title   
  

Numerical modeling of Kelvin-Helmholtz instability using smoothed particle hydrodynamics

Shadloo , Mostafa Safdari and Yıldız, Mehmet (2011) Numerical modeling of Kelvin-Helmholtz instability using smoothed particle hydrodynamics. International Journal for Numerical Methods in Engineering, 87 (10). pp. 988-1006. ISSN 0029-5981

This is the latest version of this item.

[img]PDF - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
3456Kb

Official URL: http://dx.doi.org/10.1002/nme.3149

Abstract

This paper presents a Smoothed Particle Hydrodynamics (SPH) solution for the Kelvin-Helmholtz Instability (KHI) problem of an incompressible two-phase immiscible fluid in a stratified inviscid shear flow with interfacial tension. The time dependent evolution of the two-fluid interface over a wide range of Richardson number (Ri) and for three different density ratios is numerically investigated. The simulation results are compared with analytical solutions in the linear regime. Having captured the physics behind KHI, the effects of gravity and surface tension on a two-dimensional shear layer are examined independently and together. It is shown that the growth rate of the KHI is mainly controlled by the value of the Ri number, not by the nature of the stabilizing forces. It was observed that the SPH method requires a Richardson number lower than unity (i.e.,Ri∼=0.8) for the onset of KHI, and that the artificial viscosity plays a significant role in obtaining physically correct simulation results that are in agreement with analytical solutions. The numerical algorithm presented in this work can easily handle two-phase fluid flow with various density ratios.

Item Type:Article
Uncontrolled Keywords:Smoothed Particle Hydrodynamics (SPH); Shear flow; Two-Phase flow; Interfacial flows; Surface tension; Kelvin-Helmholtz Instability (KHI)
Subjects:Q Science > Q Science (General)
ID Code:17313
Deposited By:Mehmet Yıldız
Deposited On:27 Oct 2011 14:11
Last Modified:27 Oct 2011 14:11

Available Versions of this Item

Repository Staff Only: item control page