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We study the initial-value problem for a general class of nonlinear
nonlocal coupled wave equations. The problem involves convolu-
tion operators with kernel functions whose Fourier transforms are
nonnegative. Some well-known examples of nonlinear wave equa-
tions, such as coupled Boussinesq-type equations arising in elastic-
ity and in quasi-continuum approximation of dense lattices, follow
from the present model for suitable choices of the kernel functions.
We establish local existence and sufficient conditions for finite-
time blow-up and as well as global existence of solutions of the
problem.
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1. Introduction

In this article we focus on blow-up and global existence of solutions to the nonlocal nonlinear
Cauchy problem

u1tt = (
β1 ∗ (

u1 + g1(u1, u2)
))

xx, x ∈ R, t > 0, (1.1)

u2tt = (
β2 ∗ (

u2 + g2(u1, u2)
))

xx, x ∈ R, t > 0, (1.2)
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u1(x,0) = ϕ1(x), u1t(x,0) = ψ1(x), (1.3)

u2(x,0) = ϕ2(x), u2t(x,0) = ψ2(x). (1.4)

Here ui = ui(x, t) (i = 1,2), the subscripts x, t denote partial derivatives, the symbol ∗ denotes con-
volution in the spatial domain

β ∗ v =
∫
R

β(x − y)v(y)dy.

We assume that the nonlinear functions gi(u1, u2) (i = 1,2) satisfy the exactness condition

∂ g1

∂u2
= ∂ g2

∂u1
(1.5)

or equivalently there exists a function G(u1, u2) satisfying

gi = ∂G

∂ui
(i = 1,2). (1.6)

We assume that the kernel functions βi(x) are integrable and their Fourier transforms β̂i(ξ) satisfy

0 � β̂i(ξ) � Ci
(
1 + ξ2)−ri/2

for all ξ (i = 1,2) (1.7)

for some constants Ci > 0. Here the exponents r1, r2 are not necessarily integers.
Eqs. (1.1)–(1.2) may be viewed as a natural generalization of the single equation arising in one-

dimensional nonlocal elasticity [1] to a coupled system of two nonlocal nonlinear equations. As a
special case, consider gi(u1, u2) = ui W ′(u2

1 + u2
2) (i = 1,2) where W is a function of u2

1 + u2
2 alone

and the symbol ′ denotes the derivative. Then, (1.1)–(1.2) may be thought of the system governing the
one-dimensional propagation of two “pure” transverse nonlinear waves in a nonlocal elastic isotropic
homogeneous medium [2]. Note that this choice of g1 and g2 will satisfy the exactness condition
(1.5) with G(u1, u2) = 1

2 W (u2
1 + u2

2). From the modelling point of view we want to remark that, in
general, the system will also contain a third equation characterizing the propagation of a longitudinal
wave. Nevertheless, with some further restrictions imposed on the form of W , one may get transverse
waves without a coupled longitudinal wave [3]. We also want to note that, in the general case, the
exactness condition (1.5) is necessary in order to obtain the conservation law of Lemma 3.2.

For suitable choices of the kernel functions, the system (1.1)–(1.2) reduces to some well-known
coupled systems of nonlinear wave equations. To illustrate this we consider the exponential kernel
β1(x) = β2(x) = 1

2 e−|x| which is the Green’s function for the operator 1 − D2
x where Dx stands for the

partial derivative with respect to x. Then, applying the operator 1− D2
x to both sides of Eqs. (1.1)–(1.2)

yields the coupled improved Boussinesq equations

u1tt − u1xx − u1xxtt = (
g1(u1, u2)

)
xx, (1.8)

u2tt − u2xx − u2xxtt = (
g2(u1, u2)

)
xx. (1.9)

Similarly, if the kernels β1(x) and β2(x) are chosen as the Green’s function for the fourth-order oper-
ator 1 − aD2

x + bD4
x with positive constants a, b, then (1.1)–(1.2) reduces to the coupled higher-order

Boussinesq system

u1tt − u1xx − au1xxtt + bu1xxxxtt = (
g1(u1, u2)

)
xx, (1.10)

u2tt − u2xx − au2xxtt + bu2xxxxtt = (
g2(u1, u2)

)
. (1.11)
xx
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These examples make it obvious that choosing the kernels βi(x) in (1.1)–(1.2) as the Green’s functions
of constant coefficient linear differential operators in x will yield similar coupled systems describ-
ing the bi-directional propagation of nonlinear waves in dispersive media. Different examples of the
kernel functions used in the literature can be found in [1] where such kernels will give not only
differential equations but also integro-differential equations or difference-differential equations. For a
survey of Korteweg–de Vries-type nonlinear nonlocal equations of hydrodynamic relevance we refer
to [4].

The coupled improved Boussinesq system (1.8)–(1.9) has been derived to describe bi-directional
wave propagation in various contexts, for instance, in a Toda lattice model with a transversal degree
of freedom [5], in a two-layered lattice model [6] and in a diatomic lattice [7]. For a discussion of the
classical Boussinesq system we refer to [8,9]. The Cauchy problem for (1.8)–(1.9) has been studied in
[10] and recently in [11] where both assume the exactness condition (1.5). They have established the
conditions for the global existence and finite-time blow-up of solutions in Sobolev spaces Hs × Hs for
s > 1/2.

The single component form of Eqs. (1.10)–(1.11) arises as a model for a dense chain of particles
with elastic couplings [12], for water waves with surface tension [13] and for longitudinal waves in
a nonlocal nonlinear elastic medium [2]. We have proved in [2] that the Cauchy problem for the
single component form of (1.10)–(1.11) is globally well-posed in Sobolev spaces Hs for s > 1/2 under
certain conditions on nonlinear term and initial data. To the best of our knowledge, the questions of
global well-posedness and finite-time blow-up of solutions for the coupled higher-order Boussinesq
system (1.10)–(1.11) are open problems. In this article we shall resolve these problems by considering
a closely related, but somewhat more general, problem defined by (1.1)–(1.4).

In Section 2 we present a local existence theory of the Cauchy problem (1.1)–(1.4) for the case
of general kernels with r1, r2 � 2 and initial data in suitable Sobolev spaces. In Section 3 we prove
the energy identity and in Section 4 we discuss finite-time blow-up of solutions of the initial-value
problem. Finally, in Section 5 we prove two separate results on global existence of solutions of (1.1)–
(1.4) for two different classes of kernel functions.

In what follows Hs = Hs(R) will denote the L2 Sobolev space on R. For the Hs norm we use the
Fourier transform representation ‖u‖2

s = ∫
R
(1+ξ2)s |̂u(ξ)|2 dξ . We use ‖u‖∞ , ‖u‖ and 〈u, v〉 to denote

the L∞ and L2 norms and the inner product in L2, respectively.

2. Local well-posedness

To shorten the notation we write f i(u1, u2) = ui + gi(u1, u2) (i = 1,2). Note that

f i = ∂ F

∂ui
(i = 1,2) (2.1)

where F (u1, u2) = 1
2 (u2

1 + u2
2) + G(u1, u2).

For a vector function U = (u1, u2) we define the norms ‖U‖s = ‖u1‖s + ‖u2‖s and ‖U‖∞ =
‖u1‖∞ + ‖u2‖∞ . We first need vector-valued versions of Lemmas 3.1 and 3.2 in [1] (see also [11,
14,15]), which concern the behavior of the nonlinear terms:

Lemma 2.1. Let s � 0, h ∈ C [s]+1(R2) with h(0) = 0. Then for any U = (u1, u2) ∈ (Hs ∩ L∞)2 , we have
h(U ) ∈ Hs ∩ L∞ . Moreover there is some constant A(M) depending on M such that for all U ∈ (Hs ∩ L∞)2

with ‖U‖∞ � M ∥∥h(U )
∥∥

s � A(M)‖U‖s.

Lemma 2.2. Let s � 0, h ∈ C [s]+1(R2). Then for any M > 0 there is some constant B(M) such that for all
U , V ∈ (Hs ∩ L∞)2 with ‖U‖∞ � M, ‖V ‖∞ � M and ‖U‖s � M, ‖V ‖s � M we have∥∥h(U ) − h(V )

∥∥
s � B(M)‖U − V ‖s and

∥∥h(U ) − h(V )
∥∥∞ � B(M)‖U − V ‖∞.
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The Sobolev embedding theorem implies that Hs ⊂ L∞ for s > 1
2 . Then the bounds on L∞ norms

in Lemma 2.2 appear unnecessary and we get:

Corollary 2.3. Let s > 1
2 , h ∈ C [s]+1(R2). Then for any M > 0 there is some constant B(M) such that for all

U , V ∈ (Hs)2 with ‖U‖s � M, ‖V ‖s � M we have∥∥h(U ) − h(V )
∥∥

s � B(M)‖U − V ‖s.

Throughout this paper we assume that f1, f2 ∈ C∞(R2) with f1(0) = f2(0) = 0. In the case of
f1, f2 ∈ Ck+1(R2), Lemmas 2.1 and 2.2 will hold only for s � k. Thus all the results below will hold
for s � k. Note that the functions g1 and g2 appearing in (1.1) and (1.2) will also satisfy the same
assumptions as f1 and f2.

Theorem 2.4. Let s > 1/2 and r1, r2 � 2. Then there is some T > 0 such that the Cauchy problem (1.1)–(1.4)
is well-posed with solution u1 and u2 in C2([0, T ], Hs) for initial data ϕi,ψi ∈ Hs (i = 1,2).

Proof. We convert the problem into an Hs valued system of ordinary differential equations

u1t = v1, u1(0) = ϕ1,

u2t = v2, u2(0) = ϕ2,

v1t = β1 ∗ (
f1(u1, u2)

)
xx, v1(0) = ψ1,

v2t = β2 ∗ (
f2(u1, u2)

)
xx, v2(0) = ψ2.

In order to use the standard well-posedness result [16] for ordinary differential equations, it suffices
to show that the right-hand side is Lipschitz on Hs . Since ri � 2 for i = 1,2, we have

∣∣−ξ2β̂i(ξ)
∣∣ � Ciξ

2(1 + ξ2)−ri/2 � Ci .

Then we get

‖βi ∗ wxx‖s = ∥∥(
1 + ξ2)s/2

ξ2β̂i(ξ)ŵ(ξ)
∥∥

� Ci
∥∥(

1 + ξ2)s/2
ŵ(ξ)

∥∥ = Ci‖w‖s. (2.2)

This implies that βi ∗ (.)xx is a bounded linear map on Hs . Then it follows from Corollary 2.3 that
βi ∗ ( f i(u1, u2))xx is locally Lipschitz on Hs for s > 1

2 . �
Remark 2.5. In Theorem 2.4 we have not used neither the assumption β̂(ξ) � 0 nor the exactness
condition (1.5); so in fact the local existence result holds for more general forms of kernel functions
and nonlinear terms. Moreover, as in [1], for certain classes of kernel functions Theorem 2.4 can be
extended to the case of Hs ∩ L∞ for 0 � s � 1/2.

The solution in Theorem 2.4 can be extended to a maximal time interval of existence [0, Tmax)

where finite Tmax is characterized by the blow-up condition

lim sup
t→T −

max

(∥∥U (t)
∥∥

s + ∥∥Ut(t)
∥∥

s

) = ∞,

where Ut = (u1t, u2t). Then the solution is global, i.e. Tmax = ∞ iff

for any T < ∞, we have lim sup
t→T −

(∥∥U (t)
∥∥

s + ∥∥Ut(t)
∥∥

s

)
< ∞. (2.3)
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Lemma 2.6. Let s > 1/2, r1, r2 � 2 and let U be the solution of the Cauchy problem (1.1)–(1.4). Then there is
a global solution if and only if

for any T < ∞, we have lim sup
t→T −

∥∥U (t)
∥∥∞ < ∞. (2.4)

Proof. We will show that the two conditions (2.3) and (2.4) are equivalent. First assume that (2.3)
holds. By the Sobolev embedding theorem, ‖U (t)‖∞ � C‖U (t)‖s for s > 1/2 so (2.4) holds. Conversely,
assume that the solution exists for t ∈ [0, T ). Then M = lim supt→T − ‖U (t)‖∞ is finite and ‖U (t)‖∞ �
M for all 0 � t � T . If we integrate (1.1)–(1.2) twice and compute the resulting double integral as an
iterated integral, we get, for i = 1,2,

ui(x, t) = ϕi(x) + tψi(x) +
t∫

0

(t − τ )
(
βi ∗ f i(u1, u2)

)
xx(x, τ )dτ , (2.5)

uit(x, t) = ψi(x) +
t∫

0

(
βi ∗ f i(u1, u2)

)
xx(x, τ )dτ . (2.6)

So, for all t ∈ [0, T ) and i = 1,2

∥∥ui(t)
∥∥

s � ‖ϕi‖s + T ‖ψi‖s + T

t∫
0

∥∥(
βi ∗ f i(u1, u2)

)
xx(τ )

∥∥
s dτ ,

∥∥uit(t)
∥∥

s � ‖ψi‖s +
t∫

0

∥∥(
βi ∗ f i(u1, u2)

)
xx(τ )

∥∥
s dτ .

Note that ‖(βi ∗ f i(u1, u2))xx(τ )‖s � Ci‖ f i(u1, u2)(τ )‖s � Ci Ai(M)‖ui(τ )‖s where the first inequality
follows from (2.2) and the second from Lemma 2.1. Adding the four inequalities we get

∥∥U (t)
∥∥

s + ∥∥Ut(t)
∥∥

s � ‖ϕ1‖s + ‖ϕ2‖s + (T + 1)
(‖ψ1‖s + ‖ψ2‖s

)

+ (T + 1)C A(M)

t∫
0

∥∥U (τ )
∥∥

s dτ ,

where C = max(C1, C2) and A(M) = max(A1(M), A2(M)). Gronwall’s lemma implies

∥∥U (t)
∥∥

s + ∥∥Ut(t)
∥∥

s �
[‖ϕ1‖s + ‖ϕ2‖s + (T + 1)

(‖ψ1‖s + ‖ψ2‖s
)]

e(T +1)C A(M)T

for all t ∈ [0, T ) and consequently

lim sup
t→T −

(∥∥U (t)
∥∥

s + ∥∥Ut(t)
∥∥

s

)
< ∞. �
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3. Conservation of energy

In the rest of the study we will assume that β̂i(ξ) has only isolated zeros for i = 1,2. Let Pi
be operator defined by Pi w = F −1(|ξ |−1(β̂i(ξ))−1/2 ŵ(ξ)) with the inverse Fourier transform F −1.

Note that although Pi may fail to be a bounded operator, its inverse P−1
i : Hs+ ri

2 → Hs is bounded

and one-to-one for s � 0. Then Pi is well defined with domain(Pi) = range(P−1
i ). Clearly, P−2

i w =
−(βi ∗ w)xx = −βi ∗ wxx .

Lemma 3.1. Let s > 1/2 and r1, r2 � 2. Suppose the solution of the Cauchy problem (1.1)–(1.4) exists with u1
and u2 in C2([0, T ), Hs ∩ L∞) for some s > 1/2. If P1ψ1, P2ψ2 ∈ L2 , then P1u1t, P2u2t ∈ C1([0, T ), L2). If
moreover P1ϕ1, P2ϕ2 ∈ L2 , then P1u1, P2u2 ∈ C2([0, T ), L2).

Proof. It follows from (2.6) that for i = 1,2

Piuit(x, t) = Piψi(x) −
t∫

0

(
P−1

i f i(u1, u2)
)
(x, τ )dτ .

It is clear from Lemma 2.1 that f i(u1, u2) ∈ Hs . Also, P−1
i w = F −1(|ξ |(β̂i(ξ))1/2 ŵ(ξ)) thus P−1

i ( f i(u1,

u2)) ∈ Hs+ ri
2 −1 ⊂ L2 and hence Piuit ∈ L2. The continuity and differentiability of Piui in t follows from

the integral representation above. With a similar approach (2.5) gives the second statement. �
Lemma 3.2. Let s > 1/2 and r1 , r2 � 2. Suppose that (u1, u2) satisfies (1.1)–(1.4) on some interval [0, T ). If
P1ψ1, P2ψ2 ∈ L2 and the function G(ϕ1,ϕ2) defined by (1.6) belongs to L1 , then for any t ∈ [0, T ) the energy

E(t) = ∥∥P1u1t(t)
∥∥2 + ∥∥P2u2t(t)

∥∥2 + ∥∥u1(t)
∥∥2 + ∥∥u2(t)

∥∥2 + 2
∫
R

G(u1, u2)dx

= ∥∥P1u1t(t)
∥∥2 + ∥∥P2u2t(t)

∥∥2 + 2
∫
R

F (u1, u2)dx

is constant in [0, T ).

Proof. Lemma 3.1 says that Piuit(t) ∈ L2 for i = 1,2. Eqs. (1.1)–(1.2) become P 2
i uitt + ui +

gi(u1, u2) = 0 (i = 1,2). Multiplying by 2uit , integrating in x, adding the two equalities and using
Parseval’s identity we obtain dE

dt = 0. �
4. Blow-up in finite time

The following lemma will be used in the sequel to prove blow-up in finite time.

Lemma 4.1. (See [17,18].) Suppose Φ(t), t � 0, is a positive, twice differentiable function satisfying Φ ′′Φ −
(1 + ν)(Φ ′)2 � 0 where ν > 0. If Φ(0) > 0 and Φ ′(0) > 0, then Φ(t) → ∞ as t → t1 for some t1 �
Φ(0)/νΦ ′(0).

Theorem 4.2. Let s > 1/2 and r1, r2 � 2. Suppose that P1ϕ1, P2ϕ2, P1ψ1, P2ψ2 ∈ L2 and G(ϕ1,ϕ2) ∈ L1 . If
there is some ν > 0 such that

u1 f1(u1, u2) + u2 f2(u1, u2) � 2(1 + 2ν)F (u1, u2),
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and

E(0) = ‖P1ψ1‖2 + ‖P2ψ2‖2 + 2
∫
R

F (ϕ1,ϕ2)dx < 0,

then the solution (u1, u2) of the Cauchy problem (1.1)–(1.4) blows up in finite time.

Proof. Let

Φ(t) = ∥∥P1u1(t)
∥∥2 + ∥∥P2u2(t)

∥∥2 + b(t + t0)
2

for some positive b and t0 that will be specified later. Assume that the maximal time of existence of
the solution of the Cauchy problem (1.1)–(1.4) is infinite. Then P1u1(t), P1u1t(t), P2u2(t), P2u2t(t) ∈ L2

for all t > 0; thus Φ(t) must be finite for all t . However, we will show below that Φ(t) blows up in
finite time.

We have

Φ ′(t) = 2〈P1u1, P1u1t〉 + 2〈P2u2, P2u2t〉 + 2b(t + t0),

Φ ′′(t) = 2‖P1u1t‖2 + 2‖P2u2t‖2 + 2〈P1u1, P1u1tt〉 + 2〈P2u2, P2u2tt〉 + 2b.

Since

〈Piui, Piuitt〉 = 〈
ui, P 2

i uitt
〉 = −〈

ui, f i(u1, u2)
〉
, i = 1,2,

and

−
∫ [

u1 f1(u1, u2) + u2 f2(u1, u2)
]

dx � −2(1 + 2ν)

∫
F (u1, u2)dx

= (1 + 2ν)
(∥∥P1u1t(t)

∥∥2 + ∥∥P2u2t(t)
∥∥2 − E(0)

)
,

we get

Φ ′′(t) � 2‖P1u1t‖2 + 2‖P2u2t‖2 + 2b − 2(1 + 2ν)
(

E(0) − ‖P1u1t‖2 − ‖P2u2t‖2)
= −2(1 + 2ν)E(0) + 2b + 4(1 + ν)

(‖P1u1t‖2 + ‖P2u2t‖2).
By the Cauchy–Schwarz inequality we have

(
Φ ′(t)

)2 = 4
[〈P1u1, P1u1t〉 + 〈P2u2, P2u2t〉 + b(t + t0)

]2

� 4
[‖P1u1‖‖P1u1t‖ + ‖P2u2‖‖P2u2t‖ + b(t + t0)

]2
.

For the mixed terms we use the inequalities

2‖P1u1‖‖P1u1t‖‖P2u2‖‖P2u2t‖ � ‖P1u1‖2‖P2u2t‖2 + ‖P2u2‖2‖P1u1t‖2

and

2‖Piui‖‖Piuit‖(t + t0) � ‖Piui‖2 + ‖Piuit‖2(t + t0)
2, i = 1,2,
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to obtain

(
Φ ′(t)

)2 � 4Φ(t)
(‖P1u1t‖2 + ‖P2u2t‖2 + b

)
.

Therefore,

Φ(t)Φ ′′(t) − (1 + ν)
(
Φ ′(t)

)2

� Φ(t)
[−2(1 + 2ν)E(0) + 2b + 4(1 + ν)

(‖P1u1t‖2 + ‖P2u2t‖2)]
− 4(1 + ν)Φ(t)

(‖P1u1t‖2 + ‖P2u2t‖2 + b
)

= −2(1 + 2ν)
(

E(0) + b
)
Φ(t).

If we choose b � −E(0), then Φ(t)Φ ′′(t) − (1 + ν)(Φ ′(t))2 � 0. Moreover

Φ ′(0) = 2〈P1ϕ1, P1ψ1〉 + 2〈P2ϕ2, P2ψ2〉 + 2bt0 � 0

for sufficiently large t0. According to Lemma 4.1, we observe that Φ(t) blows up in finite time. This
contradicts with the assumption of the existence of a global solution. �
Remark 4.3. The proof above implies that we may have blow-up even if E(0) > 0. In this case, all we
need is to be able to choose b and t0 so that Φ(0) > 0 and Φ ′(0) > 0. To shorten the notation put

A = 〈P1ϕ1, P1ψ1〉 + 〈P2ϕ2, P2ψ2〉, B = ‖P1ϕ1‖2 + ‖P2ϕ2‖2.

When E(0) > 0, by choosing b = −E(0) we still get blow-up if there is some t0 so that initial data
satisfies

A − E(0)t0 > 0, B − E(0)t2
0 > 0.

When A > 0, taking t0 = 0 works. When A � 0, then t0 must be chosen negative. The two inequalities
can be rewritten as

E(0)−2 A2 < t2
0, t2

0 < E(0)−1 B.

Such a t0 exists if and only if A2 < E(0)B . Hence there is blow-up if the initial data satisfies

(〈P1ϕ1, P1ψ1〉 + 〈P2ϕ2, P2ψ2〉
)2

< E(0)
(‖P1ϕ1‖2 + ‖P2ϕ2‖2).

5. Global existence

Below we prove global existence of solutions of (1.1)–(1.4) for two different classes of kernel func-
tions. We note that the kernel functions corresponding to these two particular cases belong to the
classes of kernel functions mentioned in Remark 2.5. Thus, in the cases below, the local existence
result of Theorem 2.4, and hence Theorems 5.1 and 5.2 can be extended to s � 0 for initial data in
Hs ∩ L∞ .
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5.1. Sufficiently smooth kernels: r1, r2 > 3

We will now consider kernels βi (i = 1,2) that satisfy the estimate 0 � β̂i(ξ) � Ci(1 + ξ2)−ri/2

with ri > 3. Typically if βi belongs to the Sobolev space W 3,1(R) (i.e. βi and its derivatives up to
third order are in L1); then we would get the estimate with ri = 3; hence we consider kernels that
are slightly smoother than those in W 3,1(R).

Theorem 5.1. Let s > 1/2, r1, r2 > 3. Let ϕi,ψi ∈ Hs, P iψi ∈ L2 (i = 1,2) and G(ϕ1,ϕ2) ∈ L1 . If there is
some k > 0 so that G(a,b) � −k(a2 + b2) for all a,b ∈ R, then the Cauchy problem (1.1)–(1.4) has a global
solution with u1 and u2 in C2([0,∞), Hs).

Proof. Since r1, r2 > 3, by Theorem 2.4 we have local existence. The hypothesis implies that
E(0) < ∞. Assume that u1, u2 exist on [0, T ) for some T > 0. Since G(u1, u2) � −k(u2

1 + u2
2), we

get for all t ∈ [0, T )

∥∥P1u1t(t)
∥∥2 + ∥∥P2u2t(t)

∥∥2 � E(0) + (2k − 1)
(∥∥u1(t)

∥∥2 + ∥∥u2(t)
∥∥2)

. (5.1)

Noting that β̂i(ξ) � Ci(1 + ξ2)−ri/2 for i = 1,2, we have

∥∥P1u1t(t)
∥∥2 = ∥∥ P̂1u1t(t)

∥∥2 =
∫

ξ−2(β̂1(ξ)
)−1(̂

u1t(ξ, t)
)2

dξ

� C−1
1

∫
ξ−2(1 + ξ2)r1/2(̂

u1t(ξ, t)
)2

dξ

� C−1
1

∫ (
1 + ξ2)(r1−2)/2(̂

u1t(ξ, t)
)2

dξ

= C−1
1

∥∥u1t(t)
∥∥2
ρ1

, (5.2)

and similarly,

∥∥P2u2t(t)
∥∥2 � C−1

2

∥∥u2t(t)
∥∥2
ρ2

(5.3)

where ρi = ri
2 − 1, i = 1,2. By the triangle inequality, for any Banach space valued differentiable

function w we have

d

dt

∥∥w(t)
∥∥ �

∥∥∥∥ d

dt
w(t)

∥∥∥∥.

Combining (5.1), (5.2) and (5.3),

d

dt

(∥∥u1(t)
∥∥2
ρ1

+ ∥∥u2(t)
∥∥2
ρ2

) = 2

(∥∥u1(t)
∥∥
ρ1

d

dt

∥∥u1(t)
∥∥
ρ1

+ ∥∥u2(t)
∥∥
ρ2

d

dt

∥∥u2(t)
∥∥
ρ2

)
� 2

(∥∥u1t(t)
∥∥
ρ1

∥∥u1(t)
∥∥
ρ1

+ ∥∥u2t(t)
∥∥
ρ2

∥∥u2(t)
∥∥
ρ2

)
�

∥∥u1t(t)
∥∥2
ρ1

+ ∥∥u1(t)
∥∥2
ρ1

+ ∥∥u2t(t)
∥∥2
ρ2

+ ∥∥u2(t)
∥∥2
ρ2

� C
(∥∥P1u1t(t)

∥∥2 + ∥∥P2u2t(t)
∥∥2) + ∥∥u1(t)

∥∥2
ρ1

+ ∥∥u2(t)
∥∥2
ρ2

� C
[

E(0) + (2k − 1)
(∥∥u1(t)

∥∥2 + ∥∥u2(t)
∥∥2)] + ∥∥u1(t)

∥∥2
ρ1

+ ∥∥u2(t)
∥∥2
ρ2

� C E(0) + (
C(2k − 1) + 1

)(∥∥u1(t)
∥∥2 + ∥∥u2(t)

∥∥2 )

ρ1 ρ2
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where C = max(C1, C2). Gronwall’s lemma implies that ‖u1(t)‖ρ1 +‖u2(t)‖ρ2 stays bounded in [0, T ).
Since ρi = ri

2 − 1 > 1
2 , ‖u1(t)‖∞ + ‖u2(t)‖∞ also stays bounded in [0, T ). By Lemma 2.6, a global

solution exists. �
5.2. Kernels with singularity

In the next theorem we will consider kernels of the form β1(x) = β2(x) = γ (|x|) where γ ∈
C2([0,∞)), γ (0) > 0, γ ′(0) < 0 and γ ′′ ∈ L1 ∩ L∞ . Then the βi will have a jump in the first derivative.
The typical example we have in mind is the Green’s function 1

2 e−|x| . For such kernels we have

β̂i(ξ) � Ci
(
1 + ξ2)−1

so r1 = r2 = 2. Due to the jump in β ′
i at x = 0, the distributional derivative will satisfy

β ′′
i = γ ′′ + 2γ ′(0)δ, i = 1,2,

where δ is the Dirac measure and we use the notation γ ′′(x) = γ ′′(|x|). Then we have

(βi ∗ w)xx = γ ′′ ∗ w − λw, i = 1,2,

where λ = −2γ ′(0) > 0. We will call this type of kernels mildly singular. For such kernels we extend
the global existence result in [14] to the coupled system.

Theorem 5.2. Let s > 1/2 and let the kernels β1 = β2 be mildly singular as defined above. Suppose that
ϕ1,ϕ2,ψ1,ψ2 ∈ Hs, P1ψ1, P2ψ2 ∈ L2 and G(ϕ1,ϕ2) ∈ L1 . If there are some C > 0, k � 0 and qi > 1 so that

∣∣gi(a,b)
∣∣qi � C

[
G(a,b) + k

(
a2 + b2)]

for all a,b ∈ R and i = 1,2, then the Cauchy problem (1.1)–(1.4) has a global solution with u1 and u2 in
C2([0,∞), Hs).

Proof. By Theorem 2.4 we have a local solution. Suppose the solution (u1, u2) exists for t ∈ [0, T ). For
fixed x ∈ R we define

e(t) = 1

2

[(
u1t(x, t)

)2 + (
u2t(x, t)

)2] + λ

2

[(
u1(x, t)

)2 + (
u2(x, t)

)2 + 2G
(
u1(x, t), u2(x, t)

)]
.

Then

e′(t) = [
u1tt + λ

(
u1 + g1(u1, u2)

)]
u1t + [

u2tt + λ
(
u2 + g2(u1, u2)

)]
u2t

= [(
β1 ∗ (

u1 + g1(u1, u2)
))

xx + λ
(
u1 + g1(u1, u2)

)]
u1t

+ [(
β2 ∗ (

u2 + g2(u1, u2)
))

xx + λ
(
u2 + g2(u1, u2)

)]
u2t

= (
γ ′′ ∗ u1

)
u1t + (

γ ′′ ∗ g1(u1, u2)
)
u1t + (

γ ′′ ∗ u2
)
u2t + (

γ ′′ ∗ g2(u1, u2)
)
u2t

� (u1t)
2 + (u2t)

2 + 1

2

(∥∥γ ′′ ∗ u1
∥∥2

∞ + ∥∥γ ′′ ∗ u2
∥∥2

∞
)

+ 1

2

(∥∥γ ′′ ∗ g1(u1, u2)
∥∥2

∞ + ∥∥γ ′′ ∗ g2(u1, u2)
∥∥2

∞
)
.

Since γ ′′ ∈ L1 ∩ L∞ we have γ ′′ ∈ L p for all p � 1. By Young’s inequality
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e′(t) � (u1t)
2 + (u2t)

2 + 1

2

∥∥γ ′′∥∥2(‖u1‖2 + ‖u2‖2)
+ 1

2

∥∥γ ′′∥∥2
Lp1

∥∥g1(u1, u2)
∥∥2

Lq1 + 1

2

∥∥γ ′′∥∥2
Lp2

∥∥g2(u1, u2)
∥∥2

Lq2 ,

where 1/pi + 1/qi = 1 (i = 1,2). Now the terms may be estimated as

‖u1‖2 + ‖u2‖2 � E(0)

and for i = 1,2

∥∥gi(u1, u2)
∥∥2

Lqi =
(∫ ∣∣gi(u1, u2)

∣∣qi dx

)2/qi

�
(

C

∫ [
G(u1, u2) + k

(
a2 + b2)]dx

)2/qi

�
[
C(1 + k)E(0)

]2/qi

so that

e′(t) � D + 2e(t)

for some constant D depending on ‖γ ′′‖Lpi , ‖γ ′′‖ and E(0) (i = 1,2). This inequality holds for all
x ∈ R, t ∈ [0, T ). Gronwall’s lemma then implies that e(t) and thus u1(x, t) and u2(x, t) stay bounded.
Thus by Lemma 2.6 we have global solution. �
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