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Abstract

We rigorously establish that, in the long-wave regime characterized

by the assumptions of long wavelength and small amplitude, bidirec-

tional solutions of the improved Boussinesq equation tend to associ-

ated solutions of two uncoupled Camassa-Holm equations. We give a

precise estimate for approximation errors in terms of two small posi-

tive parameters measuring the effects of nonlinearity and dispersion.

Our results demonstrate that, in the present regime, any solution of

the improved Boussinesq equation is split into two waves propagat-

ing in opposite directions independently, each of which is governed

by the Camassa-Holm equation. We observe that the approximation

error for the decoupled problem considered in the present study is

greater than the approximation error for the unidirectional problem

characterized by a single Camassa-Holm equation. We also consider

lower order approximations and we state similar error estimates for

both the Benjamin-Bona-Mahony approximation and the Korteweg-

de Vries approximation.

1 Introduction

In this study, we consider the improved Boussinesq (IB) equation

utt − uxx − δ2uxxtt − ǫ(u2)xx = 0, (1)

which appears as a relevant model in various areas of physics (see, e.g. [15,
18, 8] for solid mechanics), and we proceed along our analysis of the Camassa-
Holm (CH) approximation of the IB equation initiated in [11]. In (1), u =

1

http://arxiv.org/abs/1701.03491v1


u(x, t) is a real-valued function, and ǫ and δ are two small positive parameters
measuring the effects of nonlinearity and dispersion, respectively. In [11], by
a proper choice of initial data, we restricted our attention to the right-going
solutions of the IB equation and showed that, for small amplitude long waves,
they are well approximated by associated solutions of a single CH equation
[4]. In the present study we remove the assumption about the solutions
being unidirectional and consider solutions traveling in both directions with
general initial disturbances. We then show that, in the long-wave regime,
solutions of the IB equation can be split into two counter-propagating parts
up to a small error. To be more precise, it is shown that any solution of the
IB equation is well approximated by the sum w+ + w− of solutions of two
uncoupled CH equations

w+

t + w+

x + ǫw+w+

x − 3

4
δ2w+

xxx −
5

4
δ2w+

xxt −
3

4
ǫδ2(2w+

x w
+

xx + w+w+

xxx) = 0,

(2)

w−
t − w−

x − ǫw−w−
x +

3

4
δ2w−

xxx −
5

4
δ2w−

xxt +
3

4
ǫδ2(2w−

x w
−
xx + w−w−

xxx) = 0,

(3)

where w+ and w− denote the right and left going waves, respectively. We
mainly establish existence, consistency and convergence results for the CH
approximation of the IB equation in the decoupled case. We prove the de-
composition and give the convergence rate between bounded solutions of the
IB equation and the sum of two counter-propagating solutions of uncoupled
CH equations. We observe that the approximation errors remain small in
suitable norms over an arbitrarily long time interval. We also give error esti-
mates for the Benjamin-Bona-Mahony (BBM) and Korteweg-de Vries (KdV)
approximations of the IB equation in the same setting, where w+ and w− are
solutions of the two uncoupled BBM equations [2] or KdV equations [13].

The KdV, BBM and CH equations arise as formal asymptotic models for
unidirectional propagation of weakly nonlinear and weakly dispersive waves
in a variety of physical situations. Recently, there has been a growing interest
to rigorously relate solutions of the asymptotic equations to solutions of the
parent equations of original physical problem. For instance, in the context of
water waves, the KdV, BBM and CH equations have been rigorously justified
as unidirectional asymptotic models of the water wave equations in [7], [1]
and [5], respectively (the reader is referred to [14] for a detailed discussion of
the water waves problem). In the case of bidirectional propagation of small
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amplitude long waves, an uncoupled system of two KdV equations, one for
waves moving to the left and one for waves moving to the right, appears
as the simplest asymptotic model of the underlying physical problem. In
[16], [3], [20], it was proven that bidirectional, small amplitude, long-wave
solutions of the water wave problem are well approximated by combinations
of solutions of two uncoupled KdV equations. In [21], a similar justification
framework was used for an uncoupled system of two CH equations once again
in the water wave setting.

In this paper, attention is given to the IB equation that describes the
time evolution of nonlinear dispersive waves in many practically important
situations. In [17] and [19], the validity of the uncoupled KdV system was
established as a leading order approximation for long wavelength solutions
of the IB equation. In the present work we extend the analysis to moderate
amplitudes by considering an uncoupled system of two CH equations as a
leading order approximation to the IB equation in the long wave regime and
provide an estimate for the approximation error. As a by-product, we also
recover both the uncoupled KdV system and the uncoupled BBM system as
the leading approximations of the IB equation. We believe that the study
of the IB equation provides a useful step in understanding long-wave limits
of the evolution equations modeling much more complicated physical situa-
tions. For a mathematical description of the long-wave limit of unidirectional
solutions of the IB equation by a single CH equation we refer to [11] (see [10]
for the formal derivation of the CH equation from the IB equation). As in
[11] the methodology used in this study adapts the techniques in [3, 5, 12].
Since the proofs in the present work are somewhat parallel with the proofs
in [11], we will present the new ingredients only.

Several points are worth emphasizing briefly. First, we remind that the
system of uncoupled CH equations (2) and (3) can be written in a more
standard form by means of the following coordinate transformations

x =
2√
5
(x− 3

5
t), y =

2√
5
(x+

3

5
t), t =

2

3
√
5
t. (4)

Then, (2) and (3) become

v+t̄ +
6

5
v+x̄ + 3ǫv+v+x̄ − δ2v+t̄x̄x̄ −

9

5
ǫδ2(2v+x̄ v

+

x̄x̄ + v+v+x̄x̄x̄) = 0, (5)

v−t̄ − 6

5
v−ȳ − 3ǫv−v−ȳ − δ2v−t̄ȳȳ +

9

5
ǫδ2(2v−ȳ v

−
ȳȳ + v−v−ȳȳȳ) = 0, (6)
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with v+(x, t) = w+(x, t) and v−(y, t) = w−(x, t), respectively. We also re-
mind that, using the scaling transformation V +(X, τ) = ǫv+(x̄, t̄), V −(Y, τ) =
ǫv−(ȳ, t̄), (x̄, ȳ) = δ(X, Y ), and t̄ = δτ , we can rewrite (5) and (6) in more
standard forms with no parameters. Secondly, we observe that the approx-
imation error for the decoupled problem considered in the present study is
greater than the approximation error for the unidirectional problem charac-
terized by a single CH equation in [11]. This deterioration is partially related
to the error due to approximate splitting of the initial data for the IB equa-
tion. Another factor is due to the fact that the interaction of the right-going
and the left-going waves appears to play a major role in the residual term
that arises when we plug the solutions of the uncoupled CH equations into
the IB equation. We emphasize that the coupled models for which the inter-
action terms are not supposed to be small, provide a better description than
the decoupled ones over short time scales and that a rigorous justification of
this claim remains as an open problem.

The remainder of this paper is organized as follows. First, in Section 2,
we focus on a description of the problem setting for approximation errors.
In Section 3, we conduct a preliminary discussion of uniform estimates for
the solutions of the CH equation and we estimate the residual term that
arises when we plug the sum of solutions of the uncoupled CH equations into
the IB equation. In Section 4, using the energy estimate based on certain
commutator estimates, we obtain the convergence rate between the solutions
of the IB equation and the sum of solutions of the uncoupled CH equations.
In Section 5 we recover the BBM and KdV approximations of the IB equation
in the decoupled case.

Our notation for function spaces is fairly standard. The notation ‖u‖Lp

denotes the Lp (1 ≤ p < ∞) norm of u on R. The symbol
〈
u, v
〉
represents

the inner product of u and v in L2. The notation Hs = Hs(R) denotes the
L2-based Sobolev space of order s on R, with the norm ‖u‖Hs =

( ∫
R
(1 +

ξ2)s|û(ξ)|2dξ
)1/2

. We will drop the symbol R in
∫
R
. The symbol C will stand

for a generic positive constant. Partial differentiations are denoted by Dt,
Dx etc.

2 Problem Setting for Approximation Errors

In this section, we formulate the Cauchy problem for approximation errors.
For this aim we first state the following well-posedness result [6, 9] for the
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initial-value problem of the IB equation:

Theorem 2.1. Let u0, u1 ∈ Hs(R), s > 1/2. Then for any pair of param-
eters ǫ and δ, there is some T ǫ,δ > 0 so that the Cauchy problem for the IB
equation (1) with initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), (7)

has a unique solution u ∈ C2
(
[0, T ǫ,δ], Hs(R)

)
.

The existence time T ǫ,δ above may depend on ǫ and δ and it may be
chosen arbitrarily large as long as T ǫ,δ < T ǫ,δ

max where T ǫ,δ
max is the maximal

time. Furthermore, it was shown in [9] that the existence time, if it is finite,
is determined by the L∞ blow-up condition

lim sup
t→T ǫ,δ

max

‖u (t)‖L∞ = ∞.

Let w+ and w− be two families of solutions for the Cauchy problems defined
for the CH equations (2) and (3) with initial values w+

0 and w−
0 , respectively.

Given the initial data (u0, u1) for the IB equation, the first question is how
to select the corresponding initial data (w+

0 , w
−
0 ) for the CH equations (2)

and (3). Ideally we should have u0 = w+

0 +w−
0 and u1 = w+

t (x, 0)+w−
t (x, 0),

yet it will be convenient to choose (w+

0 , w
−
0 ) independent of the parameters

ǫ and δ. From the uncoupled CH equations we get

w+

t + w−
t = −w+

x + w−
x +O(ǫ, δ2, ǫδ2).

Neglecting the higher order terms yields the approximation u1(x) = −w+
x (x, 0)+

w−
x (x, 0). Finally, assuming that u1 = (v0)x we get

w+

0 =
1

2
(u0 − v0), w−

0 =
1

2
(u0 + v0). (8)

Our aim is to compare the solution u of (1) and (7) with the sum w+ + w−.
Obviously, the error function defined by r = u− (w+ + w−) satisfies the

initial condition r(x, 0) = 0. In order to express rt(x, 0) in terms of the initial
values (u0, v0) of the IB equation, we substitute the CH equations (2) and
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(3) into rt(x, 0):

rt(x, 0) =u1(x)−
(
w+

t (x, 0) + w−
t (x, 0)

)

=− (w+

0 )x + (w−
0 )x − (1− 5

4
δ2D2

x)
−1

{
−Dx(w

+

0 − w−
0 )

− ǫ

2
Dx

(
(w+

0 )
2 − (w−

0 )
2

)
+

3

4
δ2D3

x(w
+

0 − w−
0 )

+
3

4
ǫδ2Dx

(
1

2

((
(w+

0 )x
)2 −

(
(w−

0 )x
)2)

+ w+

0 (w
+

0 )xx − w−
0 (w

−
0 )xx

)}

=Dx(1−
5

4
δ2D2

x)
−1

{
− 1

2
δ2(v0)xx −

1

2
ǫu0v0

− 3

8
ǫδ2
(
(u0)x(v0)x − (u0v0)xx

)}
. (9)

Substituting u = r+w++w− into (1), we observe that the function r satisfies
(
1− δ2D2

x

)
rtt − rxx − ǫ

(
r2 + 2(w+ + w−)r

)
xx

= −F̃x, (10)

where F̃x is the residual term given by

F̃x = F+

x + F−
x − 2ǫ

(
w+w−

)
xx

, (11)

with
F∓
x = w∓

tt − w∓
xx − δ2w∓

xxtt − ǫ
(
(w∓)2

)
xx
. (12)

Our main problem is now reduced to finding an upper bound for r in terms
of ǫ and δ.

We note that rt(x, 0) is of the form
(
q(x)

)
x
by (9). Since r(x, 0) = 0 and

the nonhomogeneous term in (10) is of the form −F̃x, one can show that
r = ρx for some appropriate function ρ(x, t) (see [9] for the homogeneous
case). To further simplify the calculations, in what follows we will express
(10) in terms of both ρ and r as

(
1− δ2D2

x

)
ρtt − rx − ǫ

(
r2 + 2(w+ + w−)r

)
x
= −F̃ . (13)

with the initial data

r(x, 0) = 0, (14)

ρt(x, 0) = (1− 5

4
δ2D2

x)
−1

{
− δ2

2
(v0)xx −

ǫ

2
u0v0 −

3

8
ǫδ2
(
(u0)x(v0)x − (u0v0)xx

)}
.

(15)
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3 Some Estimates for the CH Equation and

the Nonhomogeneous IB Equation

In this section, we state some previous estimates from [11] concerning solu-
tions of the CH equation and the nonhomogeneous IB-type equation. For
the convenience of the reader we provide short versions of the proofs in the
Appendix.

The following proposition is a direct consequence of the estimates proved
by Constantin and Lannes in [5] for a more general class of equations, con-
taining the CH equation as a special case. We refer the reader to Section
2 of [11] for a more detailed discussion. As a result we have the following
proposition:

Proposition 1 (Corollary 2.1 of [11]). Let w0 ∈ Hs+k+1 (R), s > 1/2, k ≥ 1.
Then, there exist T > 0, C > 0 and a unique family of solutions

wǫ,δ ∈ C

(
[0,

T

ǫ
], Hs+k(R)

)
∩ C1

(
[0,

T

ǫ
], Hs+k−1(R)

)

to the CH equation

wt + wx + ǫwwx −
3

4
δ2wxxx −

5

4
δ2wxxt −

3

4
ǫδ2(2wxwxx + wwxxx) = 0. (16)

with initial value w(x, 0) = w0(x), satisfying

∥∥wǫ,δ (t)
∥∥
Hs+k +

∥∥∥wǫ,δ
t (t)

∥∥∥
Hs+k−1

≤ C,

for all 0 < ǫ ≤ δ ≤ 1 and t ∈ [0, T
ǫ
].

Plugging w of (16) in the IB equation we get a residual term f ,

f = wtt − wxx − δ2wxxtt − ǫ(w2)xx. (17)
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Calculation in [11] shows that f is of the form f = Fx where

F =ǫ2(
w3

3
)x −

1

8
ǫ2δ2

(
3(w2

x + 2wwxx)x − 3w(w2)xxx + 2wxx(w
2)x + wx(w

2)xx

)

+
1

16
δ4
(
(DxDt − 3D2

x)(3wxxx + 5wxxt)
)

+
1

32
ǫδ4
(
3(D2

xDt − 3D3

x)(w
2

x + 2wwxx)

+ 2(−3wD2

x + 2wxx + wxDx)(3wxxx + 5wxxt)
)

+
1

32
ǫ2δ4

(
(−9wD3

x + 6wxxDx + 3wxD
2

x)(w
2

x + 2wwxx)
)
. (18)

Furthermore, using the uniform bounds in Proposition 1, the following esti-
mate for F was proved in [11]:

Lemma 3.1 (Lemma 3.1 of [11]). Let w0 ∈ Hs+6 (R), s > 1/2 and let
wǫ,δ be the family of solutions to the CH equation (16) with initial value
w(x, 0) = w0(x). Then, there is some C > 0 so that the family of residual
terms F = F ǫ,δ in (18) satisfies

‖F (t)‖Hs ≤ C
(
ǫ2 + δ4

)
,

for all 0 < ǫ ≤ δ ≤ 1 and t ∈ [0, T
ǫ
].

We next consider the solution r, ρ of the IB-type equation

(
1− δ2D2

x

)
ρtt − rx − ǫ

(
r2 + 2w̃r

)
x
= −F̃ , (19)

where r = ρx. We assume that w̃ and F̃ are given functions depending on ǫ
and δ, with

w̃ ∈ C

(
[0,

T

ǫ
], Hs+1(R)

)
, (20)

‖w̃(t)‖Hs+1 ≤ C for t ∈ [0,
T

ǫ
], (21)

F̃ ∈ C

(
[0,

T

ǫ
], Hs(R)

)
. (22)
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Our purpose is to find a bound for solutions of (19). In that respect, following
the approach in [12] and [11], we define the ”energy” as

E2

s (t) =
1

2

(
‖ρt(t)‖2Hs + δ2 ‖rt(t)‖2Hs + ‖r(t)‖2Hs

)
+ ǫ
〈
Λs
(
w̃(t)r(t)

)
,Λsr(t)

〉

+
ǫ

2

〈
Λsr2(t),Λsr(t)

〉
, (23)

where Λs = (1−D2
x)

s/2
. Taking the energy in the usual form without the ǫ

terms will yield a loss of δ in the final estimate. This is due to the coefficient
δ2 of the term ‖rt(t)‖2Hs (see Remark 2 of [11] for further details).

Since w+ and w− exist for all times t ≤ T/ǫ, r(x, t) will exist over the
same time interval unless r or equivalently uǫ,δ blows up in a shorter time.
By Theorem 2.1 the blow-up of uǫ,δ is controlled by the L∞-norm. Thus the
blow-up of r is also determined by its L∞-norm or equivalently by ‖r(t)‖Hs .
Since r(x, 0) = 0 we define

T ǫ,δ
0 = sup

{
t ≤ T

ǫ
: ‖r(τ)‖Hs ≤ 1 for all τ ∈ [0, t]

}
. (24)

Note that

∣∣〈Λs(w̃r),Λsr
〉∣∣ ≤ C ‖r(t)‖2Hs , and

∣∣〈Λsr2,Λsr
〉∣∣ ≤ ‖r(t)‖3Hs ≤ ‖r(t)‖2Hs ,

where we have used (24) and the uniform estimate for w̃. Thus, for sufficiently
small values of ǫ and t ≤ T ǫ,δ

0 , we have

E2

s (t) ≥
1

4

(
‖ρt(t)‖2Hs + δ2 ‖rt(t)‖2Hs + ‖r(t)‖2Hs

)
,

which shows that E2
s (t) is positive definite. The above result also shows

that an estimate obtained for E2
s (t) gives an estimate for ‖r(t)‖2Hs. After a

series of calculations and estimates we obtain the differential inequality for
the energy:

d

dt
Es(t) ≤ C

(
ǫEs(t) + sup

t≤T/ǫ

∥∥∥F̃ (t)
∥∥∥
Hs

)
(25)

The proofs of Lemma 3.1 and this inequality were given in [11]. We will
summarize those proofs in the Appendix for the convenience of the reader.
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4 Convergence Proof for the Decoupled

Approximation

In this section we prove our main result, Theorem 4.1 given below. Recall
from Section 2 that we started with the family of solutions u = uǫ,δ of the IB
equation and chose appropriate solutions w∓ of the uncoupled CH equations.
Our aim is to show that the sum w+ + w− is a good approximation for u.
In other words, we want to find a good estimate for the error, namely the
solution of the problem defined by (13)-(15). This is achieved by the proof
of Theorem 4.1, where we take advantage of the results in Section 3.

Theorem 4.1. Let u0 ∈ Hs+6(R) and v0 ∈ Hs+7(R), s > 1/2. Suppose uǫ,δ

is the solution of the IB equation (1) with initial data

u(x, 0) = u0(x), ut(x, 0) = (v0(x))x.

Let

w+

0 =
1

2
(u0 − v0), w−

0 =
1

2
(u0 + v0).

Then, for any given t∗ > 0 there exists δ∗ ≤ 1 so that the solutions (w∓)ǫ,δ of
the uncoupled CH equations (2) and (3) with initial values w∓(x, 0) = w∓

0 (x)
satisfy

‖uǫ,δ(t)− (w+)ǫ,δ(t)− (w−)ǫ,δ(t)‖Hs ≤ C
(
(ǫ+ δ2) + (ǫ+ δ4)t

)

for all t ∈ [0, t∗] and all 0 < ǫ ≤ δ ≤ δ∗.

Proof. We first note that (13) is exactly (19) with w̃ = w+ + w− and F̃ =
F+ +F− − 2ǫ (w+w−)x. The explicit form of F+ is obtained by substituting
w+ in place of w in (18). Similarly, the explicit form of F− is obtained by
substituting w− for w and −t for t in (18). Since w+ and w− are solutions
of the CH equations (2) and (3), by Proposition 1 and Lemma 3.1 we have
the estimates

∥∥w∓ (t)
∥∥
Hs+1 ≤ C,

∥∥F∓ (t)
∥∥
Hs ≤ C

(
ǫ2 + δ4

)
,

for all 0 < ǫ ≤ δ ≤ 1 and t ∈ [0, T
ǫ
]. Therefore,

‖w̃ (t)‖Hs+1 ≤
∥∥w+ (t)

∥∥
Hs+1 +

∥∥w− (t)
∥∥
Hs+1 ≤ C, (26)∥∥∥F̃ (t)

∥∥∥
Hs

≤
∥∥F+ (t)

∥∥
Hs +

∥∥F− (t)
∥∥
Hs + 2ǫ

∥∥(w+w−)x(t)
∥∥
Hs ≤ C

(
ǫ+ δ4

)
.

(27)
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Then (25) becomes

d

dt
Es(t) ≤ C

(
ǫEs(t) + (ǫ+ δ4)

)
(28)

implying

Es(t) ≤ Es(0)e
Cǫt +

ǫ+ δ4

ǫ

(
eCǫt − 1

)
.

We have r(x, 0) = 0. Since the operator (1 − 5

4
δ2D2

x)
−1 is bounded on Hs,

from (9) and (15) we get ‖rt(0)‖Hs ≤ C (ǫ+ δ2) and ‖ρt(0)‖Hs ≤ C (ǫ+ δ2).
By (23) we get

Es(0) ≤ C
(
ǫ+ δ2

)
. (29)

Thus

Es(t) ≤ C
(
ǫ+ δ2

)
eCǫt +

ǫ+ δ4

ǫ

(
eCǫt − 1

)
,

or

Es(t) ≤ C
(
(ǫ+ δ2) + (ǫ+ δ4)t

)
. (30)

We note that this estimate holds for all t ≤ T ǫ,δ
0 ≤ T/ǫ, namely, as long as

‖r(t)‖Hs ≤ 1. Given any t∗ > 0 we have t∗ ≤ T/ǫ for sufficiently small ǫ.

Then we can find some δ∗ such that for all ǫ ≤ δ ≤ δ∗ ≤ 1 and C
(
(ǫ+ δ2) +

(ǫ+ δ4)t∗
)
≤ 1. By (30) we will get ‖r(t)‖Hs ≤ 1 for all t ≤ t∗, which means

the estimate above holds for all t ≤ t∗.

We want to conclude this section with some remarks about the above
theorem.

Remark 1. We observe that the error involves two parts. The constant term
in (30) is due to the approximation error in splitting the initial data of the
IB equation, while the term ǫt arises from the interaction term ǫw+w− in
(11).

Remark 2. The error for the unidirectional CH approximation of the IB

equation was obtained in [11] as O
(
(ǫ2 + δ4)t

)
for times of order O(1/ǫ).

Comparing with the estimate in Theorem 4.1, we observe that the single CH
equation provides a better approximation.
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5 The BBM and KdV Approximations

In this section we consider the BBM and the KdV approximations of the IB
equation in the decoupled case. The analysis is similar in spirit to that of
Sections 3 and 4. Recall that the main ingredients were the uniform estimate
Proposition 1, the residual estimate in Lemma 3.1 for the CH equation and
the energy estimate (25) for the IB-type equation. The uniform estimate
for the BBM equation can be obtained from [5] whereas for the uniform
estimates of the KdV equation we refer to [1]. The next step is to calculate

the corresponding residual terms F̃ = F++F−−2ǫ (w+w−)x. As the details
can be found in [11], we therefore give only the final results.

5.1 The BBM Approximation

For the BBM approximation we obtain F∓ as

F+ = ǫ2
(
(w+)3

3

)

x

− 1

4
ǫδ2
(
6w+w+

xxt + 2w+

x w
+

xt + w+

t w
+

xx − 9w+

x w
+

xx

)

+
1

16
δ4D3

x

(
5w+

tt − 12w+

xt − 9w+

xx

)

F− = ǫ2
(
(w−)3

3

)

x

+
1

4
ǫδ2
(
6w−w−

xxt + 2w−
x w

−
xt + w−

t w
−
xx + 9w−

x w
−
xx

)

+
1

16
δ4D3

x

(
5w−

tt + 12w−
xt − 9w−

xx

)
.

Using the energy inequality (25) and making a similar argument, we obtain
the BBM version of Theorem 4.1.

Theorem 5.1. Let u0 ∈ Hs+6(R) and v0 ∈ Hs+7(R), s > 1/2. Suppose uǫ,δ

is the solution of the IB equation (1) with initial data

u(x, 0) = u0(x), ut(x, 0) =
(
v0(x)

)
x
.

Let

w+

0 =
1

2
(u0 − v0), w−

0 =
1

2
(u0 + v0).

Then, for any given t∗ > 0 there exists δ∗ ≤ 1 so that the solutions (w∓)ǫ,δ

12



of the uncoupled BBM equations

w+

t + w+

x + ǫw+w+

x − 3

4
δ2w+

xxx −
5

4
δ2w+

xxt = 0, (31)

w−
t − w−

x − ǫw−w−
x +

3

4
δ2w−

xxx −
5

4
δ2w−

xxt = 0 (32)

with initial values w∓(x, 0) = w∓
0 (x) satisfy

‖uǫ,δ(t)− (w+)ǫ,δ(t)− (w−)ǫ,δ(t)‖Hs ≤ C
(
(ǫ+ δ2) + (ǫ+ δ4)t

)

for all t ∈ [0, t∗] and all 0 < ǫ ≤ δ ≤ δ∗.

5.2 The KdV Approximation

For the KdV approximation we obtain F∓ as

F+ = Dx

{
1

3
ǫ2(w+)3 +

1

4
ǫδ2
(
− 3(w+

x )
2 + 4(w+w+

x )t

)
+

1

4
δ4(−w+

xxxx + 2w+

xxxt)

}

F− = Dx

{
1

3
ǫ2(w−)3 +

1

4
ǫδ2
(
− 3(w−

x )
2 − 4(w−w−

x )t

)
+

1

4
δ4(−w−

xxxx − 2w−
xxxt)

}
.

(33)

We note that these residual terms contain higher-order derivatives compared
to those of the CH and BBM approximations. This is reflected in the higher
smoothness requirements for the initial data in the following theorem

Theorem 5.2. Let u0 ∈ Hs+7(R) and v0 ∈ Hs+8(R), s > 1/2. Suppose uǫ,δ

is the solution of the IB equation (1) with initial data

u(x, 0) = u0(x), ut(x, 0) =
(
v0(x)

)
x
.

Let

w+

0 =
1

2
(u0 − v0), w−

0 =
1

2
(u0 + v0).

Then, for any given t∗ > 0 and 0 < c1 < c2 there exists δ∗ ≤ 1/
√
3 such that

the solutions (w∓)ǫ,δ of the uncoupled KdV equations

w+

t + w+

x + ǫw+w+

x +
δ2

2
w+

xxx = 0, (34)

w−
t − w−

x − ǫw−w−
x − δ2

2
w−

xxx = 0 (35)
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with initial values w∓(x, 0) = w∓
0 (x) satisfy

‖uǫ,δ(t)− (w+)ǫ,δ(t)− (w−)ǫ,δ(t)‖Hs ≤ Cǫ(1 + t)

for all t ∈ [0, t∗] and all 0 < δ ≤ δ∗, ǫ ∈
[
δ2

c2
, δ2

c1

]
.

The error estimates for the BBM and KdV approximations are of the same
order as the CH approximation but in the case of the KdV approximation
this is only valid for ǫ ≈ δ2. This is due to the fact that the KdV equation
arises in the long-wave regime defined by the balance between dispersive and
nonlinear effects.

6 Appendix

In this appendix, we provide short versions of the proofs of Lemma 3.1, the
differential inequality given by (25) and the commutator estimates used. For
more details, we refer the reader to [11].

6.1 Proof of Lemma 3.1

Proof. Except for the term D3
xD

2
tw, F is a combination of terms of the form

Dj
xw with j ≤ 5 or Dl

xDtw with l ≤ 4. Using the CH equation (16) the term
D3

xD
2
tw can be written as

D3

xD
2

tw = −QD3

xDt (wx + ǫwwx) +
3

4
δ2QD6

xDtw +
3

4
ǫδ2QD3

xDt(2wxwxx + wwxxx),

where the operator Q is

Q =

(
1− 5

4
δ2D2

x

)−1

. (36)

The operator norms of Q and Qδ2D2
x are bounded on Hs:

‖Q‖Hs ≤ 1 and
∥∥δ2QD2

x

∥∥
Hs ≤

4

5
.

And the rest of the terms are again of the form Dj
xw with j ≤ 5 or Dl

xDtw
with l ≤ 4. Taking care of the coefficients ǫ2, ǫ2δ2, δ4, ǫδ4 or ǫ2δ4, we obtain
the following estimate

‖F (t)‖Hs ≤ C
(
ǫ2 + δ4

) (
‖w‖Hs+5 + ‖wt‖Hs+4

)
. (37)

Using Proposition 1 with k = 5, we complete the proof.

14



6.2 Proof of the Energy Inequality (25)

Proof. Below we will use the following commutator estimates:

〈
[Λs, w]g,Λsh

〉
≤ C‖w‖Hs+1‖g‖Hs−1‖h‖Hs, (38)

and 〈
Λ[Λs, w]h,Λs−1g

〉
≤ C‖w‖Hs+1‖h‖Hs‖g‖Hs−1, (39)

where [Λs, w] = Λsw − wΛs. These estimates are particular cases of the
general estimates given in Proposition B.8 of [14] (see also [11] for further
details).

We now differentiate E2
s (t) with respect to t and then eliminate the term

ρtt from the resulting equation using (13). Thus we have

d

dt
E2

s (t) =
d

dt

(
ǫ
〈
Λs(w̃r),Λsr

〉
+

ǫ

2

〈
Λsr2,Λsr

〉)

− ǫ
〈
Λs(r2 + 2w̃r),Λsrt

〉
−
〈
ΛsF̃ ,Λsρt

〉

=ǫ
(〈

Λs(w̃tr),Λ
sr
〉
−
〈
Λs(w̃r),Λsrt

〉
+
〈
Λsr,Λs(w̃rt)

〉

+
〈
Λs(rrt),Λ

sr
〉
− 1

2

〈
Λsr2,Λsrt

〉)
−
〈
ΛsF̃ ,Λsρt

〉
. (40)

The estimates for the first term in the parentheses and the last term are

〈
Λs(w̃tr),Λ

sr
〉
≤ C ‖r‖2Hs ≤ CE2

s〈
ΛsF̃ ,Λsρt

〉
≤ sup

t≤T/ǫ

‖F̃ (t)‖Hs‖ρt‖Hs ≤ sup
t≤T/ǫ

‖F̃ (t)‖HsEs,

respectively. We rewrite the second and the third terms in the parentheses
in (40) in the form

−
〈
Λs(w̃r),Λsrt

〉
+
〈
Λsr,Λs(w̃rt)

〉
= −

〈
[Λs, w̃]r,Λsrt

〉
+
〈
[Λs, w̃]rt,Λ

sr
〉
. (41)

Then, using the commutator estimates (38)-(39) we estimate the two terms
on the right-hand side of (41) as

〈
[Λs, w̃]r,Λsrt

〉
=
〈
Λ[Λs, w̃]r,Λs−1rt

〉
≤ C‖w̃‖Hs+1‖r‖Hs‖rt‖Hs−1 , (42)〈

[Λs, w̃]rt,Λ
sr
〉
≤C‖w̃‖Hs+1‖r‖Hs‖rt‖Hs−1 . (43)
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The fourth and fifth terms in the parentheses in (40) can be written as

〈
Λs(rrt),Λ

sr
〉
−1

2

〈
Λsr2,Λsrt

〉

=
〈
Λs−1(1−D2

x)r,Λ
s−1(rrt)

〉
− 1

2

〈
Λs−1(1−D2

x)r
2,Λs−1rt

〉

=
〈
Λs−1r,Λs−1(rrt)

〉
− 1

2

〈
Λs−1(r2 − 2r2x),Λ

s−1rt
〉

−
(〈

Λs−1(rrt),Λ
s−1rxx

〉
−
〈
Λs−1rt,Λ

s−1(rrxx)
〉)

. (44)

If we group the first two terms together in the above equation, we get the
following estimate
∣∣∣∣
〈
Λs−1r,Λs−1(rrt)

〉
− 1

2

〈
Λs−1(r2 − 2r2x),Λ

s−1rt
〉∣∣∣∣ ≤C‖r‖2Hs−1‖rt‖Hs−1 ,

≤C‖r‖2Hs‖rt‖Hs−1 .

Similarly, if we group the last two terms in (44) together, we obtain the
estimate
∣∣〈Λs−1(rrt),Λ

s−1rxx
〉
−
〈
Λs−1rt,Λ

s−1(rrxx)
〉∣∣ ≤C‖r‖Hs‖rt‖Hs−1‖rxx‖Hs−2

≤C‖r‖2Hs‖rt‖Hs−1 ,

which follows from (41) and ( 42) if w̃, r, rt are replaced, respectively, by r,
rt, rxx and s by s− 1. Also, we remind that

‖rt‖Hs−1 = ‖ρxt‖Hs−1 ≤ ‖ρt‖Hs ≤ CEs

and ‖r‖Hs ≤ 1. Combining all the above results we obtain from (40) that

d

dt
E2

s (t) ≤ C

(
ǫE2

s (t) +
(
sup
t≤T/ǫ

∥∥∥F̃ (t)
∥∥∥
Hs

)
Es(t)

)
,

which reduces to (25) if we cancel Es(t) from both sides of the equation.
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