Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

Warning The system is temporarily closed to updates for reporting purpose.

Uzunbaş, Mustafa Gökhan and Soldea, Octavian and Ünay, Devrim and Çetin, Müjdat and Ünal, Gözde and Erçil, Aytül and Ekin, Ahmet (2010) Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation. (Accepted/In Press)

Warning
There is a more recent version of this item available.
[thumbnail of This is a RoMEO green publisher -- author can archive pre-print (ie pre-refereeing)] PDF (This is a RoMEO green publisher -- author can archive pre-print (ie pre-refereeing))
05492224_from_journal_early__access.pdf

Download (4MB)

Abstract

This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy.
Item Type: Article
Uncontrolled Keywords: Volumetric segmentation, active contours, shape prior, kernel density estimation, moments, MR imagery, basal ganglia
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Electronics
Faculty of Engineering and Natural Sciences
Depositing User: Müjdat Çetin
Date Deposited: 24 Nov 2010 22:33
Last Modified: 29 Jul 2019 11:41
URI: https://research.sabanciuniv.edu/id/eprint/15332

Available Versions of this Item

Actions (login required)

View Item
View Item