## Shifted plateaued functions and their differential properties
Anbar Meidl, Nurdagül and Kaşıkçı, Canan and Meidl, Wilfried and Topuzoğlu, Alev (2020)
Official URL: http://dx.doi.org/10.1007/s12095-020-00426-2 ## AbstractA bent4 function is a Boolean function with a ﬂat spectrum with respect to a certain unitary transform T. It was shown previously that a Boolean function f in an even number of variables is bent4 if and only if f +σ is bent, where σ is a certain quadratic function depending on T. Hence bent4 functions are also called shifted bent functions. Similarly, a Boolean function f in an odd number of variables is bent4 if and only if f + σ is a semibent function satisfying some additional properties. In this article, for the ﬁrst time, we analyse in detail the effect of the shifts on plateaued functions, on partially bent functions and on the linear structures of Boolean functions. We also discuss constructions of bent and bent4 functions from partially bent functions and study the differential properties of partially bent4 functions, unifying the previous work on partially bent functions.
## Available Versions of this Item- Shifted plateaued functions and their differential properties. (deposited 29 Jul 2019 21:41)
- Shifted plateaued functions and their differential properties. (deposited 28 Feb 2020 11:52)
- Shifted plateaued functions and their differential properties. (deposited 30 Mar 2020 17:23)
- Shifted plateaued functions and their differential properties. (deposited 20 Feb 2021 17:19)
**[Currently Displayed]**
- Shifted plateaued functions and their differential properties. (deposited 20 Feb 2021 17:19)
- Shifted plateaued functions and their differential properties. (deposited 30 Mar 2020 17:23)
- Shifted plateaued functions and their differential properties. (deposited 28 Feb 2020 11:52)
Repository Staff Only: item control page |