Data association based on optimization in graphical models with application to sensor networks

Warning The system is temporarily closed to updates for reporting purpose.

Chen, Lei and Wainwright, Martin J. and Çetin, Müjdat and Willsky, Alan S. (2006) Data association based on optimization in graphical models with application to sensor networks. Mathematical and computer modelling, 43 (9-10). pp. 1114-1135. ISSN 0895-7177

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.mcm.2005.12.002


We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables, and are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two different types of data association problems, corresponding to whether or not it is known a priori which targets are within the surveillance range of each sensor. We first demonstrate how to transform these two problems to inference problems on graphical models. With this transformation, both problems can be solved efficiently by local message-passing algorithms for graphical models, which solve optimization problems in a distributed manner by exchange of information among neighboring nodes on the graph. Moreover, a suitably reweighted version of the maxproduct algorithm yields provably optimal data associations. These approaches scale well with the number of sensors in the network, and moreover are well suited to being realized in a distributed fashion. So as to address trade-offs between performance and communication costs, we propose a communication-sensitive form of message-passing that is capable of achieving near-optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data.

Item Type:Article
Uncontrolled Keywords:Data association; multiple target tracking; sensor networks; graphical models; belief propagation
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
ID Code:136
Deposited By:Müjdat Çetin
Deposited On:20 Dec 2006 02:00
Last Modified:04 Sep 2019 15:05

Repository Staff Only: item control page