title   
  

Hidden Markov models as priors for regularized nonnegative matrix factorization in single-channel source separation

Grais, Emad Mounir and Erdoğan, Hakan (2012) Hidden Markov models as priors for regularized nonnegative matrix factorization in single-channel source separation. In: 13th Annual Conference of the International Speech Communication Association (InterSpeech 2012), Portland, Oregon, USA

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
310Kb

Abstract

We propose a new method to incorporate rich statistical priors, modeling temporal gain sequences in the solutions of nonnegative matrix factorization (NMF). The proposed method can be used for single-channel source separation (SCSS) applications. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vectors. In this work, the NMF decomposition weights are enforced to consider statistical and temporal prior information on the weight combination patterns that the trained basis vectors can jointly receive for each source in the observed mixed signal. The Hidden Markov Model (HMM) is used as a log-normalized gains (weights) prior model for the NMF solution. The normalization makes the prior models energy independent. HMM is used as a rich model that characterizes the statistics of sequential data. The NMF solutions for the weights are encouraged to increase the log-likelihood with the trained gain prior HMMs while reducing the NMF reconstruction error at the same time.

Item Type:Papers in Conference Proceedings
Uncontrolled Keywords:Nonnegative matrix factorization, single-channel source separation, and Hidden Markov Models
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
ID Code:19662
Deposited By:Emad Mounir Grais
Deposited On:21 Oct 2012 23:21
Last Modified:28 Feb 2014 21:27

Repository Staff Only: item control page