Hassan, Aly and Meidl, Wilfried (2007) On the linear complexity and k error linear complexity over \BBF p of the dary Sidel'nikov Sequence. IEEE Transactions On Information Theory, 53 (12). pp. 47554761. ISSN 00189448
This is the latest version of this item.
PDF
IEEE07.pdf
Restricted to Registered users only
Download (292kB)  Request a copy
IEEE07.pdf
Restricted to Registered users only
Download (292kB)  Request a copy
Official URL: http://dx.doi.org/10.1109/TIT.2007.909129
Abstract
The $d$ary Sidel'nikov sequence $S = s_0, s_1 \ldots$ of period $q1$ for a prime power $q = p^m$ is a frequently analyzed sequence in the literature. Recently, it turned out that the linear complexity over $\F_p$ of the $d$ary Sidel'nikov sequence is considerably smaller than the period if the sequence element $s_{(q1)/2\bmod (q1)}$ is chosen adequately. In this paper this work is continued and tight lower bounds on the linear complexity over $\F_p$ of the $d$ary Sidel'nikov sequence are given. For certain cases exact values are provided. Finally, results on the $k$error linear complexity over $\F_p$ of the $d$ary Sidel'nikov sequence are presented.
Item Type:  Article 

Divisions:  Faculty of Engineering and Natural Sciences 
Depositing User:  Wilfried Meidl 
Date Deposited:  08 Jun 2008 19:28 
Last Modified:  25 May 2011 14:11 
URI:  https://research.sabanciuniv.edu/id/eprint/8599 
Available Versions of this Item

On the linear complexity and kerror linear complexity over Fp of the dary Sidel´nikov sequence. (deposited 16 Nov 2007 11:09)
 On the linear complexity and k error linear complexity over \BBF p of the dary Sidel'nikov Sequence. (deposited 08 Jun 2008 19:28) [Currently Displayed]