Stability of haptic systems with fractional order controllers

Tokatlı, Ozan and Patoğlu, Volkan (2015) Stability of haptic systems with fractional order controllers. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2015), Hamburg, Germany

Full text not available from this repository. (Request a copy)


Fractional order calculus is a generalization of the familiar integer order calculus in that, it allows for differentiation/integration with orders of any real number. The use of fractional order calculus in systems and control applications provides the user an extra design variable, the order of differointegration, which can be tuned to improve the desired behavior of the overall system. We propose utilization of fractional order models/controllers in haptic systems and study the effect of fractional differentiation order on the stability robustness of the overall sampled-data system. Our results demonstrate that fractional calculus generalization has a significant impact on both the shape and area of stability region of a haptic system and inclusion of fractional order impedances may improve the stability robustness of haptic rendering. Our results also include experimental verification of the stability regions predicted by the theoretical analysis.
Item Type: Papers in Conference Proceedings
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences
Depositing User: Volkan Patoğlu
Date Deposited: 22 Dec 2015 20:20
Last Modified: 26 Apr 2022 09:20

Actions (login required)

View Item
View Item