Low energy HEVC video compression hardware designs

Warning The system is temporarily closed to updates for reporting purpose.

Kalalı, Ercan (2013) Low energy HEVC video compression hardware designs. [Thesis]

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://risc01.sabanciuniv.edu/record=b1534394 (Table of Contents)


Joint collaborative team on video coding (JCT-VC) recently developed a new international video compression standard called High Efficiency Video Coding (HEVC). HEVC has 37% better compression efficiency than H.264 which is the current state-of-the-art video compression standard. HEVC achieves this video compression efficiency by significantly increasing the computational complexity. Therefore, in this thesis, we propose novel computational complexity and energy reduction techniques for intra prediction algorithm used in HEVC video encoder and decoder. We quantified the computation reductions achieved by these techniques using HEVC HM reference software encoder. We designed efficient hardware architectures for these video compression algorithms used in HEVC. We also designed a reconfigurable sub-pixel interpolation hardware for both HEVC encoder and decoder. We implemented these hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to a Xilinx Virtex 6 FPGA and estimated their power consumptions on this FPGA using Xilinx XPower Analyzer tool. The proposed techniques significantly reduced the energy consumptions of these FPGA implementations in some cases with no PSNR loss and in some cases with very small PSNR loss.

Item Type:Thesis
Uncontrolled Keywords:HEVC. -- Intra prediction. -- Sub-pixel interpolation. -- Digital video compression. -- Çerçeve içi öngörü. -- Ara piksel hesaplama. -- Sayısal video sıkıştırma.
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7800-8360 Electronics
ID Code:34055
Deposited By:IC-Cataloging
Deposited On:19 Oct 2017 10:54
Last Modified:25 Mar 2019 17:19

Repository Staff Only: item control page