Elementary abelian p-extensions of algebraic function fields and the Hasse-Arf Theorem

Warning The system is temporarily closed to updates for reporting purpose.

Alkan, Sezel (2017) Elementary abelian p-extensions of algebraic function fields and the Hasse-Arf Theorem. [Thesis]

[thumbnail of SezelAlkan_10137838.pdf] PDF

Download (275kB)


This thesis starts with the basic properties of elementary abelian p-extensions of function fields. Rami cation structure and the genus computation for such extensions are presented first. When the constant field is finite, number of rational places of function fields is finite and this number is bounded by the Hasse-Weil bound. However for large genus, this bound is weak. Therefore, when a sequence of function field extensions with growing genera is considered, the growth of the ratio of the number of rational places to the genera in the sequence is of interest. Following the work of Frey-Perret-Stichtenoth, we show that the limit of this ratio is zero if a sequence of elementary abelian p-extensions are considered. Hasse-Arf Theorem gives information about the jumps in the higher ramification group filtration of a function eld extension. We also present the proof of this theorem for elementary abelian p-extensions, which is due to Garcia and Stichtenoth.
Item Type: Thesis
Uncontrolled Keywords: Function eld extension, elementary abelian extension, rami cation, rational place, genus. -- Fonksiyon cismi geni slemesi, elementer abelyen geni sleme, dallanma, rasyonel yer, cins.
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Engineering and Natural Sciences > Basic Sciences > Mathematics
Faculty of Engineering and Natural Sciences
Depositing User: IC-Cataloging
Date Deposited: 10 Oct 2017 10:37
Last Modified: 26 Apr 2022 10:11
URI: https://research.sabanciuniv.edu/id/eprint/34029

Actions (login required)

View Item
View Item