Process simulation for five-axis machining for generalised milling tools

Özkırımlı, Ömer M. and Budak, Erhan (2011) Process simulation for five-axis machining for generalised milling tools. International Journal of Design Engineering, 3 (3). pp. 232-246. ISSN 1751-5874 (Print) 1751-5882 (Online)

[img]PDF - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1504/IJDE.2010.039758


In this study, a general numerical model for five-axis machining is proposed covering all possible tool geometries. The proposed process model predicts total cutting forces acting on the tool given the cutter profile geometry, process conditions and material specifications without preliminary cutting operations. Tool envelope is extracted from CAD data, and helical flutes points are represented in cylindrical coordinates. Equal parallel slicing method is utilised to find cutter engagement boundaries (CEB) determining cutting region of the tool surface for each axial level in the tool axis direction. For each level uncut chip thickness value is found and total forces are calculated by summing force values for each point along the cutting flutes. For arbitrary cases forces are simulated and obtained results are experimentally verified.

Item Type:Article
Uncontrolled Keywords: five-axis machining; 5-axis milling; process simulation; tool engagement; APT tools; numerical simulation; process modelling; tool geometry; cutting forces; tool envelope; CAD; helical flute points; equal parallel slicing; cutter engagement boundaries; chip thickness; milling tools
Subjects:T Technology > TJ Mechanical engineering and machinery
ID Code:17553
Deposited By:Erhan Budak
Deposited On:05 Dec 2011 12:40
Last Modified:30 Jul 2019 14:45

Repository Staff Only: item control page