Exciton recycling via InP quantum dot funnels for luminescent solar concentrators

Bahmani Jalali, Houman and Sadeghi, Sadra and Baylam, Isinsu and Han, Mertcan and Ow-Yang, Cleva W. and Sennaroglu, Alphan and Nizamoglu, Sedat (2021) Exciton recycling via InP quantum dot funnels for luminescent solar concentrators. Nano Research, 14 (5). pp. 1488-1494. ISSN 1998-0124 (Print) 1998-0000 (Online)

Full text not available from this repository. (Request a copy)

Abstract

Luminescent solar concentrators (LSC) absorb large-area solar radiation and guide down-converted emission to solar cells for electricity production. Quantum dots (QDs) have been widely engineered at device and quantum dot levels for LSCs. Here, we demonstrate cascaded energy transfer and exciton recycling at nanoassembly level for LSCs. The graded structure composed of different sized toxic-heavy-metal-free InP/ZnS core/shell QDs incorporated on copper doped InP QDs, facilitating exciton routing toward narrow band gap QDs at a high nonradiative energy transfer efficiency of 66%. At the final stage of non-radiative energy transfer, the photogenerated holes make ultrafast electronic transitions to copper-induced mid-gap states for radiative recombination in the near-infrared. The exciton recycling facilitates a photoluminescence quantum yield increase of 34% and 61% in comparison with semi-graded and ungraded energy profiles, respectively. Thanks to the suppressed reabsorption and enhanced photoluminescence quantum yield, the graded LSC achieved an optical quantum efficiency of 22.2%. Hence, engineering at nanoassembly level combined with nonradiative energy transfer and exciton funneling offer promise for efficient solar energy harvesting.
Item Type: Article
Uncontrolled Keywords: energy transfer; indium phosphide; light harvesting; luminescent solar concentrator; luminescent solar concentrators (LSC); quantum dot
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Materials Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Cleva W. Ow-Yang
Date Deposited: 19 Aug 2022 14:35
Last Modified: 19 Aug 2022 14:35
URI: https://research.sabanciuniv.edu/id/eprint/43254

Actions (login required)

View Item
View Item