## On the decoupling of the improved boussinesq equation into two uncoupled Camassa-Holm equations
Erbay, Hüsnü A. and Erbay, Saadet and Erkip, Albert (2017)
Official URL: http://dx.doi.org/10.3934/dcds.2017133 ## AbstractWe rigorously establish that, in the long-wave regime characterized by the assumptions of long wavelength and small amplitude, bidirecdional solutions of the improved Boussinesq equation tend to associated solutions of two uncoupled Camassa-Holm equations. We give a precise estimate for approximation errors in terms of two small positive parameters measuring the effects of nonlinearity and dispersion. Our results demonstrate that, in the present regime, any solution of the improved Boussinesq equation is split into two waves propagating in opposite directions independently, each of which is governed by the Camassa-Holm equation. We observe that the approximation error for the decoupled problem considered in the present study is greater than the approximation error for the unidirectional problem characterized by a single Camassa-Holm equation. We also consider lower order approximations and we state similar error estimates for both the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.
## Available Versions of this Item- On the decoupling of the improved boussinesq equation into two uncoupled Camassa-Holm equations. (deposited 30 Jan 2017 16:00)
- On the decoupling of the improved boussinesq equation into two uncoupled Camassa-Holm equations. (deposited 15 Mar 2017 15:51)
**[Currently Displayed]**
- On the decoupling of the improved boussinesq equation into two uncoupled Camassa-Holm equations. (deposited 15 Mar 2017 15:51)
Repository Staff Only: item control page |