation of position control

of PZT stages while Section VI shows the experimental

validation of force sensing. Finally, Section VII concludes

the paper and discusses future directions.

II. MICROMANIPULATION SETUP

In order to develop adequate systems for efficient and

reliable manipulation of objects at micro scale, it is necessary

to have position control with nanometer accuracy and force

sensing/estimation in nano-Newton scales. Moreover, for vi-

sual feedback of the process high magnification microscopy

is essential. In order to fulfill the above requirements, we

have developed an open architecture micromanipulation sys-

tem as shown in Figure 1.
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Fig. 1. Experimental micromanipulation setup: 1-Closed loop PZT stages,
2-Piezoresistive cantilever, 3-Glass slide, 4-Open loop PZT stages, 5-
Microscope

Three axes piezo stages (P-611 by Physik Instrumente)

are utilized for nano scale positioning of a microcantilever.

The piezo stages are driven by a power amplifier (E-664)

in closed loop external control mode. Position of the closed

loop stages are measured by potentiometers (strain gauge

sensors) integrated in the amplifier. The piezo stages possess

a travel range 100 micrometer per axis with a theoretical

resolution of one nanometer. The stages are equipped with

compliant guiding systems, which have zero stiction and

friction. As the base stage, an open loop piezoelectric mi-

crometer drive (PiezoMike PI-854 from Physik Instrumente)

has been utilized [18]. The base stage is equipped with

integrated high resolution piezo linear drives. The linear

drives can be operated manually with a resolution of 1

micrometer. By controlling the piezo voltage, the microm-

eter tip can be automatically moved in and out up to 25

micrometers with respect to the manually set position. The

resolution of piezoelectric motion is in the sub-nanometer

range. The piezoelectric actuators are driven by a low voltage

piezo driver (E-663) in external control mode. As a control

platform DS1103 from dSpace is utilized. A flexible pro-

gramming environment has been developed in C that can

easily accommodate any possible hardware changes.

For visual feedback, a Nikon MM-40 optical microscope

is utilized. The magnification of the microscope ranges from

10x to 100x with a working distance of 75mm to 0.32mm,

respectively.

Force sensing is achieved through a piezoresistive mi-

crocantilever (from Applied NanoStructures) made out of

silicon. The microcantilever is 300 µm in length, 50 µm in

width and 1.6µm in thickness. The piezoresistive microcan-

tilever has a base resistance of 1.2 kΩ and the resistance

values varies from 900 Ω to 2 kΩ. A 25 Ω resistance change

corresponds to a cantilever deflection 5 µm. The sensitivity

of cantilever is rated at 5 × 10−5 Ω/A◦.

III. MODELING THE PIEZO-STAGE

Since the PZT stages are made out of piezoceramic,

a well studied dielectric material, one would expect PZT

stack actuators to inherit their properties and to exhibit

capacitive behavior along with rate-dependent hysteresis. The

hysteresis is a parasitic affect which affects the net electrical

charge delivered to the actuator. Additionally, the endpoint

displacement of the stages as a function of electrical charge

can be accurately modeled using a second-order lumped

linear dynamic model.

In this paper, a fairly accurate approximate model for the

piezo stage is chosen from [7] due to its ease of imple-

mentation and accuracy at estimating the actual behavior of

these actuators. The piezo stages consist of a piezo drive

with a flexure guided structure which is designed to possess

zero stiction and friction. Moreover, the flexure stages exhibit

high stiffness, high load capacity and are insensitive to shock

and vibration. Figure 2 depicts the overall electromechanical

model of a PZT actuator [7].

Fig. 2. Electromechanical model of a PZT actuator

In the model adapted from [7] the hysteresis and piezoelec-

tric effects are separated and modeled in a serial fashion. In

the model, the symbol H represents the hysteresis effect and

uh corresponds to the voltage as a result of this effect. The

piezoelectric effect is modeled as an ideal electromechanical

transducer with transformer ratio of Tem. The capacitance

Ce represents the lumped capacitance of the individual PZT
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wafers, which are electrically in parallel. The total current

flowing through the circuit is given by q̇, where q is defined

as the total charge in the PZT actuator. The charge qp denotes

the transducer charge from the mechanical side whereas the

voltage up is due to the piezo effect. The total voltage over

the PZT actuator is uin. The force Fp is the transducer force

from the electrical side, while Fext is the externally applied

force. The elongation of the PZT actuator is denoted by y.

The mechanical relationship between Fp and y is defined as

M . Note that, as a result of ideal transformer assumption the

electrical and mechanical energy at the ports of interaction

are equal: upqp = Fpy.

The modulus of elasticity, viscosity, and mass density

of the piezoelectric ceramic are denoted by E, ν, and ρ,

respectively. The PZT actuator have a length of L and a

cross-sectional area of A. Effective mass mp, stiffness kp

and damping coefficients cp can be calculated as

mp = ρApL (1)

kp =
ρAp

L
(2)

cp =
νAp

L
· (3)

Finally, the coupled equations governing the electromechan-

ical behavior of the piezo stages can be written as

mpÿ + cpẏ + kpy = Tem (uin(t) − H(y, uin)) − Fext. (4)

where y represents the displacement of the piezo stage and H
denotes the non-linear hysteresis which is a function of y and

uin. There exists several hysteresis models to literature [7]–

[9], [18]; however, due to dependence of these models in

many factors, model based compensation of hysteresis is a

cumbersome process. In the following section, a disturbance

observer is proposed to compensate for hysteretic effects in

the system.

IV. DESIGN OF DISCRETE TIME SLIDING MODE

CONTROLLER AND DISTURBANCE OBSERVER

To derive the controller structure, Eqn. (4) governing the

behavior of the piezo stages can be rewritten in state-space

form as

ẋ1 = x2 (5)

ẋ2 = −
kp

mp

x1 −
cp

mp

x2 +
Tem

mp

uin −
Tem

mp

H −
Fext

mp

(6)

or in a more general form as

ẋ = f(x, H, Fext) + Buin. (7)

The aim of the controller is to drive the states of this system

into the set S defined by

S = {x : G(xr − x) = σ(xr , x) = 0}. (8)

where G = [λ 1] with λ being a positive constant, x =
[x1 x2]

T is the state vector, xr = [x1 x2]
T is the reference

vector, and σ(xr , x) is the function defining the sliding mode

manifold.

With a proper selection of control Lyapunov function

V (σ), to ensure the stability of the system the Lyapunov

function derivative V̇ (σ) leads to the function

σ(σ̇ + Dσ) = 0 (9)

where D is a positive constant. A solution for Eqn. (9) is

given by

(σ̇ + Dσ) = 0. (10)

Substituting in the derivative of the sliding surface into this

equation, one can derive

σ̇ = Gẋr − Gf − GBu(t) = GB(ueq − u(t)) (11)

where ueq = ẋr−f

B
. Solving for u(t), the control input can

be calculated as

u(t) = ueq + (GB)−1Dσ. (12)

However, in this formulation the equivalent control as given

in Eqn. (12) is difficult to calculate. To achieve a controller

form that is more suitable for digital implementation, one

can discretize Eqn. (12) using the forward Euler’s method.

Solving for the equivalent control after discretization, one

can derive

ueq(kTs)=u(kTs)+(GB)−1

(

σ((k + 1)Ts)−σ(kTs)

Ts

)

(13)

However, Eqn. (13) is not casual. A casual form of this

equation can be derived by approximating the current value

of the equivalent control with a single-step backward value

estimated from Eqn. (13)

ûeqk
= ueqk−1

= uk−1 + (GB)−1

(

σk − σk−1

Ts

)

. (14)

where ûeq (or ûeq(kTs)) is the estimate of the current value

of the equivalent control. Inserting Eqn. (14) into Eqn. (13)

the control structure can be finalized as

uk = uk−1 + (GBTs)
−1 ((DTs + 1)σk − σk−1) . (15)

The observer structure is deduced based on the Eqn.

(4) under the assumption that all the plant parameters un-

certainties, nonlinearities and external disturbances can be

represented as a lumped disturbance. It is assumed that y is

the measurable displacement and u(t) is the input, which is

also a measurable quantity.

mpÿ + cpẏ + kpy = Tpu(t) − Fdist (16)
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In this equation, Fdist = TpH + ∆T (vin + vh) + ∆mÿ +
∆cẏ +∆ky, where mp, cp, kp and Tp are the nominal plant

parameters while ∆m, ∆c, ∆k and ∆T are the uncertainties

associated with the plant parameters. Since y and u(t)
are measurable, the observer structure can be written in

following form:

mp
¨̂y + cp

˙̂y + kpŷ = Tpu − Tpuc. (17)

In the observer equation ŷ, ˙̂y, and ¨̂y are the estimated

position, velocity, and acceleration, respectively. The plant

control input is denoted by u whereas uc is the observer

control input.

If estimated position ŷ is to be forced to track y, then a

sliding surface σobs can be written in the same structure as

done for the controller derivation above

σobs = λobs(y − ŷ) + (ẏ − ˙̂y). (18)

Following similar steps as done for the sliding mode con-

troller derivation above, the model of the observer can be

easily derived as

uck
= uck−1

−
mp

Tp

(

Dobsλobs +
σobsk

− σobsk−1

Ts

)

(19)

The control structure in Eqn. (15) along with the distur-

bance observer structure in Eqn. (19) is suitable for imple-

mentation. Thus a discrete time sliding mode controller along

with a disturbance observer is utilized for piezo actuation as

shown in Figure 3.
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Fig. 3. Overall controller structure

V. EXPERIMENTAL VALIDATION OF POSITION

CONTROL

In order to verify the performance of discrete time sliding

mode controller along with the disturbance observer, smooth

step inputs are given to one of the piezo stages and responses

are drawn in Figure 4.

As it can be observed from Figure 4, the responses for

closed-loop performance of 100 nanometers, 50 nanometers

and 10 nanometers, respectively, are able to achieve the

desired reference position. The rise times and steady state

errors are 30 ms, 23 ms, and 22.5 ms; and 1%, 2%, and

8%, for 100, 50 and 10 nanometers, respectively. In none

of these tested cases an overshoot behavior is observed.

Operation with no overshoot is the foremost requirement
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Fig. 4. Step Response of PZT actuator for 10 nanometers (top),50
nanometers (middle) and 100 nanometers (down)

for micromanipulation applications. From these experiments

we can conclude that the proposed controller along with the

disturbance observer produces acceptable results. However,

the system suffers from noise coming from the measurement

devices, which shows up in the steady state plots of the

system.

VI. EXPERIMENTAL VALIDATION OF FORCE

SENSING

A commercially available piezoresistive microcantilever

from AppliedNanostructures with an integrated lightly-doped

strain gauge is utilized as the force sensor. As the force

is applied at the free end of the cantilever, the change of

resistance takes place depending on deflection. The amount

of deflection is measured by a Wheatstone bridge which

provides a voltage output, which is amplified by the amplifier

as shown in the Figure 5. To match with the initial cantilever

resistance value, one of the active resistors in the full bridge

is replaced by a potentiometer. The amplified voltage is send

to the data acquisition card, and the force is calculated using

Hooke’s law

F = Kc z (20)

where Kc is the known spring constant of 0.3603N/m and z
is the amount of cantilever deflection. The spring constant is

calculated by considering a linear beam equation and verified

via a natural frequency test using an AFM [19].Linear beam

equation is represented as

K =
3 E I

L3
(21)

where E represents modulus of elasticity (190 GPa for

silicon)and I represent the moment of inertia calculated as

I =
b h3

12
(22)
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where b and h represnts the width and height of the micro-

cantilever which is 50 microns and 1.6 microns respectively

and the value is 17.067× 10−24 m4.

The cantilever is mounted on the three axes closed loop

stage and the x-axis is moved so that cantilever tip comes in

contact with the glass slide which is supported by three axes

open loop PZT actuators. The interaction (contact and non-

contact) forces between the tip and glass slide are measured.

The force measurement data is shown in Figure 5. The

movement of the cantilever is selected to be perpendicular

to the plane of the optical axis in order to achieve better

visibility of the distance between the cantilever and the glass

slide. Since the displacement range of the x-axis of the closed

loop stage is 100 µm, the glass slide is brought within the

range using open-loop manual PZT axes. Finally. the change

of the resistance is converted to change in voltage (millivolt

range) using the full bridge, which in turn is converted to

∓10 V range using the amplifier.

R
1 P

o
t

R
2

-V

+V

Dspace

PI - Nanocube

Amplifier

XYZ Base 

Stage

Glass

Piezoresistive

Cantilever

Fig. 5. Force measurement setup

Figure 6 and Figure 7 represents the attractive forces for

pulling in and in-out phase respectively between the tip

and glass slide.The decreasing distance between the tip and

glass slides is represented by the increase in the position

of PZT axis.As the distance between the tip and glass slide

decreases the attractive forces increases and vice-versa.It is

well established fact that electrostatic force depends inversely

proportional with the square of the separation distance but

van der waals depends with sixth root.Thus it can be clearly

stated that during initial phase of pulling in/out electrostatic

force will be dominant and have lower slope as compared

to van der waals.This can be clearly seen as change in slope

of the force measurement plot corresponding to these two

regions can be observed from Figure 6 and Figure 7.

In order to verify force measurement, theoretical values

of pull-off force (breaking load during the withdrawal of tip)

between the silicon tip and the glass surface is compared with

the experimental results. In case of the interaction between

a spherical tip and a planar surface, the interaction force can

be approximated by Dugdale model [20], [21] as

Fpull−off =

(

7
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Fig. 6. Pulling in force for smooth step position references
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Fig. 7. Pulling in-out for smooth step position references

where W is the work of adhesion between the two mediums,

R is the radius of the sphere and λ is a coefficient, which

can be used to choose the most appropriate contact model

for a give case [22]. Using the interfacial energy [23], the

pull-off force can be calculated for λ = 0.54 according to

the Dugdale model as 39.43nN [14]. Figure 8 demonstrates

experimentally determined the pull-off force is close to

40 nN .

VII. CONCLUSIONS AND FUTURE WORKS

In this article, an ongoing development effort to build

an experimental setup of micromanipulation workstation

with force sensing using piezoresistive microcantilever is

presented. Design of a discrete time sliding mode controller

based on Lyapunov theory is presented. Linear model of a

piezo stage is used with nominal parameters and a distur-

bance observer is used to compensate the disturbances acting

on the system in order to achieve nano scale positioning ac-

curacies. The effectiveness of the controller and disturbance

289

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on April 9, 2009 at 08:47 from IEEE Xplore.  Restrictions apply.



32 33 34 35 36 37 38

−40

−20

0

20

40

60

80

Distance (µ)

F
o

rc
e

 (
n

N
)

Fig. 8. Force curve for interaction between a silicon tip and a glass surface.

observer is demonstrated in terms of closed loop position

performance. Piezoresistive cantilever is utilized along with

a full bridge in order to achieve the nano-Newton level

interaction forces between piezoresistive probe tip and a glass

surface. Experimental results are compared to the theoretical

estimates of the change in attractive forces as a function of

decreasing distance and of the pull off force between a silicon

tip and a glass surface, respectively. Good agreement among

the experimental data and the theoretical estimates has been

demonstrated.

As a part of future work, our effort will be directed towards

achieving force control for micromanipulation applications.

A teleoperated micromanipulation architecture under bilat-

eral control is also planned.
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