## Blow-up and global existence for a general class of nonlocal nonlinear coupled wave equationsDuruk Mutlubaş, Nilay and Erbay, Hüsnü Ata and Erkip, Albert (2011)
Official URL: http://dx.doi.org/10.1016/j.jde.2010.09.002 ## AbstractWe study the initial-value problem for a general class of nonlinear nonlocal coupled wave equations. The problem involves convolution operators with kernel functions whose Fourier transforms are nonnegative. Some well-known examples of nonlinear wave equations, such as coupled Boussinesq-type equations arising in elasticity and in quasi-continuum approximation of dense lattices, follow from the present model for suitable choices of the kernel functions. We establish local existence and sufficient conditions for finitetime blow-up and as well as global existence of solutions of the problem.
## Available Versions of this Item- Blow-up and global existence for a general class of nonlocal nonlinear coupled wave equations. (deposited 19 Oct 2010 11:33)
- Blow-up and global existence for a general class of nonlocal nonlinear coupled wave equations. (deposited 07 Jan 2011 14:27)
**[Currently Displayed]**
- Blow-up and global existence for a general class of nonlocal nonlinear coupled wave equations. (deposited 07 Jan 2011 14:27)
Repository Staff Only: item control page |