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Abstract 
Poly-isoprene networks with different degrees of cross-linking and filler amount are studied 

under uniaxial stress relaxation. Time decay of stress obeys a stretched exponential form with 

a stretching parameter of 0.4 that is same for all independent variables, i.e., extensions, cross-

link density and filler amount. Relaxation time τ increases with increasing strain, and 

decreases with both cross-link and filler content. Dependence of τ on filler content is less 

sensitive than on cross-link density. The isochronous Mooney-Rivlin plots show that the 

phenomenological constant 12C is time independent, and all time dependence results from that 

of 22C , which is associated with relaxation of intermolecular interactions at and above the 

length-scales of network chain dimensions. The relatively low value of the stretching 

parameter is interpreted in terms of a molecular model where entanglements contribute to 

relaxation at a wide spectrum of time scales.  
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Introduction 

 

According to the molecular interpretation of the elasticity of a random elastomeric network, 

the force f on a uniaxially stretched system is the sum of two components[1]. 

 

interintra fff +=          (1) 

 

where, intraf is the sum of the elastic contributions of the individual network chains, and interf  

is the intermolecular contribution in excess of the intra-molecular component. At equilibrium, 

the phantom network model of rubber elasticity describes the network in the presence of intra-

molecular contributions only. For uniaxial force the reduced force, *][ f , given by this model 

is 
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where, ξ is the cycle rank of the network, i.e., the number of chains to be cut to reduce it to a 

tree, k is the Boltzmann constant, T is the absolute temperature, 0V is the volume of the 

network in the reference state, and λ is the extension ratio[1]. This expression is based on the 

molecular picture where the end-to-end vector of the network chains exhibit a Gaussian 

distribution.  

 

The Mooney-Rivlin equation, on the other hand, is a phenomenological expression that gives 

the reduced force as the sum of (i) deformation independent and (ii) dependent components as 

 
1

21 22*][ −+= λCCf          (3) 

 

The Mooney-Rivlin form is particularly attractive because it gives a straight line when *][ f  is 

plotted as a function of 1−λ , where 12C  becomes the intercept and 22C becomes the slope[1]. 

If intermolecular contributions vanish in the limit of infinite extension, then the 12C  



 3

coefficient may be interpreted as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

0
1 *][2

V
kTfC ph

ξ . If not, then there will be 

contributions from trapped entanglements. The extent of the contributions from 

intermolecular effects can be estimated only by well-designed experiments. Some 

experiments[2] show that the 12C  value leads to the network cycle rank only, and others show 

that contributions from chain entanglements trapped in the system during cross-linking, i.e., 

intermolecular effects in the limit of infinite extension are present[3]. The experiments of 

Rennar and Oppermann [4] showed the conditions under which trapped entanglements are 

important in a conclusive manner. Whether the 12C value leads to the phantom network value 

or not is not of interest in the present study. Here, we study the relaxation behavior of the 12C  

and 22C values under a sudden uniaxial force until they reach constant values independent of 

time.  

 

The 22C term is unequivocally accepted as representative of intermolecular contributions to 

the deformation dependent part of the reduced force. It results from intermolecular 

contributions that perturb the chain conformations when an external deformation is applied. It 

results from rearrangements at larger length scales, such as length-scales of the end-to-end 

vector and larger, and therefore its dynamics is expected to be easily separated from that 

of 12C that operates at length scales of entanglements. The relaxation experiments of 

Noordermeer and Ferry on polybutadiene networks showed that the relaxations of 12C  and 

22C  are indeed separated over time[5]. Since φ network chains meet at a φ -functional 

junction, the intermolecular contributions to elasticity may equally be studied in terms of the 

perturbations of the junction positions from those of the phantom network model. Graessley, 

Edwards et. al, adopted the former[6, 7], and Flory and collaborators adopted the latter 

picture[8-10]. That the two representations reduce to the same result have been shown by 

Vilgis and Erman some years ago[11].  

 

In the present experimental work, we study the effects of cross-link density and filler amount 

on the elasticity of random amorphous networks that are slightly put out of equilibrium by 

imposing a sudden uniaxial extension, where the force required to hold the sample at that 

constant elongation is measured. The aim of the study is to observe and quantify the 

deviations from the equilibrium state, using the phenomenological Mooney-Rivlin equation 



 4

and the associated molecular interpretation. The independent variables are the extension ratio, 

cross-link density, and amount of filler. The dependent variable is the force, as a function of 

time, required to keep the samples at fixed length. We consider ‘long-time’ stress relaxation 

where fast local motions relating to the sub-chains of a given network chain are already 

equilibrated, and only long-time rearrangements of the network end-to-end distances are 

active. Below, we give a more specific definition of ‘long-time’ relaxation.  

 

At equilibrium, a network junction exhibits large-scale fluctuations about its mean position. 

This is because the pendent chains to the junction exhibit large-scale diffusive motions about 

their equilibrium configurations. In a tetra-functional phantom network, the mean squared 

fluctuations ( )2RΔ  of a junction is related to the mean-squared end-to-end distance 
0

2r of 

a network chain by[12] ( )
0

22

8
3 rR =Δ . For a network with 21.0*][ −= Nmmf , the radius 

of the fluctuation domain for a polyisoprene chain is about there are about 50 cross-links that 

share this domain. At sufficiently long time scales corresponding to the equilibrium state, the 

radius of the spherical domain in which a junction fluctuates equates to about 50 Å. At 

equilibrium, the φ pendent network chains, for a φ functional network, move from one 

conformation to the other and the junction explores all possible points in its spherical 

fluctuation domain. However, immediately following a sudden macroscopic extension, the 

chains are in states close to frozen and the junction does not have a chance to explore all 

points in this domain. As the network is allowed to relax, the junction explores larger and 

larger regions of the constraint domain. The process may be followed easily through the time 

dependence of the 12C and 22C parameters where the former reflects the dynamics operating 

at length scales of 
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0
2r  or larger. Here, Me is the entanglement molecular weight, Mc is the molecular weight of 

a network chain, and 
0

2r is its unperturbed mean-squared end-to-end distance. The relative 

behaviors of 12C  and 22C depends on the distance of the system from its glass transition 

temperature. In earlier work, on stress relaxation of poly-butadiene networks, … and Ferry 

observed that during the initial stages of relaxation the 12C values decreased while the 

22C values were constant. During later stages of relaxation, 12C  values remained constant 
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while the 22C values relaxed until equilibrium. Our present experimental results on poly-

isoprene networks at room temperature show that the 12C term is time independent, 

irrespective of the degree of cross-linking and filler content, and only the 22C  varies with 

time. 

 

 

 

Experimental:  
Materials used 

The raw materials used in this recipe were Natural rubber (polyisoprene) , Carbon black, Zinc 

Oxide, Stearic Acid, CBS (N-cyclohexyl-2-benzothiazole sulphenamide) and Sulfur. All the 

raw materials were used as received. The natural rubber grade was Ribbed Smoked Sheet, 

RSS1, with a Mooney viscosity of 85 Mooney Units, MU, at 100°C (1+4), supplied from 

Eversharp Rubber Industries, Jalan, Singkang, Jementah, Johor. The carbon black grade was 

HAF N 330 from Tüpraş (www.tupras.com.tr). The DBP (dibutylphthalate) absorption of the 

carbon black was 116,4 ml/100g, the iodine adsorption was 45,6 mg/g, the ash content was 

0,2 and the humidity was 0,11 %.  Zinc oxide, 99,7 % purity with a 550 g/l bulk density was 

supplied from Metal Oksit (www.metaloksit.com). Stearic acid with an acid value 208,8 mg 

KOH/g, fatty acid composition 55,2 % C16, 44,2% C18 was supplied from Natoleo 

(www.natoleo.co.kr). CBS was supplied from MLPC. Its melting point was 97°C, ash content 

was 0,3% and specific gravity was 1,27. Sulfur was supplied from MLPC (www.mlpc-

intl.com). Its melting point was 115 °C and specific gravity was 2,04. 

Compounding 

Compounds were prepared by using a lab scale 1,5 liter Werner & Pfleiderer internal mixer. 

This internal mixer has standard tangential rotor geometry. The homogenizations were made 

on the two roll open mills.  The master batch was prepared with a fill factor of 0,85 in the 

internal mixer. Rubber was fed into the chamber, masticated for 2 minutes and then Zinc 

Oxide and Stearic acid were added. The compound was dumped at around 135 °C. It 

homogenized on the two roll mill for 5 minutes. In the second stage, accelerator, sulfur and 

additional carbon black were added on the two roll mill for different compounds.  

Vulcanization 

Vulcanization was carried out in a compression molding with 160 t clamping force. All test 

sheets were vulcanized at 150°C/ 35min. The test sheet dimensions were 210x300x2 mm3. 
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Relaxation tests 

 All 2 mm thick dumbbell shaped test sheets were cut out from these vulcanized sheets with 

the help of a Zwick sample cutter. The dumbbell shaped test sheet was in accordance with 

DIN 53 504, S1. The relaxation tests were carried out in an universal tensile machine (UTM). 

The brand name was Zwick Roell Z2,5. Its load cell was 2,5 kN. This machine had also an 

extensometer that acquired data at every 10 microns with an accuracy of 1%. The equipment 

used testXpert V10.1 version software. Dumbbell shaped test sheets were tested at UTM with 

a pre-load of 0,2 N that prevented the initial curvature of the free samples. Test sheets were 

stretched to different extension ratios at a speed of 800 mm/min, and relaxed for 800 sec. for 

every sample. Data was taken at every 0,02 s. during the test. In order to simplify 

presentation, we use the notation in Table 1 for sample designation.  

 

Table I. Sample Notation 

 Amount of filler, phr 

 0 5 10 15 

0.75 S11 S12 S13 S14 

1.0 S21 S22 S23 S24 

 

Amount of 

cross-linker 

phr 1.25 S31 S32 S33 S34 

 

 

Results and Discussion 
 

In Figs. 1.a-d we present isochronous Mooney-Rivlin plots for networks with different cross-

link densities and different filler contents. Fig. 1.a shows the results for the network S11 with 

no filler and low degree of cross-linking. The sulfur content used in cross-linking this sample 

corresponds to network chains of Mc = 1.4x104 gmol-1 (conversion rate for the unfilled 

samples is: 1 phr = 1.05x104 gmol-1)[1] The shortest time of observation is one second. The 

longest time of 800 seconds recorded in the experiments did not correspond to full 

equilibrium, but sufficiently close to it for all of the samples. The best fitting straight line is 

drawn through each set of isochronous data. As time progresses, the 12C  intercept remains 

approximately constant while the slope 22C decreases. If the samples were stretched much 
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faster than the network chains could rearrange or at temperatures close to Tg, then the 

dynamic entanglements operating along the network chains would act as additional cross-

links, and this would lead to higher values of 12C that would then decrease with relaxation. 

Indeed, earlier experiments of Ferry and collaborators on poly-butadiene networks show this 

effect. These short time scales are the ones during which chain-chain entanglements play 

dominant role in relaxation. The time scales in which the 12C  values remain fixed and only 

22C values change may be accepted as the long-time relaxation regime during which 

relaxation takes place through conformational rearrangements of the network chain end-to-

end vector distributions towards their equilibrium values.  

 

 

 
 

Fig. 1.a-d Isochronous Mooney-Rivlin plots of Samples S11, S14, S31 and S34. 

 

In Fig. 1.b, isochronous Mooney-Rivlin plots are presented for the sample S14 with the same 

degree of cross-linking and highest amount of filler. In Fig. 1.c similar curves are given for 

the samples S31 and S34 with highest degree of cross-linking. In all cases the points exhibit the 
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straight line behavior in which the 22C values decrease in time and 12C values are 

approximately constant. Only in the case of highest filler samples, S14 and S34, the 12C values 

intersect in around 1−λ =0.2, instead of the expected zero intercept. This is possibly due to 

inaccuracies of short time measurements that become increasingly difficult as the degree of 

cross-linking increases. It is interesting that the addition of filler affects the 12C  values much 

less significantly than the 22C values. For the lowest degree of cross-linking, the 12C  

intercepts are 0.08 and 0.08-0.13 for S11 and S14, respectively. The corresponding 22C values 

are 0.18 and 0.33. For the highest degree of cross-linking, the 12C  intercepts are 0.13 and 

0.14-0.18, respectively, whereas the he corresponding 22C values are 0.18 and 0.36. In 

summary, filler amount has significant effect of the 22C values, and much lesser effect on 

12C . 

 

In Fig. 2.a the dependence of the 12C values on time are plotted for the highest cross-link 

density sample for different values of filler amount. Similarly, in Fig. 2.b, the dependence of 

22C on time is presented. The curves are given for the lowest cross-link values, but the same 

trend is present for higher degrees of cross-linking. Fig. 2.a clearly shows that within the time 

scales of the present experiments, except the highest cross-link highest filler sample S34, 

the 12C  values have already reached constant values. The 22C values, on the other hand 

describe the slow relaxation behavior fully. The time decay of 12C for S34 indicates that 

relaxations in the sub-Me scale are still active. 

 
Fig. 2. a and b. The time dependence of 12C and 22C  
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Our results show that the dependence of stress, σ  (defined as the force per unit undeformed 

cross-sectional area) on time during slow relaxation exhibits a definite stretched exponential 

form  
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where, ∞σ  is the equilibrium stress and 0σ is the stress at zero time. Results for the unfilled 

sample S11 and for the highest filler sample S14 are presented in Figs. 3.a and b, respectively. 

 
Figure 3. Dependence of stress on time. 

 

The lines are obtained from Eq. 4, the points are experimental. As is evident from the figures, 

the value of 0.4 for the exponent leads to perfect agreement between experiment and Eq. 4 for 

all times. In the interest of brevity, we present results for the samples S11 and S14, only. 

Results for all the other samples are in perfect agreement with the exponent 0.4.  

 

The parameters of Eq. 4 are determined as follows: First an initial value m for the exponent is 

chosen. For each extension ratio, the value τ of the relaxation time is assumed, and the 

variable 

β
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ex is calculated for each time. With the use of x defined in this manner, Eq. 

4 takes the following linear form BxAt +=)(σ , where ∞= σA  and )( 0 ∞−= σσB . The 

value of τ that led to the best agreement between experimental data and the straight line 

determined A and B. Calculations were repeated for different exponent values. Best linear fits 
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were obtained for the exponent β = 0.4. In the Appendix, we tabulate the values of ∞σ , 

)( 0 ∞−σσ , and τ for different extension ratios for the lowest and highest filler samples. 

 

The relaxation times obtained by fitting experimental data to Eq. 4 exhibit strong deformation 

dependence. The general trend is that increasing strain increases the relaxation times. In 

Figure 4, the dependence of relaxation times for three different cross-link densities of unfilled 

samples is presented. In Figure 5, relaxation times are plotted.  

 
Figure 4. Relaxation time as a function of extension ratio for different cross-link densities. 

 

In Figure 5, the effects of filler on the relaxation times for different extension ratios are 

shown. 

 
Figure 5. Effect of filler on relaxation times for the lowest cross-link density sample. 

 

In Figure 6, a summary is given where the relaxation times are averaged over all cross-link 

values (the unfilled circles) for the unfilled sample, and over all filler amounts (filled circles) 

of the lowest cross-link density, presented as a function of extension ratios. It is to be noted 
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that values for λ = 1.25 are not shown in figures 4-6 because this low degree of deformation 

lead to large scatter in relaxation time values, probably due to large source of error in force 

and deformation measurements, and possibly due to the existence of a different regime of 

slow relaxation at low deformation. The accuracy of our measurements at small deformations 

is not sufficient to give a definitive explanation for this behavior, and more detailed 

experiments at higher accuracy are required. The increase of relaxation times with increasing 

deformation observed in Figs. 4-6 indicates that relaxation slows down as the anisotropy of 

the system increases under increasing uniaxial extension. 

 

 
 

Figure 6. Effects of cross-link and filler amounts on relaxation times at different extension ratios. 

 

In Figure 7, the effects of filler amount and cross-linker amount on the relaxation times are 

shown. The same amount of decrease from 120 s to 60 s in relaxation time is observed when 

either the filler amount is increased from 0 and 15 phr or the cross-linker is increased from 

0.75 and 1.25 phr. Thus, changes in relaxation time are much more sensitive to changes in 

cross-link density than to filler amount. 
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Figure 7. Effects of cross-link and filler amounts on relaxation times averaged over extension ratios. 

 

The data presented in Fig. 7 indicates that there is a correspondence between the effects of 

cross-linker and filler amounts on relaxation times, somewhat similar to the time-temperature 

correspondence in viscoelasticity.[13]  

 

The radii of the fillers used in the samples were between 500-6000 Å, whereas the 

entanglement domains have radii of 50 Å. Thus, the length-scales of filler and constraint 

domains responsible for the relaxation of 22C are widely separated. On the other hand, 

changing the cross-link density directly affects the mean-squared dimensions of the 

fluctuation domain given by the expression[12] 

 

( ) 2
0

22

8
3

8
3 nlCrR ∞==Δ         (5) 

 

Where, n is the number of repeat units of a network chain, C∞ is the characteristic ratio of the 

chain, and l is the length of a repeat unit. The proportionality of the constraint domain size to 

network chain dimensions indicated by Eq. 5 implies that relaxation times are expected to be 

more sensitive to changes in cross-link density than to changes in filler amount. This is indeed  

indicated by the present experiments shown in Fig. 7.  

 

Finally, we would like to point out that the stretched exponent behavior of relaxation, which is 

phenomenologically known as Williams-Watts-Kohlrauch form, may be taken as an 

indication of serial cooperativity where different pathways of relaxation exist in which one 
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relaxation step depends on the occurrence of another. Stated in another way, relaxation goes 

through hierarchically constrained steps: Sudden stretching of the network causes an affine-

like deformation of chains. Chains deformed in this manner do not relax all at once. A group 

of chains relax first, this induces the relaxation of others, through network connectivity. Thus, 

according to this interpretation, relaxation propagates from one junction to its topological 

neighbors in a serial fashion. We would like to indicate that this interpretation, although 

plausible, is one of several other possible relaxation pathways. This type of hierarchical 

relaxation was introduced by Palmer et. al., [14] and since then has been adopted for the 

relaxation in a diverse field of materials.  

 

In order to understand the molecular basis of long-time relaxation, we consider the relaxation 

components of a junction in more detail: A junction is embedded into the φ -functional 

network by means of φ chains. The size of the fluctuation domain of the junction is 

determined by the fluctuations of the φ  pendent chains and the rest of the network to which 

these φ  chains are attached. As briefly stated above, the system deforms close to affine when 

a sudden stretch is applied to the network. The chains and the junctions are close to frozen at 

the initial state due to the hindrance of entanglements. As the system relaxes, the junction 

explores different points in its fluctuation domain. We term this ‘the relaxation of the 

junction’. The excursions of the junction are obviously a result of the fluctuations of the 

pendent chains. The pendent chains perform their fluctuations under the presence of 

intermolecular effects, i.e., entanglements. The entanglements on chains can be transferred to 

the junction most pronouncedly if the junction is part of a cycle as shown in Fig. 8. In fact, in 

a perfect network, there are several cycles of different length that affect the fluctuations of a 

junction. In Fig. 8, a cycle of length 6 is shown. The circle shows the fluctuation domain of 

junction i. The center of this domain is indicated by O. The vector iRΔ indicates the  
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Figure 8. Fluctuations of the junction i under the effects of entanglements. 

 

instantaneous fluctuation of the junction from its center. The distribution of iRΔ will be time 

dependent in a relaxing network. This time dependent distribution will relax to the time 

independent distribution as equilibrium is approached. Cycles of different length are expected 

to contribute differently to the relaxation of the junction. Longer cycles are subject to a larger 

number of chain entanglements and hence their contribution to relaxation will be spread over 

longer time scales. Shorter cycles with only a few entanglements will be the fastest relaxation 

contributors. If the relaxation time associated with a cyclic path is iτ  and the contribution of 

this path to relaxation is )( ig τ , then the stretched exponential form, may be written as 
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where, the left hand side is determined by the experimentally determined τ  and β . Once 

these parameters are known, the distribution function )( ig τ  may be calculated by[15] 
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Here, ( )Γ  is the gamma function. For 4.0=β  and 1=τ , the distribution function is 

calculated from Eq. 7 and is shown in Fig. 9. The peak contribution is equal to 0175 and is 

around 2=iτ . However, the relaxation times are spread over a large range. Even at a 

relaxation time of 20, the amplitude is 0.06 which is significant. According to the molecular 
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model described above, such large relaxation times are those that result from entanglements 

along long cyclic paths. 

 

 
Figure 9. The spectrum of relaxation times for the exponent b = 0.4. 

 

Appendix: Values of ∞σ , )( 0 ∞−σσ , and τ for different extension ratios  

for the lowest and highest filler samples. 

 

Sample S11 

λ  ∞σ (MPa) )( 0 ∞−σσ (MPa) τ (s) 

1.25 0.0375 0.1196 300 

1.6 0.1502 0.0903 90 

2 0.2221 0.1028 60 

3 0.3215 0.1114 80 

4 0.3991 0.1294 150 

5 0.4941 0.1444 120 

6 0.6014 0.1914 110 

 

Sample S21 

λ  ∞σ (MPa) )( 0 ∞−σσ (MPa) τ (s) 

1.25 0.1023 0.0571 40 

1.6 0.1815 0.0752 70 

2 0.2539 0.0911 70 

3 0.3612 0.1046 80 
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4 0.4673 0.1112 60 

5 0.5882 0.1470 60 

 

Sample S31 

λ  ∞σ (MPa) )( 0 ∞−σσ (MPa) τ (s) 

1.25 0.1152 0.0618 80 

1.6 0.1869 0.0727 40 

2 0.3248 0.0884 40 

3 0.4545 0.1007 40 

4 0.5830 0.1091 110 

5 0.5818 0.1095 120 

6 0.8200 0.2264 120 

 

Sample S12 

λ  ∞σ (MPa) )( 0 ∞−σσ (MPa) τ (s) 

1.25 0.0965 0.0761 40 

1.6 0.1674 0.1027 45 

2 0.2367 0.1228 70 

3 0.3382 0.1352 90 

4 0.4259 0.1492 80 

5 0.5371 0.2010 90 

6 0.8014 0.3236 80 

 

Sample S13 

λ  ∞σ (MPa) )( 0 ∞−σσ (MPa) τ (s) 

1.25 0.0954 0.1012 50 

1.6 0.1694 0.1155 60 

2 0.2511 0.1375 70 

3 0.3603 0.1595 100 

4 0.4973 0.2136 80 

5 0.6919 0.3348 80 

6 1.0525 0.4997 50 
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Sample S14 

λ  ∞σ (MPa) )( 0 ∞−σσ (MPa) τ (s) 

1.25 0.1232 0.1103 60 

1.6 0.2114 0.1466 70 

2 0.3106 0.1550 50 

3 0.4723 0.2112 60 

4 0.6935 0.3426 70 

5 1.2304 0.5733 40 
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