title   
  

The effect of nanostructure distribution on subcooled boiling heat transfer enhancement over nanostructured plates integrated into a rectangular channel

Demir, Ebru and İzci, Türker and Khudhayer, Wisam J. and Alagöz, Arif Sinan and Karabacak, Tansel and Koşar, Ali (2014) The effect of nanostructure distribution on subcooled boiling heat transfer enhancement over nanostructured plates integrated into a rectangular channel. Nanoscale and Microscale Thermophysical Engineering, 18 (4). pp. 313-328. ISSN 1556-7265 (Print) 1556-7273 (Online)

This is the latest version of this item.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1080/15567265.2014.921748

Abstract

In this study, subcooled flow boiling is investigated over nanostructured plates at flow rates ranging from 69 mL/min to 145 mL/min. The first configuration of the nanostructured plate includes ˜600-nm-long, closely packed copper nanorod arrays distributed randomly upon the surface with an average nanorod diameter of ˜150 nm, and the second configuration consists of a periodic structure having ˜600-nm-long copper (Cu) nanorods with an average nanorod diameter of ˜550 nm and a center-to-center nanorod separation of ˜1 μm. The nanorod arrays are deposited utilizing glancing angle deposition (GLAD) technique on the copper thin film (˜50 nm thick) coated on silicon wafer substrates. Dimensions of the test section, heat flux values, and flow rates are chosen to ensure that nanostructured plates remain intact along with their nanorods in their original shape and position, so that the nanostructured plates could be used for many experiments. A consistent increase (up to 30%) in heat transfer coefficients is observed on nanostructured plates compared to the Cu thin film, which is used as the control sample. However, no significant difference in the boiling heat transfer performance between the random and periodic nanorods was observed, which indicates that the distribution of nanostructures may not be very critical in achieving enhanced heat transfer. In light of the obtained promising results, channels with nanostructured surfaces are proven to be useful, particularly in applications such as cooling of small electronic devices, where conventional surface modification techniques are not applicable.

Item Type:Article
Uncontrolled Keywords:nanostructured plate, subcooled flow boiling, nanorods, heat transfer enhancement
Subjects:T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Q Science > QC Physics
ID Code:24721
Deposited By:Ali Koşar
Deposited On:16 Oct 2014 15:02
Last Modified:16 Oct 2014 15:02

Available Versions of this Item

Repository Staff Only: item control page