Universality aspects of the d=3 random-bond Blume-Capel model

Malakis, A. and Berker, A. Nihat and Fytas, N. G. and Papakonstantinou, T. (2012) Universality aspects of the d=3 random-bond Blume-Capel model. Physical Review E, 85 (issue ). ISSN 1539-3755

Full text not available from this repository. (Request a copy)


The effects of bond randomness on the universality aspects of the simple cubic lattice ferromagnetic Blume-Capel model are discussed. The system is studied numerically in both its first- and second-order phase transition regimes by a comprehensive finite-size scaling analysis. We find that our data for the second-order phase transition, emerging under random bonds from the second-order regime of the pure model, are compatible with the universality class of the 3d random Ising model. Furthermore, we find evidence that the second-order transition emerging under bond randomness from the first-order regime of the pure model belongs to a new and distinctive universality class. The first finding reinforces the scenario of a single universality class for the 3d Ising model with the three well-known types of quenched uncorrelated disorder (bond randomness, site and bond dilution). The second amounts to a strong violation of the universality principle of critical phenomena. For this case of the ex-first-order 3d Blume-Capel model, we find sharp differences from the critical behaviors, emerging under randomness, in the cases of the ex-first-order transitions of the corresponding weak and strong first-order transitions in the 3d three-state and four-state Potts models.
Item Type: Article
Additional Information: Article Number: 061106
Subjects: Q Science > QC Physics
Divisions: President's Office
Faculty of Engineering and Natural Sciences > Basic Sciences > Physics
Faculty of Engineering and Natural Sciences
Depositing User: A. Nihat Berker
Date Deposited: 04 Jul 2012 15:28
Last Modified: 26 Apr 2022 08:56
URI: https://research.sabanciuniv.edu/id/eprint/19145

Actions (login required)

View Item
View Item