Using fractional order elements for haptic rendering

Tokatlı, Ozan and Patoğlu, Volkan (2018) Using fractional order elements for haptic rendering. In: Bicchi, Antonio and Burgard, Wolfram, (eds.) Robotics Research. Springer Proceedings in Advanced Robotics (SPAR, Volume 2), 1. Springer International Publishing, pp. 373-388. ISBN 978-3-319-51531-1 (Print) 978-3-319-51532-8 (Online)

Full text not available from this repository. (Request a copy)


Fractional order calculus—a generalization of the traditional calculus to arbitrary order differointegration—is an effective mathematical tool that broadens the modeling boundaries of the familiar integer order calculus. Fractional order models enable faithful representation of viscoelastic materials that exhibit frequency dependent stiffness and damping characteristics within a single mechanical element. We propose the use of fractional order models/controllers in haptic systems to significantly extend the type of impedances that can be rendered using the integer order models. We study the effect of fractional order elements on the coupled stability of the overall sampled-data system. We show that fractional calculus generalization provides an additional degree of freedom for adjusting the dissipation behavior of the closed-loop system and generalize the well-known passivity condition to include fractional order impedances. Our results demonstrate the effect of the order of differointegration on the passivity boundary. We also characterize the effective impedance of the fractional order elements as a function of frequency and differointegration order.
Item Type: Book Section / Chapter
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences
Depositing User: Volkan Patoğlu
Date Deposited: 10 Sep 2017 20:48
Last Modified: 08 Aug 2023 17:17

Actions (login required)

View Item
View Item