A multiobjective optimization approach to obtain decision thresholds for distributed detection in wireless sensor networks

Maşazade, Engin and Rajagopalan, Ramesh and Varshney, Pramod K. and Mohan, Chilukuri K. and Kızıltaş, Güllü and Keskinöz, Mehmet (2010) A multiobjective optimization approach to obtain decision thresholds for distributed detection in wireless sensor networks. IEEE Transactions on Systems Man and Cybernetics, Part B: Cybernetics, 40 (2). pp. 444-457. ISSN 1083-4419

This is the latest version of this item.

Full text not available from this repository. (Request a copy)


For distributed detection in a wireless sensor network, sensors arrive at decisions about a specific event that are then sent to a central fusion center that makes global inference about the event. For such systems, the determination of the decision thresholds for local sensors is an essential task. In this paper, we study the distributed detection problem and evaluate the sensor thresholds by formulating and solving a multiobjective optimization problem, where the objectives are to minimize the probability of error and the total energy consumption of the network. The problem is investigated and solved for two types of fusion schemes: 1) parallel decision fusion and 2) serial decision fusion. The Pareto optimal solutions are obtained using two different multiobjective optimization techniques. The normal boundary intersection (NBI) method converts the multiobjective problem into a number of single objective-constrained subproblems, where each subproblem can be solved with appropriate optimization methods and nondominating sorting genetic algorithm-II (NSGA-II), which is a multiobjective evolutionary algorithm. In our simulations, NBI yielded better and evenly distributed Pareto optimal solutions in a shorter time as compared with NSGA-II. The simulation results show that, instead of only minimizing the probability of error, multiobjective optimization provides a number of design alternatives, which achieve significant energy savings at the cost of slightly increasing the best achievable decision error probability. The simulation results also show that the parallel fusion model achieves better error probability, but the serial fusion model is more efficient in terms of energy consumption.
Item Type: Article
Uncontrolled Keywords: Distributed detection; multiobjective optimization; wireless sensor networks (WSNs)
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Electronics
Faculty of Engineering and Natural Sciences
Depositing User: Mehmet Keskinöz
Date Deposited: 05 Apr 2010 12:18
Last Modified: 24 Jul 2019 16:27
URI: https://research.sabanciuniv.edu/id/eprint/13883

Available Versions of this Item

Actions (login required)

View Item
View Item