Learning the dynamics and time-recursive boundary detection of deformable objects

Warning The system is temporarily closed to updates for reporting purpose.

Sun, Walter and Çetin, Müjdat and Chan, Raymond and Willsky, Alan S. (2008) Learning the dynamics and time-recursive boundary detection of deformable objects. IEEE Transactions on Image Processing, 17 (11). pp. 2186-2200. ISSN 1057-7149

This is the latest version of this item.

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1109/TIP.2008.2004638


We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.

Item Type:Article
Uncontrolled Keywords:Recursive estimation, left ventricle, curve evolution, level sets, image segmentation, magnetic resonance imaging, cardiac imaging, smoothing, graphical models, particle filtering, learning.
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
ID Code:10478
Deposited By:Müjdat Çetin
Deposited On:11 Nov 2008 14:01
Last Modified:22 May 2019 12:18

Available Versions of this Item

Repository Staff Only: item control page