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Sliding Modes in Constrained Systems Control
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Abstract—In this paper, a sliding-mode-based design frame-
work for fully actuated mechanical multibody system is discussed.
The framework is based on the possibility to represent complex
motion as a collection of tasks and to find effective mapping of
the system coordinates that allows decoupling task and constraint
control so one is able to enforce concurrently, or in certain time
succession, the task and the constraints. The approach seems nat-
urally encompassing the control of motion systems in interaction,
and it allows application to bilateral control, multilateral control,
etc. Such an approach leads to a more natural interpretation of
the system tasks, simpler controller design, and easier establish-
ment of the systems hierarchy. It allows a unified mathematical
treatment of task control in the presence of constraints required
to be satisfied by the system coordinates. In order to show the
applicability of the proposed techniques, simulation and experi-
mental results for high-precision systems in microsystem assembly
tasks and bilateral control systems are presented.

Index Terms—Bilateral control, constrained multibody systems,
force control, motion control, nonlinear systems, sliding-mode
control (SMC).

I. INTRODUCTION

MOTION CONTROL systems are expected to be ap-
plied in unstructured environment where the presence

of humans is natural. In many cases, such systems are acting
as “agent” between skilled human operator and environment
(surgery, micropart handling, teleoperation, etc.); thus, design
of control should encompass a wide range of very demand-
ing tasks. At the lower level, one should consider tasks of
controlling individual systems. On the system level, control
of bilateral or multilateral interaction between systems of the
same or different nature, the remote control in master–slave
systems, haptics, etc., should be considered. Such a complexity
of motion control system poses a challenge for control systems
designers.

Although design methods for decentralized control systems
are interesting as concepts, a simple framework in view of
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controller design is desired to cope with complexity of motion
systems in interaction. In [1], it has been shown that under
certain conditions, overall control input can be designed by
linear superposition; in [2], a decoupled design method that
makes a bilateral control system behave as a common passive
rigid mechanical tool is proposed. In [3], a framework of
controller design based on functionality is discussed; in [4],
a bilateral control using sliding-mode control (SMC) applying
functionality has been implemented. Basic approach in the
control of bilateral system widely used in literature [5]–[7] is
based on the design of controllers for master and slave side
separately and then adding interacting terms in order to reach
transparency requirements. Control of interconnected motion
systems (bilateral and multilateral) in the framework of the
acceleration control is discussed in [3] and [8]. All these works
are based on the linearization of the individual systems by
introducing the disturbance compensation in the joint space
and then applying the acceleration control. This framework is
shown to be very powerful, and it allows the application of
multilateral systems and systems in interaction.

In this paper, a sliding-mode-based design framework for
fully actuated mechanical multibody system is presented. The
proposed approach leads to a more natural interpretation of
the system tasks, simpler controller design, and easier estab-
lishment of the systems hierarchy. The possibility to interpret
desired functional relation between one or more motion systems
as a requirement that the system state is constrained in a
manifold represents a basis of the proposed algorithm.

The application of SMC in motion control systems [9]
ranges from control of power converters, electrical machines,
robotic manipulators, mobile robots, PZT-based actuators, etc.
The most salient feature of the SMC is a possibility to constrain
system motion on the selected manifold in the state space;
thus, this framework seems a natural candidate for the task
that we are working toward in this paper—namely, maintain-
ing selected functional relation between systems. In discrete
time, this control that enforces sliding mode is continuous
in the sense of the discrete-time systems, and the resulting
intersampling motion for systems with smooth disturbances
is constrained to the o(T 2) vicinity of the sliding mani-
fold [10], [11].

The organization of this paper is as follows. In Section II,
the problem formulation and the general solution are discussed
for n-degrees of freedom (DOF) fully actuated mechanical
multibody system with and/or without motion modification
due to interaction with environment. In Section III, the prob-
lems related to the task control in constrained systems are
discussed, an SMC solution is proposed, and examples are
shown in order to demonstrate the applicability of the proposed
framework.

0278-0046/$25.00 © 2008 IEEE
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II. CONTROL PROBLEM FORMULATION

For fully actuated mechanical system S, mathematical model
may be found in the following form:

S :M(q)q̈+b(q, q̇)+g(q)= τ−τ r(q,qe)

N(q, q̇)=b(q, q̇)+g(q)

τ r(q,qe)=
{

τ r(q,qe), when in contact
0, without contact

(1)

where q, q̇ ∈ �n stand for the vectors of generalized positions
and generalized velocities, respectively, and M(q) ∈ �n×n is
the generalized positive definite inertia matrix with bounded
parameters; hence, M− ≤ ‖M(q)‖ ≤ M+. N(q, q̇) ∈ �n×1

represents the vector of coupling forces, including gravity and
friction, and is bounded by ‖N(q, q̇)‖ ≤ N+; τ ∈ �n×1 with
‖τ‖ ≤ τ0 is the vector of generalized input torques; τ r ∈ �n×1

with ‖τ r‖ ≤ τrmt is the vector of interaction torques being
zero when system S is not interacting with the environment or
other system; and qe ∈ �l stands for the vector of generalized
positions of environment. M−,M+, N+, τ0, and τrmt are
known scalars. Vectors τ r and N(q, q̇) are assumed to satisfy
matching conditions [12].

For the purpose of this paper, environment is treated as
another mechanical system, and the interaction is represented
by the mechanical force acting as a result of such an interaction.
It is now obvious that such an external force can be treated as
an additional input to the system (1) that is able to modify the
system behavior in the same way as the control input does.

The configuration of the system can be represented by
a single-valued vector function ξ(q, q̇) ∈ �n×1. The control
tasks for the system (1) may be represented as selected func-
tions of the system configuration. The motion control can be
formulated as the requirement to maintain the desired func-
tional relation between the actual and the desired configurations
on the trajectories of the system (1). This requirement can be
interpreted as enforcing the state in the manifold

Sq =
{
q, q̇ : σ

(
ξ(q, q̇), ξref

)
=0

}
,

σ, ξ, ξref ∈ �n×1; σ=[σ1, σ2, . . . , σn]T (2)

where σ ∈ �n×1 stands for the linear or nonlinear single-
valued vector function to be determined depending on the task
of the overall system and the control system technical specifica-
tion; ξref(t) ∈ �n×1 stands for the reference configuration and
is assumed to be a smooth bounded function with a continuous
first-order time derivative. Requirement (2) can be satisfied if
the solution σ(ξ(q, q̇), ξref(t)) = 0 is stable on the trajectories
of system (1). With such a formulation, the controller design
is related to ensuring the stability of σ(ξ(q, q̇), ξref(t)) = 0.
The question of the definition of the operational tasks of system
(1) in terms of the system configuration and the admissible
structure of the desired functional relation is still open and will
require careful examination in order to complete the overall
control design. This problem will be addressed later in this
paper.

A. Equations of Motion and Control Input Selection

The motion of the system if constraint (2) is satisfied, and
the selection of the control to enforce the stability of solution
σ(ξ(q, q̇), ξref(t)) = 0 should be discussed first. Equations of
motion can be found by using the so-called equivalent control
method [10]. In this method, the control input is taken as the
solution of σ̇(ξ(q, q̇), ξref(t))|τ=τeq = 0. This solution can be
derived as

τ eq = (τ r(q,qe) + N(q, q̇))

−(QM−1)−1
(
Hξ̇

ref
(t) + Cq̇

)
. (3)

Matrices C = [∂σ/∂ξ][∂ξ/∂q], Q = [∂σ/∂ξ][∂ξ/∂q̇], and
H = [∂σ/∂ξref ] are assumed to have a full rank for ∀(q, q̇) ∈
Sq. The relation (QM−1)−1 = MQ−1 is true due to the
properties of the inertia matrix. By inserting (3) into (1), the
equations of motion of system (1) in manifold (2) are obtained
in the following form:

Mq̈ = −(QM−1)−1
(
Hξ̇

ref
(t) + Cq̇

)

=Mq̈des ⇒ q̈ = q̈des

q̈des = −Q−1
(
Hξ̇

ref
(t) + Cq̇

)
. (4)

Motion (4) is equivalent to the acceleration control [13] with de-

sired acceleration q̈des = −Q−1(Hξ̇
ref

(t) + Cq̇) and is valid
from the time t ≥ t0 with t0 being the moment that the state
of the system reaches manifold (2). If closed-loop motion (4)
should be modified due to the interaction with other systems or
environment, the desired acceleration q̈des must depend on the
interaction force.

Control can be selected by selecting Lyapunov function
candidate ν = (1/2)σTσ > 0 ν(0) = 0 and enforcing its
derivative to be ν̇ = σTσ̇ = −σTΨ(σ) < 0. If −σTΨ(σ) =
−ρνδ < 0, ρ > 0, and (1/2) ≤ δ < 1 [14], the manifold (2)
will be attractive, and the stability conditions for solution
σ(ξ, ξref) = 0n×1 are satisfied. From ν̇ = σTσ̇ = −σTΨ(σ),
one can derive σT(σ̇ + Ψ(σ)) = 0, and consequently, nontriv-
ial solution can be obtained as

τ = τ eq − (QM−1)−1Ψ(σ) = τ eq − MQ−1Ψ(σ). (5)

For continuous-time system function, Ψ(σ) is most often
selected as −σTΨ(σ) = −ρν1/2. Being discontinuous, such
a control input may cause chattering in mechanical systems.
For real system, chattering may be a problem, and many possi-
bilities to avoid or minimize chattering in mechanical systems
are presented in [15]. In the real system, control is bounded
‖τ‖ ≤ τ0; thus, (5) should be modified to take this into account

τ = sat
(
τ eq − MQ−1Ψ(σ)

)
(6)

where sat(•) stands for the saturation function with bounds
τb = τ0τ/‖τ‖. The implementation of the control (6) requires
full knowledge of the plant parameters and disturbances. An
approximate solution can be found by estimating equivalent
control as τ̂ eq = (τ − MQ−1sσ)g/(s + g) and replacing τ eq
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in (6). In this case, the control will enforce relation σ̇ +
Ψ(σ) = peq = τ eq − τ̂ eq. This approximation will introduce
bounded error since g → ∞ ⇒ τ̂ eq → τ eq. If (3) is inserted
in (6) and the disturbance observer [13] is applied, the control
becomes

τ = sat
(
(τ̂ r + N̂) − MQ−1

(
Hξ̇

ref
(t) + Cq̇ + Ψ(σ)

))
.

(7)

Approximated control (7) enforces the relation σ̇ + Ψ(σ) =
p, p = (τ r + N) − (τ̂ r + N̂), and as in the previous case,
error is bounded if observer error is bounded. Control (7)
represents a generic acceleration controller enforcing the attrac-
tiveness and the stability of solution σ(ξ, ξref) = 0.

In the discrete time with sampling interval “T ” with σ̇(k −
1) = (σ(k) − σ(k − 1))/T and due to the fact that equivalent
control is continuous, one can write

τ (k) ∼= sat
(
τ eq(k − 1) − MQ−1Ψ(σk)

)
. (8)

The error introduced by this approximation is on the order of
o(T 2) [16]. In general, the thickness of the error layer can be
determined by evaluating

σ(kT + τ) − σ(kT ) = −
kT+τ∫
kT

Ψ (σ(t)) dt + o(T 2). (9)

With Ψ(σ(t)) being proportional to σ(t), the thickness of
the boundary layer is on the order of o(T 2). If relay control
is applied, it will result in motion with chattering within a
boundary layer having a thickness on the order of o(T ).

B. Selection of Reference Configuration

Without loss of generality, constant matrices C,Q, and D
can be defined; thus, the system configuration and its reference
become ξq = Qq̇ + Cq and ξref

q = Qq̇ref + Cqref . Conse-
quently, Sq = {q, q̇ : σ(ξq, ξ

ref
q ) = ξref

q − ξq = 0} stays for
the constraint manifold. The control (7) or (8) can be directly
applied. If one selects Ψ(σq) = −Dσq; D > 0, the equations
of motion become

Q∆q̈+(C+DQ)∆q̇+CQ∆Q=0, ∆q=q−qref .
(10)

For Q = I, (10) represents unit mass systems—the same as
the one obtained by application of the disturbance observer and
the PD controller [13].

If the reaction torque can be modeled as τ r = KP∆qe +
KD∆q̇e, with ∆qe = q − qe and KP,KD diagonal matrices
of appropriate dimensions, then with ξref

F = τ ref + (KPqe +
KDq̇e), the sliding mode manifold SF = {q, q̇ : (KPq +
KDq̇) − ξref

F = σF = 0} has the same form as the one derived
for the trajectory tracking; thus, the structure of the control
input is obtained as τ = τ eq − MK−1

D Ψ(σF ).

C. Motion Modification by Interaction Forces

Assume two mechanical systems Si and Sj

Si : Mi(qi)q̈i + Ni(qi, q̇i) = τ i − gij(qi,qj)

Sj : Mj(qj)q̈j + Nj(qj , q̇j) = τ j + gij(qi,qj). (11)

Assume reference configuration ξref
iq (t) and ξref

jq (t), respec-
tively. Interaction force between systems Si and Sj is gij ∈
�n×1, and gij = 0 if systems are not interacting. Let gij be
modeled as spring damper gij = KPi∆q + KDi∆q̇, ∆q =
qi − qj , and gref

ij (t) being the desired value while the systems
are in interaction. Assume that system Sj is controlled in the
trajectory tracking mode. Then, in order to maintain the desired
profile of the interaction force, system Si should change its
configuration as a result of the interaction.

The design of the control will follow the same steps as for
the position tracking system, but, as shown in (4), the reference
configuration must include both the trajectory tracking and the
interaction control. Let us select the sliding mode manifold in
the following form:

Siq =
{
qi, q̇i : Ciqi+Qiq̇i−ξref

iqF (t)=σiqF =0
}

. (12)

The reference configuration is selected the same way as for
the trajectory tracking with an additional term that depends on
the way that the system is required to react on the interaction
with environment. The following structures can be taken as
examples:

1) ξref
iqF (t) = ξref

iq (t) − Γgij(qi,qj) (compliant motion);
2) ξref

iqF (t) = ξref
iq (t) − ϑ(gref

ij (t),gij(qi,qj)) (force track-
ing);

3) ξref
iqF (t) = ξref

iq (t) − (ϑ(gref
ij (t),gij(qi,qj)) +

Γgij(qi,qj)) [the combination of cases 1) and 2)].
Matrix Γ is a diagonal compliance matrix with elements

different from zero in the directions in which compliance is
to be maintained, and zero in the directions in which either
contact force or trajectory tracking should be maintained. The
output of the force tracking controller enforces sliding mode in
SijF = {qi, q̇i : KPiqi + KDiq̇i − ξref

F = σF = 0} with the
reference ξref

F = (gref
ij + KPiqj + KDiq̇j). The force control

input is selected as ϑ = ϑeq − MiK−1
DiΨ(σFij) if systems are

interacting and if they are not ϑ = 0. Control input that enforces
sliding mode in manifold (12) is as defined in (5) τ i = τ eqi −
MiQ−1

i Ψ(σiqF ) via appropriate changes of variables.

D. Example

Experimental verification is performed on the setup consist-
ing of Piezomechanik’s PSt150/5/60 stack actuator (xmax =
60 µm, Fmax = 800 N, and νmax = 150 V) connected to
SVR150/3 low-voltage low-power amplifier; force measure-
ment is realized by a load cell. Control is implemented in
the dSPACE DS1103 module hosted in a PC. The aim is to
demonstrate the modification of motion due to the interaction
with environment. Free motion, contact with environment, and
control of the contact force are shown in Fig. 1. xr = 20 +
cos(0.5t) stands for the position reference in micrometers.
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Fig. 1. Experimental behavior of the PZT actuator with SMC control upper
half depicting the transients in position and lower half depicting the transients
in force control.

The force modifies the trajectory if Fr = 11.5[N]. The higher
value of the reference force Fr = 22.5[N] is set such that it
does not interfere with position tracking. The sliding-mode
manifold (12) is selected as σ = C∆x + ∆ẋ − αϑF , C = 800,
and α = 0 when there is no interaction α = 1 in opposite case.
Control is selected as in (6) with Ψ = −Dσ and D = 2500. The
force control is ϑF = ϑ̂F eq − ηF DF σF , σF = Fe − Fr, DF =
1900, and ηF = 0.25. The transitions from position tracking to
force tracking and vice versa are clearly shown in figures—the
position tracking error is large when force is tracking and vice
versa.

III. MULTIBODY SYSTEMS IN INTERACTION

A. Physically Constrained Systems

For motion control systems, of particular interest is to main-
tain the desired functional relation between subsystems by act-
ing on all of the subsystems. Assume a set of motion systems,
each described by Si : mi(qi)q̈i + bi(qi, q̇i) + gi(q) = τ i,

i = 1, 2, . . . , n. The motion of the overall system can be de-
scribed in the configuration space by the following compound
model:

S : M(q)q̈ + b(q, q̇) + g(q) = τ (13)

where q, τ , b, and g are n × 1 vectors, and M is n × n full
rank inertia matrix.

Assume that subsystems are physically interconnected to
satisfy the set of m constraints φ(q) = 0 with m × n con-
straint matrix ∂φ(q)/∂q = Jϕ. The interaction torque can be
expressed as τ ij = JT

ϕλ, and (13) becomes

S : M(q)q̈ + b(q, q̇) + g(q) = τ + JT
ϕλ (14)

where λ is a vector of unknown Lagrange multipliers. The
dynamics (14) can be determined in many ways. Here, we will
formally apply the ideas of sliding modes. Since the constraint
equations require φ̇(q) = Jϕq̇ = 0, the value of λ can be
determined such that sliding mode is enforced in φ̇(q) = 0.
From φ̈(q,λ = λeq) = 0, one can find

λeq = −
(
JϕM−1JT

ϕ

)−1
JϕM−1(τ − b − g)

+ JT
ϕ

(
JϕM−1JT

ϕ

)−1
J̇ϕq̇. (15)

By substituting (15) into (14), the motion of the constrained
system becomes

Mq̈+b+g−JT
ϕ

(
J̃T

ϕ(b+g)+
(
JϕM−1JT

ϕ

)−1
J̇ϕq̇

)
=NT

φτ

(16)

J̃T
ϕ = (JϕM−1JT

ϕ)−1JϕM−1 stand for the transpose of mass
weighted right pseudo inverse and the transpose of the null
space matrix NT

ϕ = (I − JT
ϕ J̃T

ϕ). Equation (16), along with
constraint φ(q) = 0, describes the motion of (n − m) order
dynamic system. The component NT

ϕτ of the generalized
torque can be assigned to the realization of other tasks of the
system.

B. Virtually Constrained Systems

Let us now analyze the possibility to control the system
(13) that enforces a set of m virtual constraints φ(q) = 0 with
constraint matrix [∂φ(q)/∂q] = Jϕ. For this reason, sliding
mode can be enforced on the following manifold:

Sϕ =
{
q, q̇ : σϕ

(
ξϕ(φ, φ̇), ξref

ϕ

)
= 0

}
. (17)

ξϕ(φ, φ̇) stands for (m × 1) configuration vector with ξref
ϕ

as its reference. Without loss of generality, let σϕ = ξϕ − ξref
ϕ ,

ξϕ(φ, φ̇) = Gϕφ + φ̇, Gϕ > 0, rank(Gϕ) = m, and ξref
ϕ =

0. The derivative σ̇ϕ can be expressed as

σ̇ϕ = JϕM−1(τ − b − g) + (GϕJϕ + J̇ϕ)q̇. (18)

As discussed in Section III-A, the torque can be expressed
as τ = NT

ϕ τ 0 + JT
ϕfϕ where the second component should be

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19, 2008 at 23:31 from IEEE Xplore.  Restrictions apply.



3336 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 9, SEPTEMBER 2008

selected to maintain system constraints. By substituting τ =
NT

ϕ τ 0 + JT
ϕfϕ into (18), one can derive

σ̇ϕ = JϕM−1JT
ϕfϕ − JϕM−1(b + g) + (GϕJϕ + J̇ϕ)q̇.

(19)

Let us rewrite (19) in the form

σ̇ϕ = f ∗ϕ + dϕ, f ∗ϕ = JϕM−1JT
ϕf

dϕ = −JϕM−1(b + g) + (GϕJϕ + J̇ϕ)q̇. (20)

The exponential stability will be enforced if transients satisfy
σ̇ϕ = −Dϕσϕ, Dϕ > 0 and, thus, if control is selected as

f ∗ϕ = −dϕ − Dϕσϕ. (21)

By replacing real disturbance in (21) by its estimated value, the
closed-loop dynamics can be expressed as

σ̇ϕ + Dϕσϕ = φ̈ + (Gϕ + Dϕ)φ̇ + GϕDϕφ

=pϕ = dϕ − d̂ϕ. (22)

The error due to the disturbance estimation (dϕ − d̂ϕ) will
be bounded if the estimation error is bounded. From f ∗ϕ =
−d̂ϕ − Dϕσϕ and f ∗ϕ = JϕM−1JT

ϕfϕ, the control torque can
be calculated as

JT
ϕfϕ = −JT

ϕ

(
JϕM−1JT

ϕ

)−1
(d̂ϕ + Dϕσϕ). (23)

By inserting τ = NT
ϕ τ 0 + JT

ϕfϕ and (23) into (13), the
unconstrained motion of the system can be determined as

Mq̈ + b + g =NT
ϕτ 0 + JT

ϕ

(
JϕM−1JT

ϕ

)−1
JϕM−1(b + g)

− JT
ϕ

(
JϕM−1JT

ϕ

)−1

×
(
(GϕJϕ + J̇ϕ)q̇ + Dϕσϕ

)
. (24)

This motion is very similar to (16). The difference is related
to the enforcement of the transient (22). The component NT

ϕτ 0

could be synthesized to impose desired behavior of the con-
strained system as long as this behavior is not in conflict with
the constraints.

C. Task Control

Consider a problem of designing control for system (13)
such that the task vector xT

T = [x1(q) . . . xk(q) ] tracks
its smooth reference xref

T . Similar to the case of enforcing
virtual constraint discussed in previous section, the task control
involves finding a control that guarantees the sliding-mode
existence in manifold

SxT =
{
q, q̇ : σxT

(
ξxT (xT , ẋT ), ξref

xT

)
= 0

}
(25)

where ξxT (xT ẋT ), ξref
xT stand for (k × 1) configuration vec-

tor and its reference, respectively. Let ξxT = GxT xT + ẋT ,
GxT > 0, rankGxT = k, ξref

xT = Gϕxref
T + ẋref

T , and σxT =

ξxT − ξref
xT . The time derivative of σxT with JxT = ∂xT /∂q,

rank(JxT ) = k becomes

σ̇xT =JxT M−1(τ−b−g)+(GxT JxT +J̇xT )q̇−ξ̇
ref

xT .
(26)

Since rank(JxT ) = k < n, the torque can be expressed in the
form τ = JT

xT fxT + NT
xT τ 0, where NT

xT is the projection
matrix such that term NT

xT τ 0 does not influence the projection
of the system motion into manifold (25). Now, (26) can be
expressed as

σ̇xT =
(
JxT M−1JT

xT

)
fxT + JxT M−1NT

xT τ 0

− JxT M−1(b + g) + (GxT JxT + J̇xT )q̇ − ξ̇
ref

xT .

(27)

By taking NT
xT =(I−JT

xT J̃T
xT ) and J̃T

xT =(JT
xT M−1JT

xT
T)−1

JT
xT M−1, the term JxT M−1NT

xT τ 0 = 0; thus, it does not
influence motion (27). The structure of the inverse is the same
as the one obtained for constrained system (13). The same
structure of inverse is obtained in [17] as a result of the kinetic
energy minimization.

The selection of control can follow the same steps as in the
case of constrained systems. One can rewrite (27) as

σ̇xT = f ∗xT + dxT , f ∗xT =
(
JxT M−1JT

xT

)
f

dxT = −JxT M−1(b + g)

+ (GxT JxT + J̇xT )q̇ − ξ̇
ref

xT . (28)

By selecting the task control torque in the form

JT
xT fxT =−JT

xT

(
JxT M−1JT

xT

)−1
(d̂xT +DxT σxT ) (29)

where d̂xT is the estimation of disturbance dxT , closed-loop
transient is determined as

σ̇xT + DxT σxT = ẍT + (GxT + DxT )ẋT + GxT DxT xT

=pxT . (30)

The term pxT = dxT − d̂xT is the disturbance estimation
error. Transient (30) has the same form as (26) obtained for
constrained system; thus, full symmetry between the control
of constrained motion and the task control is demonstrated.
By inserting τ = JT

xT fxT + NT
xT τ 0 and (30) into (13), the

remaining part of the motion of the system can be deter-
mined as

Mq̈ + b + g=NT
ϕτ 0 + JT

xT

(
JxT M−1JT

xT

)−1

× JxT M−1(b + g) − JT
xT

(
JxT M−1JT

xT

)−1

×
(
(GxT JxT + J̇xT )q̇ + DxT σxT

)
. (31)

D. Task Control for Constrained Systems

Let us now discuss the task control problem for system
(13) while constraining the constraints. That effectively means
controlling system (16) or (24) in such a way that the desired
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task is achieved while constraints φ(q) = 0 ∈ �m with con-
straint matrix [∂φ(q)/∂q] = Jϕ ∈ �m×n are maintained. The
dimension of the null space is l = n − m, and one can define
l = n − m independent tasks for the system in such a way that
in the overall system, there is no conflict between the task
and the constraints. Let the task vector be required to track
its smooth reference xref

T ∈ �l. The velocity vector associated
with the task can be expressed as ẋT = [∂xT (q)/∂q]q̇ =
JxT q̇, where JxT ∈ �l×n is assumed to have rank(JxT ) = l.
Let the force vector associated with the task be fxT ∈ �(n−m),
and then, the torque can be expressed as τ = (JxT Nφ)TfxT +
JT

ϕfφ, NT
ϕ = (I − JT

ϕ J̃T
ϕ), and J̃T

ϕ = (JϕM−1JT
ϕ)−1JϕM−1.

The control input should be found to enforce sliding-mode
motion in manifold

SxT =
{
q, q̇ : σxT

(
ξT (xT , ẋT ), ξref

T

)
= 0

}
(32)

where ξT (xT ẋT ), ξref
T stand for ((n − m) × 1) configura-

tion vector and its reference. This problem is the same as
the task control discussed in the previous section. The only
change is that now, Jacobian matrix should take into account
the constraints, and it can be expressed as JT = JxT Nφ.
By selecting configuration of the system related to the task
as ξT = GT xT + ẋT , GT > 0, ξref

T = GT xref
T + ẋref

T , and
rank(GT ) = l, the projection of the system with physical con-
straints (14) in manifold (32) can be expressed in the following
form:

σ̇T = JT M−1
(
τ − b − g + JT

ϕλ
)

+ (GT JT + J̇T )q̇ − ξ̇
ref

T . (33)

Since rank(JT ) = l < n, the torque can be expressed in the
form τ = NT

ϕJT
xT fxT + JT

ϕfφ, and (33) can be rewritten as

σ̇T =
(
JT M−1JT

T

)
fxT + JT M−1JT

ϕ(fϕ + λ)

−JT M−1(b + g) + (GT JT + J̇T )q̇ − ξ̇
ref

T . (34)

The term JT M−1JT
ϕ(fϕ + λ) = JxT NϕM−1JT

ϕ(fϕ +
λ) = 0; thus, (34) does not depend on the constraint force and
can be expressed in the following form:

σ̇T = f ∗T + dT , f ∗T =
(
JT M−1JT

T

)

dT = −JT M−1(b + g) + (GT JT + J̇T )q̇ − ξ̇
ref

T . (35)

This structure has the same form as (28); thus, the control
issues can be solved in the same way. By selecting the task
control torque as

τT = JT
T

(
JT M−1JT

T

)−1
(d̂T + DT σT ) (36)

where d̂T is the estimation of disturbance dT , and the task
closed-loop transient is determined as

σ̇T + DT σT = ẍT + (GT + DT )ẋT + GT DT xT

=dT − d̂T (37)

the constrained motion is the same as in (22)

σ̇ϕ + Dϕσϕ = φ̈ + (Gϕ + Dϕ)φ̇ + GϕDϕφ

=pϕ = dϕ − d̂ϕ. (38)

Similarly, control can be obtained for system (13) with
virtual constraints.

Motion (37) with σT ∈ �n−m=l is describing (n − m) dy-
namic system, and (38) with σϕ ∈ �m is describing an m-
dimensional dynamics; thus, the overall motion is on the order
of (n − m) + m = n. Both (37) and (38) do not depend on the
parameters of the system and are defined by the design parame-
ters. The control input that enforces the constraint and the task
has the same structure, and the control error depends on the
equivalent control or disturbance estimation error. Equations
(37) and (38) are similar to those that can be obtained under
disturbance compensation and PD controller [18], [19].

Presented results show that control of multibody mechanical
systems can be designed in the sliding mode framework by
partitioning the system into blocks of joints associated with
certain function of the system. The partition may depend on the
evolution of system in time. The full analysis of the possibilities
is out of the framework of this paper.

E. Example of Bilateral Systems Control

Behavior of an ideal bilateral system requires the tracking of
the master position by the slave and the forces on master and
slave side to be equal but with opposite signs [20], [21]. As-
sume single DOF systems Si : miẍi + ni(xi, ẋi) = fi − giext,
i = m, s, playing role of the master (index m) and the slave
(index s). The interaction force with environment on the slave
side is giext. Let α be the position scaling coefficient and β
be the force scaling coefficient. The force sensed by human
operator is Fm = Zmxm = Cmxm + Qmẋm, where Zm =
Cm + Qms stands for the impedance of a human operator. The
coefficients Qm and Cm can be selected so that impedance
perceived by the human operator is shaped in order to give a
feeling of a virtual tool in operator’s hand. Let ΦT

B = [ ζx ζF ]
be the task vector with ζx standing for position tracking error
and ζF standing for force tracking error. The bilateral system
operational conditions can be met if the sliding-mode motion is
enforced on manifold

SB =
{
(xm,xs) : ξB(ΦB) − ξref

B (t) = σB = 0
}

. (39)

The components of the function vector can be defined
as ζx = xm − αxs and ζF = Zmxm + βgsext, and the cor-
responding sliding mode manifolds can be defined in the
following way:

Sx =
{

(xm, xs) : Qxξ̇x + Cxξx = σx = 0
}

SF = {(xm, xs) : Zmxm + βgsext

= CmεF + Qmε̇F

− (Cmxs + Qmẋs − βgsext)

= σF = 0} (40)
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Fig. 2. Experimental system for bilateral control. Master side is on the left,
and slave side is on the right part of the image.

εF = xm + xs stands for the control error. The projection of
the system motion in sliding mode manifolds Sx and SF can be
described by

σ̇x = fx − dx

σ̇F = fF − dF

fx = Qx(fm/mm − αfs/ms)

fF = Qm(fm/mm − βfs/ms)

dx = (nm/mm − α(ns + gsext)/ms) + Cxε̇x

dF = (nm/mm + (ns + gsext)/ms)

+ ((Qmẍs + Cmẋs) − ġsext) . (41)

The formulation of the control problem in (41) is the same as
the one described in the previous section—for the task control
in constrained system, and thus, the selection of control inputs
fx and fF follows the same procedure. Mapping back to fm

and fs can be found in (41).
For verification, experimental system consists of the x−y

parallel manipulator with Faulhaber 2642 012 CR series motors
as a master side device and the Cartesian linear microstage with
PI M-232.17 actuators in x- and y-directions as a slave device.
The actuators have a gear ratio of 1:1000, and the position
is measured by encoders with 512 ppr. The dSPACE 1103
real-time controller with a 100-µs measurement sampling rate
and a 1-ms control output sampling rate is used. This allows
averaging of the measured output. Structure of the overall
system is shown in Fig. 2. The position is scaled by factor
xm/xs = (20/3). The force is not scaled. The forces on the
slave system are decoupled (due to the kinematical structure).
On the master side, the relation between forces Fx, Fy and
torques is nonlinear.

The controllers on the master side (force control) and on
the slave side (position tracking and force limit) are de-
signed, as presented in Section III. The sliding manifolds are
selected as (Qmε̇F + CmεF ) − ((Qmẋs + Cmxs) − βFs) =
σF , εF = xm + xs, for force control and as Qxε̇x + Cxεx =
σx, εx = xm − αxs, for position tracking. Parameters of the
controller are Qm = 25, Cm = 5000, α = (20/3), and β = 1.
The x−y motion of the master and slave systems is shown in

Fig. 3. Position tracking in the master and slave systems in x−y plane.

Fig. 3. The real slave position and the scaled master position
are depicted in order to be able to compare them more clearly.

IV. CONCLUSION

In this paper, application of the SMC in the control of
multibody mechanical systems is discussed. The approach leads
to a unified formulation of the control of constrained systems
and the task control. It has been shown that the same approach
can be used in controlling systems in interaction, establishing
desired functional relation between systems, and allowing the
application of the same framework to bilateral and “function
control” systems. This allows one to use the same structure
of the controller for all tasks. The structure of the controller
is selected to fulfill Lyapunov stability criteria and enforce the
sliding mode motion on the sliding mode manifold. The real-
ization of the SMC in the discrete-time framework is discussed,
and it is shown that under the proposed control, the motion
of the system remains within the boundary layer on the order
of o(T 2). Experiments on high-precision PZT-based system
with a nonlinear gain and on the bilateral control system are
shown.
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Asif S̆abanović (M’85–SM’03) received the B.S.,
M.S., and Dr.Sci. degrees in electrical engineer-
ing from the University of Sarajevo, Bosnia and
Herzegovina, in 1970, 1975, and 1979, respectively.

Previously, he had been with the University of
Sarajevo. He was a Visiting Professor with Caltech,
Pasadena, CA; Keio University, Yokohama, Japan;
and Yamaguchi University, Yamaguchi, Japan. He
was the Head of the CAD/CAM and Robotics De-
partment, Tubitak–MAM, Turkey. He is currently
with Sabanci University, Istanbul, Turkey. His fields

of research interest include power electronics, sliding-mode control, motion
control, and mechatronics.
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