QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations

Velu, Govindan and Tutuş, Yusuf and Gomez-Becerra, Hugo F. and Hao, Yuanfeng and Demir, Lütfü and Kara, Rukiye and Crespo-Herrera, Leonardo A. and Orhan, Şinasi and Yazıcı, Mustafa Atilla and Singh, Ravi P. and Çakmak, İsmail (2017) QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant and Soil, 411 (1-2). pp. 81-99. ISSN 0032-079X (Print) 1573-5036 (Online)

This is the latest version of this item.

Full text not available from this repository. (Request a copy)


Zinc (Zn) and iron (Fe) deficiencies are the most important forms of malnutrition globally, and caused mainly by low dietary intake. Wheat, a major staple food crop, is inherently low in these micronutrients. Identifying new QTLs for high grain Zn (GZn) and Fe (GFe) will contribute to improved micronutrient density in wheat grain. Using two recently developed RIL mapping populations derived from a wild progenitor of a tetraploid population "Saricanak98 x MM5/4" and an hexaploid population "Adana99 x 70,711", multi-locational field experiments were conducted over 2 years to identify genomic regions associated with high grain Zn (GZn) and grain Fe (GFe) concentrations. Additionally, a greenhouse experiment was conducted by growing the "Saricanak98 x MM5/4" population in a Zn-deficient calcareous soil to determine the markers involved in Zn efficiency (ZnEff) of the genotypes (expressed as the ratio of shoot dry weight under Zn deficiency to Zn fertilization) and its relation to GZn. The populations were genotyped by using DArT markers. Quantitative trait loci (QTL) for high GFe and GZn concentrations in wheat grains were mapped in the both RIL mapping populations. Two major QTLs for increasing GZn were stably detected on chromosomes 1B and 6B of the tetra- and hexaploid mapping populations, and a GZn QTL on chromosome 2B co-located with grain GFe, suggesting simultaneous improvement of GFe and GZn is possible. In the greenhouse experiment, the RILs exhibited substantial genotypic variation for Zn efficiency ratio, ranging from 31 % to 90 %. Two QTL for Zn efficiency were identified on chromosomes 6A and 6B. There was no association between Zn efficiency and grain Zn concentration among the genotypes. The results clearly show that Zn efficiency and Zn accumulation in grain are governed by different genetic mechanisms. Identification of some consistent genomic regions such as 1B and 6B across two different mapping populations suggest these genomic regions might be the useful regions for further marker development and use in biofortification breeding programs.
Item Type: Article
Additional Information: Wos Document Type: Article; Proceedings Paper / Conference: 4th International Zinc (Zn) Symposium / Location: Sao Paulo, BRAZIL / Date: OCT 15-17, 2015
Uncontrolled Keywords: Biofortification; Iron; Zinc; Zinc deficiency; Mapping population; QTL; Wheat
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Biological Sciences & Bio Eng.
Faculty of Engineering and Natural Sciences
Depositing User: İsmail Çakmak
Date Deposited: 10 Sep 2017 13:39
Last Modified: 10 Sep 2017 13:39
URI: https://research.sabanciuniv.edu/id/eprint/33873

Available Versions of this Item

Actions (login required)

View Item
View Item