Kinematic analysis and optimization of robotic milling

Sapmaz, Ömer Faruk (2019) Kinematic analysis and optimization of robotic milling. [Thesis]

[thumbnail of 10283419_OmerFarukSapmaz.pdf] PDF

Download (2MB)


Robotic milling is proposed to be one of the alternatives to respond the demand for flexible and cost-effective manufacturing systems. Serial arm robots offering 6 degrees of freedom (DOF) motion capability which are utilized for robotic 5-axis milling purposes, exhibits several issues such as low accuracy, low structural rigidity and kinematic singularities etc. In 5-axis milling, the tool axis selection and workpiece positioning are still a challenge, where only geometrical issues are considered at the computer-aided-manufacturing (CAM) packages. The inverse kinematic solution of the robot i.e. positions and motion of the axes, strictly depends on the workpiece location with respect to the robot base. Therefore, workpiece placement is crucial for improved robotic milling applications. In this thesis, an approach is proposed to select the tool axis for robotic milling along an already generated 5-axis milling tool path, where the robot kinematics are considered to eliminate or decrease excessive axis rotations. The proposed approach is demonstrated through simulations and benefits are discussed. Also, the effect of workpiece positioning in robotic milling is investigated considering the robot kinematics. The investigation criterion is selected as the movement of the robot axes. It is aimed to minimize the total movement of either all axes or selected the axis responsible of the most accuracy errors. Kinematic simulations are performed on a representative milling tool path and results are discussed
Item Type: Thesis
Uncontrolled Keywords: Tool axis optimization. -- Workpiece positioning. -- Robotic milling. -- 5-Axis machining.
Subjects: T Technology > TS Manufactures > TS0155-194 Production management. Operations management
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Manufacturing Systems Eng.
Faculty of Engineering and Natural Sciences
Depositing User: IC-Cataloging
Date Deposited: 23 Sep 2019 16:02
Last Modified: 26 Apr 2022 10:31

Actions (login required)

View Item
View Item