Shifted plateaued functions and their differential properties

Warning The system is temporarily closed to updates for reporting purpose.

Anbar Meidl, Nurdagül and Kaşıkçı, Canan and Meidl, Wilfried and Topuzoğlu, Alev (2020) Shifted plateaued functions and their differential properties. Cryptography and Communications, 12 (6). pp. 1091-1105. ISSN 1936-2447 (Print) 1936-2455 (Online)

This is the latest version of this item.

[img]PDF - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1007/s12095-020-00426-2


A bent4 function is a Boolean function with a flat spectrum with respect to a certain unitary transform T. It was shown previously that a Boolean function f in an even number of variables is bent4 if and only if f +σ is bent, where σ is a certain quadratic function depending on T. Hence bent4 functions are also called shifted bent functions. Similarly, a Boolean function f in an odd number of variables is bent4 if and only if f + σ is a semibent function satisfying some additional properties. In this article, for the first time, we analyse in detail the effect of the shifts on plateaued functions, on partially bent functions and on the linear structures of Boolean functions. We also discuss constructions of bent and bent4 functions from partially bent functions and study the differential properties of partially bent4 functions, unifying the previous work on partially bent functions.

Item Type:Article
Uncontrolled Keywords:Plateaued function; Bent(4) function; Partially bent function; Relative difference set
Subjects:Q Science > QA Mathematics > QA150-272.5 Algebra
ID Code:41297
Deposited By:Nurdagül Anbar Meidl
Deposited On:20 Feb 2021 17:19
Last Modified:20 Feb 2021 17:19

Repository Staff Only: item control page