PRER: a patient representation with pairwise relative expression of proteins on biological networks

Warning The system is temporarily closed to updates for reporting purpose.

Kuru, Halil Ibrahim and Buyukozkan, Mustafa and Taştan, Öznur (2021) PRER: a patient representation with pairwise relative expression of proteins on biological networks. PLoS Computational Biology, 17 (5). ISSN 1553-734X (Print) 1553-7358 (Online)

Full text not available from this repository. (Request a copy)

Abstract

Changes in protein and gene expression levels are often used as features in predictive modeling such as survival prediction. A common strategy to aggregate information contained in individual proteins is to integrate the expression levels with the biological networks. In this work, we propose a novel patient representation where we integrate proteins' expression levels with the protein-protein interaction (PPI) networks: Patient representation with PRER (Pairwise Relative Expressions with Random walks) (PRER). PRER captures the dysregulation patterns of proteins based on the neighborhood of a protein in the PPI network. Specifically, PRER computes a feature vector for a patient by comparing the source protein's expression level with other proteins' levels that are within its neighborhood. The neighborhood of the source protein is derived by biased random-walk strategy on the network. We test PRER's performance in survival prediction task in 10 different cancers using random forest survival models. PRER yields a statistically significant predictive performance in 9 out of 10 cancers when compared to the same model trained with features based on individual protein expressions. Furthermore, we identified the pairs of proteins that their interactions are predictive of patient survival but their individual expression levels are not. The set of identified relations provides a valuable collection of protein biomarkers with high prognostic value. PRER can be used for other complex diseases and prediction tasks that use molecular expression profiles as input. PRER is freely available at: https://github.com/hikuru/PRER.
Item Type: Article
Divisions: Faculty of Engineering and Natural Sciences
Depositing User: Öznur Taştan
Date Deposited: 30 Aug 2022 22:55
Last Modified: 30 Aug 2022 22:55
URI: https://research.sabanciuniv.edu/id/eprint/43650

Actions (login required)

View Item
View Item