Agronomic biofortification of cereals with zinc: a review

Çakmak, İsmail and Kutman, U. B. (2017) Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science . ISSN 1351-0754 (Print) 1365-2389 (Online) Published Online First http://dx.doi.org/10.1111/ejss.12437

Warning
There is a more recent version of this item available.
Full text not available from this repository. (Request a copy)

Abstract

Zinc (Zn) still represents an important health problem in developing countries, caused mainly by inadequate dietary intake. A large consumption of cereal-based foods with small concentrations and low bioavailability of Zn is the major reason behind this problem. Modern cultivars of cereals have inherently very small concentrations of Zn and cannot meet the human need for Zn. Today, up to 50% of wheat-cultivated soil globally is considered poor in bioavailable Zn. Agricultural strategies that are used to improve the nutritional value of crop plants are known as biofortification strategies. They include genetic biofortification, which is based on classical plant breeding and genetic engineering for larger nutrient concentrations, and greater agronomic biofortification, which is based on optimized fertilizer applications. This review focuses on agronomic biofortification with Zn, which has proved to be very effective for wheat and also other cereal crops including rice. Molecular and genetic research into Zn uptake, transport and grain deposition in cereals are critically important for identifying ‘bottlenecks’ in the biofortification of food crops with Zn. Transgenic plants with large Zn concentrations in seeds are often tested under controlled laboratory or glasshouse conditions with sufficient available Zn in the growth medium for the entire growth period. However, they might not always show the same performance under ‘real-world’ conditions with limited chemical availability of Zn and various stress factors such as drought. What purpose can an upgraded transport and storage system serve if the amount of goods to be transported and stored is limited anyway? Given the fact that the Zn concentrations required to achieve a measurable impact on human health are well above those required to avoid any loss of yield from Zn deficiency, providing crop plants with sufficient Zn through the soil and foliar fertilizer strategy under field conditions is critically important for biofortification efforts.
Item Type: Article
Subjects: S Agriculture > S Agriculture (General)
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Biological Sciences & Bio Eng.
Faculty of Engineering and Natural Sciences
Depositing User: İsmail Çakmak
Date Deposited: 09 Sep 2017 16:47
Last Modified: 07 Feb 2018 15:33
URI: https://research.sabanciuniv.edu/id/eprint/33882

Available Versions of this Item

Actions (login required)

View Item
View Item