A Markov decision process model for cervical cancer screening policies in Colombia

Warning The system is temporarily closed to updates for reporting purpose.

Akhavan Tabatabaei, Raha and Marcela Sanchez, Diana and Yeung, Thomas G. (2017) A Markov decision process model for cervical cancer screening policies in Colombia. Medical Decision Making, 37 (2). pp. 196-211. ISSN 0272-989X (Print) 1552-681X (Online)

This is the latest version of this item.

[thumbnail of Med_Decis_Making-2016-Akhavan-Tabatabaei-0272989X16670622.pdf] PDF
Med_Decis_Making-2016-Akhavan-Tabatabaei-0272989X16670622.pdf
Restricted to Repository staff only

Download (716kB) | Request a copy

Abstract

Cervical cancer is the second most common cancer in women around the world, and the human papillomavirus (HPV) is universally known as the necessary agent for developing this disease. Through early detection of abnormal cells and HPV virus types, cervical cancer incidents can be reduced and disease progression prevented. We propose a finite-horizon Markov decision process model to determine the optimal screening policies for cervical cancer prevention. The optimal decision is given in terms of when and what type of screening test to be performed on a patient based on her current diagnosis, age, HPV contraction risk, and screening test results. The cost function considers the tradeoff between the cost of prevention and treatment procedures and the risk of taking no action while taking into account a cost assigned to loss of life quality in each state. We apply the model to data collected from a representative sample of 1141 affiliates at a health care provider located in Bogotá, Colombia. To track the disease incidence more effectively and avoid higher cancer rates and future costs, the optimal policies recommend more frequent colposcopies and Pap tests for women with riskier profiles.
Item Type: Article
Uncontrolled Keywords: cervical cancer, screening, Markov decision process
Subjects: Q Science > QA Mathematics > QA273-280 Probabilities. Mathematical statistics
R Medicine > RG Gynecology and obstetrics
R Medicine > RA Public aspects of medicine > RA0421 Public health. Hygiene. Preventive Medicine
Divisions: Sabancı Business School
Sabancı Business School > Operations Management and Information Systems
Depositing User: Raha Akhavan
Date Deposited: 16 Mar 2017 16:07
Last Modified: 26 Apr 2022 09:41
URI: https://research.sabanciuniv.edu/id/eprint/31106

Available Versions of this Item

Actions (login required)

View Item
View Item