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1 Faculty of Engineering and Natural Sciences,
Sabancı University, Tuzla, 34956, İstanbul, Turkey
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Abstract. The joint linear complexity of multisequences is an impor-
tant security measure for vectorized stream cipher systems. Extensive re-
search has been carried out on the joint linear complexity of N-periodic
multisequences using tools from Discrete Fourier transform. Each N-
periodic multisequence can be identified with a single N-periodic se-
quence over an appropriate extension field. It has been demonstrated
that the linear complexity of this sequence, the so called generalized joint
linear complexity of the multisequence, may be considerably smaller than
the joint linear complexity, which is not desirable for vectorized stream ci-
phers. Recently new methods have been developed and results of greater
generality on the joint linear complexity of multisequences consisting
of linear recurring sequences have been obtained. In this paper, using
these new methods, we investigate the relations between the generalized
joint linear complexity and the joint linear complexity of multisequences
consisting of linear recurring sequences.

1 Introduction

A sequence S = s0, s1, . . . with terms in a finite field Fq with q elements (or over
the finite field Fq) is called a linear recurring sequence over Fq with characteristic
polynomial

f(x) =
d∑

i=0

cix
i ∈ Fq[x]

of degree d, if
d∑

i=0

cisn+i = 0 for n = 0, 1, . . . .

Without loss of generality we can always assume that f is monic, i.e. cd = 1. In
accordance with the notation in [4] we denote the set of sequences over Fq with
characteristic polynomial f by M(1)

q (f). Let S be a linear recurring sequence over

S.W. Golomb et al. (Eds.): SETA 2008, LNCS 5203, pp. 266–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Generalized Joint Linear Complexity of Linear Recurring Multisequences 267

Fq, i.e. S ∈ M(1)
q (f) for some f ∈ Fq[x], then the minimal polynomial of S is

defined to be the (uniquely determined) monic polynomial d ∈ Fq[x] of smallest
degree such that S ∈ M(1)

q (d). We remark that then d is a divisor of f . The
degree of d is called the linear complexity L(S) of the sequence S. Alternatively
the linear complexity of a recurring sequence over Fq can be described as the
length L of the shortest linear recurring relation with coefficients in Fq the
sequence satisfies.

The concept of linear complexity is crucial in the study of the security of
stream ciphers [13,14,15]. A keystream used in a stream cipher must have a high
linear complexity to resist an attack by the Berlekamp-Massey algorithm [7].

Motivated by the study of vectorized stream cipher systems (see [2,5]) we con-
sider the set M(m)

q (f) of m-fold multisequences over Fq with joint characteristic
polynomial f , i.e. m parallel sequences over Fq each of them being in M(1)

q (f).
The joint minimal polynomial of an m-fold multisequence S = (σ1, σ2, . . . , σm) is
then defined to be the (uniquely determined) monic polynomial d of least degree
which is a characteristic polynomial for all sequences σr, 1 ≤ r ≤ m. The joint
linear complexity L

(m)
q (S) of S is then the degree of d.

Extensive research has been carried out on the average behaviour of the lin-
ear complexity of a random sequence S and a random m-fold multisequence S

in M(1)
q (f) and M(m)

q (f), respectively, for the special case that f = xN − 1.
Then M(1)

q (f) and M(m)
q (f) are precisely the sets of N -periodic sequences and

N -periodic m-fold multisequences over Fq. For the case of single N -periodic se-
quences we can refer to [1,9,10], for the case of N -periodic multisequences we
refer to [3,11]. For the N -periodic case discrete Fourier transform turned out to
be a convenient research tool.

Recently Fu, Niederreiter and Özbudak [4] developed new methods which
made it possible to obtain results of greater generality. In fact in [4] expected
value and variance for a random multisequence S ∈ M(m)

q (f) are presented for
an arbitrary characteristic polynomial f .

Let S = (σ1, σ2, . . . , σm) ∈ M(m)
q (f) be an m-fold multisequence over Fq, and

for r = 1, . . . , m let sr,i ∈ Fq denote the ith term of the rth sequence of S, i.e.
σr = sr,0sr,1sr,2 . . . .

Since the Fq-linear spaces F
m
q and Fqm are isomorphic, the multisequence S

can be identified with a single sequence S having its terms in the extension field
Fqm , namely S = s0, s1, . . . with

sn = ξ1s1,n + · · · + ξmsm,n ∈ Fqm , n ≥ 0, (1)

where ξ = (ξ1, . . . , ξm) is an ordered basis of Fqm over Fq. It is clear that S
depends on the m-fold multisequence S ∈ M(m)

q (f) and the ordered basis ξ.
Therefore we also denote S as S(S, ξ).

Let Lqm,ξ(S) be the linear complexity of the sequence S = S(S, ξ) ∈ M(1)
qm(f).

In accordance with [8] we call Lqm,ξ(S) the generalized joint linear complexity
of S (depending on ξ). The generalized joint linear complexity Lqm,ξ(S) may be



268 W. Meidl and F. Özbudak

considerably smaller than L
(m)
q (S) which is clearly not desirable for vectorized

stream ciphers.
In [8] joint linear complexity and generalized joint linear complexity have been

compared for the case of N -periodic multisequences. In particular conditions
on the period have been presented for which generalized joint linear complexity
always equals joint linear complexity, and a tight lower bound for the generalized
joint linear complexity of an N -periodic multisequence with a given joint linear
complexity has been established. As investigation tool a generalized discrete
Fourier transform has been utilized. However this method is only applicable for
the case of periodic sequences. In this article we will use the new approach and
the methods of [4] to obtain similar results as in [8] for the much more general
case of multisequences in M(m)

q (f) with arbitrary characteristic polynomial f .

2 Preliminaries

Let S = (σ1, σ2, . . . , σm) ∈ M(m)
q (f) be an m-fold multisequence with char-

acteristic polynomial f , and suppose that σr = sr,0sr,1sr,2 . . ., 1 ≤ r ≤ m.
Then there exist unique polynomials gr ∈ Fq[x] with deg(gr) < deg(f) and
gr/f = sr,0 + sr,1x + sr,2x

2 . . ., 1 ≤ r ≤ m. By [12, Lemma 1] this describes a
one-to-one correspondence between the set M(m)

q (f) and the set of m-tuples of
the form

(
g1
f , g2

f , . . . , gm

f

)
, gr ∈ Fq[x] and deg(gr) < deg(f) for 1 ≤ r ≤ m.

If S ∈ M(m)
q (f) corresponds to (g1/f, g2/f, . . . , gm/f) then the joint mini-

mal polynomial d of S is the unique polynomial in Fq[x] for which there exist
h1, . . . , hm ∈ Fq[x] with gr/f = hr/d for 1 ≤ r ≤ m and gcd(h1, . . . , hm, d) = 1.
The joint linear complexity of S is then given by L

(m)
q (S) = deg(f)−

deg(gcd(g1, g2, . . . , gm, f)).
Let again S ∈ M(m)

q (f) correspond to (g1/f, g2/f, . . . , gm/f), then it is easily
seen that the single sequence S ∈ M(1)

qm(f) defined as in (1) corresponds to the
1-tuple (G/f) with

G = g1ξ1 + g2ξ2 + · · · + gmξm.

The minimal polynomial of S is then D = f/ gcd(G, f) ∈ Fqm [x] and Lqm,ξ(S) =
deg(f) − deg(gcd(G, f)), where the greatest common divisor is now calculated
in Fqm [x].

It is clear that divisibility of polynomials in Fq[x] and Fqm [x] plays a crucial
role. We will use the following two propositions on divisibility.

Proposition 1. Let m be a positive integer and r ∈ Fq[x] be an irreducible
polynomial. Let u = gcd(m, deg(r)). Then the canonical factorization of r into
irreducibles over Fqm is of the form

r = r1r2 . . . ru,

where r1, . . . , ru ∈ Fqm [x] are distinct irreducible polynomials with
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deg(r1) = · · · = deg(ru) =
deg(r)

u
.

Proof. This is just a restatement of [6, Theorem 3.46]. We refer to [6] for a
proof. �

Proposition 2. Let m be a positive integer, let ξ = (ξ1, . . . , ξm) be an ordered
basis of Fqm over Fq, and let h1, . . . , hm ∈ Fq[x] be arbitrary polynomials. For
h ∈ Fq[x], there exists s ∈ Fqm [x] such that

sh = ξ1h1 + · · · + ξmhm

if and only if there exist s1, . . . , sm ∈ Fq[x] such that

sih = hi for 1 ≤ i ≤ m.

Proof. For a polynomial s ∈ Fqm [x] let s1, . . . , sm ∈ Fq[x] be the uniquely deter-
mined polynomials in Fq[x] such that

s = ξ1s1 + · · · + xmsm.

Then

sh = ξ1s1h + · · · + xmsmh

is the unique representation in the basis ξ of the polynomial sh and the claim
immediately follows. �

Finally we recall an important definition from [4]. For a monic polynomial f ∈
Fq[x] and a positive integer m we let Φ

(m)
q (f) denote the number of m-fold

multisequences over Fq with minimal joint polynomial f . Note that Φ
(m)
q (f) can

be considered as a function on the set of monic polynomials in Fq[x]. In [4,
Section 2] several important properties of Φ

(m)
q (f) have been derived, which we

will use in this paper. We refer to [4] for further details.

3 Generalized Joint Linear Complexity

In this section we obtain our main results and we give illustrative examples. The
following three lemmas will be used in the proof of the next theorem.

Lemma 1. For an integer n ≥ 2, let Hn(x) be the real valued function on R

defined by

Hn(x) = xn − 1 − (x − 1)n.

For a real number x > 1, we have Hn(x) > 0.



270 W. Meidl and F. Özbudak

Proof. We prove by induction on n. The case n = 2 is trivial and hence we
assume that n ≥ 3 and the lemma holds for n − 1. For the derivative we have

dHn

dx
= nxn−1 − n(x − 1)n−1 = n (Hn−1(x) + 1) . (2)

By the induction hypothesis we have that Hn−1(x) > 0, for x > 1. Therefore
using (2) we complete the proof. �

Lemma 2. Let q ≥ 2 be a prime power. Let a and n ≥ 2 be positive integers.
Then

1 − 1
qna

>

(
1 − 1

qa

)n

.

Proof. Let Hn(x) be the real valued function on R defined in Lemma 1. Note
that qa > 1 and

Hn (qa) = qna − 1 − (qa − 1)n
.

Therefore using Lemma 1 we obtain that

qna − 1 > (qa − 1)n
. (3)

Dividing both sides of (3) by qna we complete the proof. �

Lemma 3. Let r ∈ Fq[x] be an irreducible polynomial. For positive integers m
and e we have

Φ
(m)
q (re) = Φ

(1)
qm(re) if gcd(deg(r), m) = 1, and

Φ
(m)
q (re) > Φ

(1)
qm(re) if gcd(deg(r), m) > 1.

Proof. It follows from [4, Lemma 2.2, (iii)] that

Φ(m)
q (re) = qme deg(r)

(
1 − 1

qm deg(r)

)
. (4)

If gcd(deg(r), m) = 1, then, by Proposition 1, r is irreducible over Fqm as well
and hence using [4, Lemma 2.2, (iii)] again we obtain that Φ

(1)
qm(re) = Φ

(m)
q (re).

Assume that u := gcd(deg(r), m) > 1. It follows from Proposition 1 that the
canonical factorization of r into irreducibles over Fqm is of the form

r = t1t2 . . . tu,

and deg(t1) = · · · = deg(tu) = deg(r)/u. Using [4, Lemma 2.2, (iii)] we have

Φ
(1)
qm(re) = qme deg(r)

(
1 − 1

qm deg(r)/u

)u

. (5)

Therefore using Lemma 2, (4) and (5) we complete the proof. �
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The following theorem determines the exact conditions on m and f ∈ Fq[x] for
which the joint linear complexity and the generalized joint linear complexity on
M(m)

q (f) are the same.

Theorem 1. Let m be a positive integer, let f ∈ Fq[x] be a monic polynomial
with deg(f) ≥ 1, let

f = re1
1 re2

2 . . . rek

k

be the canonical factorization of f into irreducibles, and let ξ = (ξ1, . . . , ξm) be
an ordered basis of Fqm over Fq. Then we have

L(m)
q (S) = Lqm,ξ(S) for each S ∈ M(m)

q (f),

if and only if

gcd (m, deg(ri)) = 1, for i = 1, 2, . . . , k. (6)

Proof. We first assume that gcd(m, deg(ri)) = 1 for i = 1, 2, . . . , k. Let S =
(σ1, σ2, . . . , σm) be an arbitrary multisequence in M(m)

q (f), and let g1, g2, . . . , gm

be the polynomials in Fq[x] such that S corresponds to the m-tuple
(g1/f, g2/f, . . . , gm/f) as described in Section 2. The joint minimal polynomial
of S is then the (uniquely determined) monic polynomial d ∈ Fq[x] dividing f
such that

hi/d = gi/f, for i = 1, 2, . . . , m, and gcd(h1, h2, . . . , hm, d) = 1, (7)

for certain polynomials h1, h2, . . . , hm in Fq[x]. The sequence S = S(S, ξ) defined
as in Section 1 depending on S and ξ then corresponds to

G

f
=

ξ1g1 + ξ2g2 + · · · + ξmhm

f
=

ξ1h1 + ξ2h2 + · · · + ξmhm

d
.

We have to show that d is also the minimal polynomial of S ∈ M(1)
qm(f), or

equivalently that d and ξ1h1 + ξ2h2 + · · ·+ ξmhm are relatively prime in Fqm [x].
From (6) and Proposition 1 the canonical factorizations of f are the same over
both fields, Fq and Fqm . Consequently this also applies to the divisor d of f . If
d and ξ1h1 + ξ2h2 + · · · + ξmhm are not relatively prime in Fqm [x] then there
exists a common factor in Fq[x] which contradicts (7) by Proposition 2.

We show the converse with a simple counting argument. Let S1 and S2

be distinct multisequences in M(m)
q (f) both having minimal polynomial f . If

L
(m)
q (S) = Lqm,ξ(S) for all elements S ∈ M(m)

q (f), then the distinct sequences
S1,S2 ∈ M(1)

qm(f) corresponding to S1 and S2, respectively, will also have f as
their minimal polynomial. By [4, Theorem 4.1] the numbers Φ

(m)
q (f) and Φ

(1)
qm (f)

of elements in M(m)
q (f) and M(1)

qm(f), respectively, with minimal polynomial f
are given by

Φ(m)
q (f) =

k∏

i=1

Φ(m)
q (rei

i ) and Φ
(1)
qm(f) =

k∏

i=1

Φ
(1)
qm(rei

i ).
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With Lemma 3 we see that Φ
(1)
qm (f) < Φ

(m)
q (f) if condition (6) does not hold,

which completes the proof. �

Remark 1. For each S ∈ M(m)
q (f), we always have

Lqm,ξ(S) ≤ L(m)
q (S).

In Theorem 2 below we also derive tight lower bounds on Lqm,ξ(S) (see also
Proposition 3 below).

Remark 2. Theorem 1 implies that the choice of f as a product of powers of
irreducible polynomials r1, r2, . . . , rk such that deg(r1) = · · · = deg(rk) is a
(large) prime guarantees that generalized joint linear complexity is not smaller
than joint linear complexity for any multisequence S ∈ M(m)

q (f) if m < deg(ri).

The following theorem gives a lower bound for the generalized joint linear com-
plexity of a multisequence S ∈ M(m)

q (f) with given minimal polynomial d.

Theorem 2. Let f be a monic polynomial in Fq[x] with canonical factorization
into irreducible monic polynomials over Fq given by

f = re1
1 re2

2 · · · rek

k ,

and let S ∈ M(m)
q (f) be an m-fold multisequence over Fq with joint minimal

polynomial
d = ra1

1 ra2
2 · · · rak

k , 0 ≤ ai ≤ ei for 1 ≤ i ≤ k.

The generalized joint linear complexity Lqm,ξ(S) of S is then lower bounded by

Lqm,ξ(S) ≥
k∑

i=1

ai
deg(ri)

gcd(deg(ri), m)
.

Proof. As the multisequence S ∈ M(m)
q (f) has joint minimal polynomial d, we

can uniquely associate S with an m-tuple
(

h1
d , h2

d , . . . , hm

d

)
with ht ∈ Fq[x],

deg(ht) < deg(d) for 1 ≤ t ≤ m, and gcd(h1, . . . , hm, d) = 1. If ai > 0 then ri

does not divide all of the polynomials h1, . . . , hm. Hence by Proposition 2 the
polynomial ri does not divide the polynomial H = h1ξ1 + h2ξ2 + · · · + hmξm

over the extension field Fqm . Therefore if ri = ti,1ti,2 · · · ti,ui is the canonical fac-
torization of ri over Fqm , where ui = gcd(deg(ri), m) and deg(ti,j) = deg(ri)/ui

by Proposition 1, at least for one j, 1 ≤ j ≤ ui, we have ti,j � H . Conse-
quently tai

i,j and H are relatively prime in Fqm [x] which yields the lower bound
for Lqm,ξ(S). �

The following proposition shows that the lower bound of Theorem 2 is tight.

Proposition 3. Let f be a monic polynomial in Fq[x] with canonical factoriza-
tion into irreducible monic polynomials over Fq given by

f = re1
1 re2

2 · · · rek

k .
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Let a1, a2, . . . , ak be integers with 0 ≤ ai ≤ ei for 1 ≤ i ≤ k. Let m ≥ 2
be an integer and ξ = (ξ1, . . . , ξm) be an ordered basis of Fqm over Fq. There
exists an m-fold multisequence S ∈ M(m)

q (f) over Fq such that its joint minimal
polynomial d is

d = ra1
1 ra2

2 . . . rak

k ,

and its generalized joint linear complexity Lqm,ξ(S) is

Lqm,ξ(S) =
k∑

i=1

ai
deg(ri)

gcd(deg(ri), m)
.

Proof. By reordering r1, . . . , rk suitably, we can assume without loss of gener-
ality that there exists an integer l, 1 ≤ l ≤ k, with gcd(m, deg(ri)) = ui ≥ 2
for 1 ≤ i ≤ l and gcd(m, deg(ri)) = 1 for l + 1 ≤ i ≤ k. Indeed otherwise
gcd(m, deg(ri)) = 1 for 1 ≤ i ≤ k and hence the result is trivial by Theorem 1.
Using Proposition 1 we obtain that the canonical factorizations of ri, 1 ≤ i ≤ l,
into irreducibles over Fqm are of the form

ri = ti,1ti,2 . . . ti,ui .

Let S be the sequence in M(1)
qm(f) corresponding to the polynomial

G =
f

d

l∏

i=1

(ti,2 . . . , ti,ui)
ai ∈ Fqm [x]

and let h1, h2, . . . , hm ∈ Fq[x] be the uniquely determined polynomials in Fq[x]
such that

l∏

i=1

(ti,2 . . . , ti,ui)
ai = ξ1h1 + ξ2h2 + · · · + ξmhm. (8)

Let S = (σ1, . . . , σm) ∈ M(m)
q (f) be the m-fold multisequence such that the

sequence σi corresponds to gi = hif/d ∈ Fq[x] for 1 ≤ i ≤ m. We observe that
we have S = S(S, ξ) and

Lqm,ξ(S) =
l∑

i=1

ai deg(ti,1) +
k∑

i=l+1

ai deg(ri).

Moreover d is the joint minimal polynomial of S. Indeed, otherwise using (8) we
obtain that there exists 1 ≤ i ≤ k with

ri |
l∏

i=1

(ti,2 . . . , ti,ui)
ai in Fqm [x].

This is a contradiction, which completes the proof. �
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In the following corollary we consider
L

(m)
q (S) − Lqm,ξ(S)

L
(m)
q (S)

, the difference of joint

linear complexity and generalized joint linear complexity in relation to the value
for the joint linear complexity. We give a uniform and tight upper bound which
applies to arbitrary nonzero multisequences in M(m)

q (f).

Corollary 1. Let m ≥ 2 be an integer and f be a monic polynomial in Fq[x]
with canonical factorization into irreducible monic polynomials over Fq given by

f = re1
1 re2

2 · · · rek

k

with

umax = max{gcd(deg(ri), m) : 1 ≤ i ≤ k}.

Then for an arbitrary nonzero multisequence S ∈ M(m)
q (f) and an ordered basis

ξ of Fqm over Fq we have

L
(m)
q (S) − Lqm,ξ(S)

L
(m)
q (S)

≤ 1 − 1
umax

. (9)

Moreover the bound in (9) is tight.

Proof. For any nonzero m-fold multisequence S ∈ M(m)
q (f), its joint minimal

polynomial d is of the form

d = ra1
1 ra2

2 . . . rak

k ,

where 0 ≤ ai ≤ ei are integers and (a1, . . . , ak) �= (0, . . . , 0). Therefore, using
Theorem 2, for its joint linear complexity L

(m)
q (S) and its generalized joint linear

complexity Lqm,ξ(S) we obtain that

L(m)
q (S) =

k∑

i=1

ai deg(ri), and Lqm,ξ(S) ≥
k∑

i=1

ai
deg(ri)

gcd(deg(ri), m)
. (10)

It follows from the definition of umax that

1
umax

ai deg(ri) ≤ ai
deg(ri)

gcd(deg(ri), m)
(11)

for 1 ≤ i ≤ k. Combining (10) and (11) we obtain (9). Moreover let a1, . . . , ak

be integers such that

ai =
{

0 if gcd(deg(ri), m) �= umax,
�= 0 if gcd(deg(ri), m) = umax.

(12)

For integers a1, . . . , ak as in (12) we have equality in (11). Using Proposition 3 we
obtain an m-fold multisequence Sumax ∈ M(m)

q (f) such that we have equality for
Lqm,ξ(S) in (10), where the integers a1, . . . , ak are as in (12). Hence we conclude
that the bound in (9) is attained by Sumax , which completes the proof. �



Generalized Joint Linear Complexity of Linear Recurring Multisequences 275

Remark 3. If condition (6) is satisfied then (9) will be zero for all multisequences
S ∈ M(m)

q (f). As gcd(deg(ri), m) can at most be m the largest possible relative
distance between joint linear complexity and generalized joint linear complexity
of an m-fold multisequence is given by (m − 1)/m.

We give two examples illustrating our results.

Example 1. Let N , m be positive integers and consider the N -periodic m-fold
multisequences over Fq. Equivalently, let f = xN −1 ∈ Fq[x] and we can consider
the multisequences in M(m)

q (f). Let p be the characteristic of the finite field Fq

and N = pvn with gcd(n, p) = 1. Then we have xN − 1 = (xn − 1)pv

, and the
canonical factorization of xn − 1 in Fq[x] is given by

xn − 1 =
k∏

i=1

ri(x) with ri(x) =
∏

j∈Ci

(x − αj),

where C1, . . . , Ck are the different cyclotomic cosets modulo n relative to powers
of q and α is a primitive nth root of unity in some extension field of Fq. Let
S be an N -periodic m-fold multisequence over Fq with minimal polynomial
d = rρ1

1 rρ2
2 · · · rρk

k , where 0 ≤ ρi ≤ pv. Then using Theorem 2 we have

L(S) ≥
k∑

i=1

ρi
li

gcd(li, m)
, (13)

where li denotes the cardinality of the cyclotomic coset Ci. Equation (13) coin-
cides with the corresponding result in [8, Theorem 2].

Example 2. Let r1, . . . , rk ∈ Fq[x] be distinct irreducible polynomials and let
e1, . . . , ek be positive integers. For a positive integer m, let

f = re1
1 re2

2 . . . rek

k ,

and consider the multisequences in M(m)
q (f). It is not difficult to observe that

there exists a multisequence S ∈ M(m)
q (f) with joint linear complexity

L
(m)
q (S) = t if and only if t can be written as

t = i1 deg(r1) + i2 deg(r2) + · · · + ik deg(rk), (14)

where 0 ≤ i1 ≤ e1, . . . , 0 ≤ ik ≤ ek are integers. Let ξ = (ξ1, . . . , ξm) be an
ordered basis of Fqm over Fq. Let 0 ≤ i1 ≤ e1, . . . , 0 ≤ ik ≤ ek be chosen
integers. Consider the nonempty subset T (i1, . . . , ik) of M(m)

q (f) consisting of
S such that L

(m)
q (S) = t, where t is as in (14). Using the methods of this

paper we obtain that, among the multisequences in T (i1, . . . , ik), there exists a
multisequence S with generalized joint linear complexity Lqm,ξ(S) = t̃ if and
only if t̃ can be written as

t̃ = i1j1
deg(r1)

gcd(deg(r1), m)
+ i2j2

deg(r2)
gcd(deg(r2), m)

+ · · · + ikjk
deg(rk)

gcd(deg(rk), m)
,

where 1 ≤ j1 ≤ gcd(deg(r1), m), . . . , 1 ≤ jk ≤ gcd(deg(rk), m) are integers.
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Remark 4. The results above do not depend on the choice of the basis. How-
ever the generalized joint linear complexity actually depends on the basis. The
following simple example illustrates this fact.

Example 3. Let S = (σ1, σ2, σ3) be the 7-periodic 3-fold multisequence over F2

given by

σ1 = 1 0 0 1 0 1 1 · · ·
σ2 = 0 1 0 1 1 1 0 · · ·
σ3 = 0 0 1 0 1 1 1 · · · .

Let α ∈ F8 with α3 + α + 1 = 0. Consider the ordered bases ξ1 = (1, α, α2) and
ξ2 = (α, 1, α2 +1) of F8 over F2. The 7-periodic sequences over F8 obtained from
S using the bases ξ1 and ξ2 are

S1 := S (S, ξ1) = 1, α, α2, α + 1, α2 + α, α2 + α + 1, α2 + 1, · · · and
S2 := S (S, ξ2) = α, 1, α2 + 1, α + 1, α2, α2 + α, α2 + α + 1, · · · .

For the terms of S1 we have sn+1 = αsn, where n ≥ 0, and hence L8,ξ1
(S) = 1.

The first three terms of S2 are s0 = α, s1 = (α2 + 1)s0 and s2 = (α2 + 1)s1.
However for the third term of S2 we have s3 �= (α2+1)s2 and hence L8,ξ2

(S) > 1.
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