title
  

Contributions to the theory of function fields in positive characteristic

Warning The system is temporarily closed to updates for reporting purpose.

Güneş, Burçin (2019) Contributions to the theory of function fields in positive characteristic. [Thesis]

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
582Kb

Official URL: http://risc01.sabanciuniv.edu/record=b2315112_ (Table of contents)

Abstract

In this thesis, we consider two problems related to the theory of function fields in positive characteristic. In the first part, we study the automorphisms of a function field of genus g≥2 over an algebraically closed eld of characteristic p > 0. We show that for any nilpotent subgroup G of the automorphism group, the order of G is bounded by 16 (g-1) when G is not a p-group and by 4p (p - 1)2 g2 when G is a p-group. Also, there are examples of function fields attaining these bounds; therefore, the bounds we obtained cannot be improved. In the second part, we focus on maximal function fields over finite fields having large automorphism groups. More precisely, we consider maximal function fields over the finite field Fp4 whose automorphism groups have order exceeding the Hurwitz's bound. We determine some conditions under which the maximal function field is Galois covered by the Hermitian function field.

Item Type:Thesis
Uncontrolled Keywords:Automorphism group. -- Function field. -- Galois extension. -- Hermitian function field. -- Hurwitz's genus formula. -- Nilpotent subgroup. -- Maximal curve. -- Positive characteristic. -- Fonksiyon cismi. -- Galois genişlemesi. -- Hermitsel fonksiyon cismi. -- Hurwitz cins formülü. -- Maksimal eğri. -- Otomorfizma grubu. -- Pozitif karakteristik. -- Sıfır kuvvetli altgrup.
Subjects:Q Science > QA Mathematics
ID Code:39258
Deposited By:IC-Cataloging
Deposited On:25 Sep 2019 13:56
Last Modified:25 Sep 2019 13:56

Repository Staff Only: item control page