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ABSTRACT

STEREO BASED 3D HEAD POSE TRACKING USING
THE SCALE INVARIANT FEATURE TRANSFORM
Batu Akan

In this thesis a new stereo-based 3D head tracking technique, based on scale-
invariant feature transform (SIFT) features, that is robust to illumination changes is
proposed. Also two major tracking techniques, one based on normal flow constraints
(NFC) and a 3D registration-based method, based on iterative closest point (ICP)
algorithm, are reviewed and compared against the proposed technique. A 3D head
tracker is very important for many vision applications. The resulting tracker output
parameters can be used to generate a stabilized view of the face that can be used as
input to many existing 2D techniques such as facial expression analysis, lip reading,

eye tracking, and face recognition.

Our system can automatically initialize using a simple 2D face detector. We extract
salient points from the intensity images using SIFT features and match them be-
tween frames. Together with the depth image and the matched features we obtain
3D correspondences. Using the unit quaternion method, we recover the 3D motion
parameters. Our proposed method outperforms both NFC and ICP on translations;
and performs as good as NFC on rotations. Experimentally, the proposed system is
less likely to drift than NFC and ICP over long sequences and is robust to illumi-
nation changes. We present experiments to test the accuracy of our SIFT-based 3D

tracker on sequences of synthetic and real stereo images.



OZET

OLCEKTEN BAGIMSIZ OZNITELIK DONUSUMU KULLANARAK
STEREO KAMERA ILE UC BOYUTLU KAFA TAKIBI
Batu Akan

Bu tezde ii¢ boyutlu (3B) kafa takibi i¢in 6lgekten bagimsiz éznitelik dontigiimiine
(SIFT) dayali bir yontem Onerilmektedir. Onerilen yontemin, diizlem disi 6teleme
ve donmelere karsi giirbiiz oldugu belirlenmis ayni1 zamanda goriintiideki ani degisen
aydinlanma farklarindan da etkilenmedigi gozlenmigtir. Bunun yani sira optik
akig yontemine dayali, Normal Flow Constraint ve 3B cakistirma yontemi olan
tekrarh en yakin nokta algoritmasim (ICP) degerlendirdik ve énerdigimiz yontem
ile kargilagtirmasin1 yaptik. Kafa takibi, bir ¢ok bilgisayarla gérme uygulamas: icin
onemli bir stirectir. Eger kafanin ii¢ boyutlu uzaydaki yeri ve durusu bilinirse, yiiz
tanimasi, ifade analizi, dudak okumasi gibi problemleri, 3B kafa izleyicisi tarafindan

olugturulan dengelenmis imgeleri kullanarak ¢ézmek daha muhtemeldir.

Onerdigimiz sistem 2B bir yiiz sezicisi kullanarak ozisler bir bigimde baglamaktadir.
Birbirini takip eden video imgelerinde SIF'T oznitelik noktalar1 bulunur ve birbirlri
ile eglestirilir. Eslestirilen noktalar; derinlik bilgisi de kullanilarak 3B iligki kiimesi
olugturulur. Birim kuaterniyon yontemi ile 3B kat1 devinim hesaplanir. Onerdigimiz
SIFT yontemi otelemelerde NFC ve ICP yontemlerin daha iyi sonug verdi ve
donmelerde ise NFC benzer bir bagarim gosterdi. Ayni zamanda Onerilen yontem
uzun videolarda siiriiklenmeden daha az etkilenmekte ve zamana bagh aydinlanma
degisikliklerine gore giirbiizdiir. Onerilen SIFT tabanl yontemin basarisi sentetik
ve stereo kamera ile cekilmig gercek goriintiiler iizerinde denenip var olan diger

yontemlerle kargilagtimasi yapildi.



TABLE OF CONTENTS

ABSTRACT
OZET

LIST OF TABLES
LIST OF FIGURES

1 Introduction
1.1 Motivations . . . . . . . . ..
1.2 Related Work . . . . . . . . ..
1.3 Contributions . . . . . . . . . ...
1.4 Organization of the thesis . . . . . . ... ... ... ... ... ...

2 Normal flow constraint algorithm (NFC)
2.1 Brightness Constancy Constraint Equation . . . . . . .. .. ... ..
2.2 Depth Change Constraint Equation . . . . . . . ... ... ... ...
2.3 Orthographic Projection . . . . . . ... .. ... . ... ... ....
2.4 Shifting the World Coordinate System . . . . .. ... ... .. ...
2.5 Least Squares Solution . . . . . . .. ... ... ... ... ... ...

3 Iterative Closest Point Algorithm (ICP)
3.1 Motivation and Problem Definition . . . . . . .. .. ... ... ...
3.2 Closest Point Matching . . . . . ... ... .. ... ... ... ...,
321 Color. . . . . . .
3.2.2 Surface orientation . . . . .. .. ...
3.2.3 Performance optimization using kd-trees . . . . . .. ... ..

3.3 Best Transformation . . . . . . . . . . . . .

vi

1X

x1

10
11
11



3.3.1 Matching Centroids . . . . . . . ... ... ... ... ... ..
3.3.2 Quaternions . . . . . . . . . ...
3.3.3 Best Rotation . . . . . ... .. ...
3.3.4 Summary of quaternion method . . . . . . ... ... ... ..

3.4 Tteration Termination . . . . . . . . . . . . .
3.5 ICP Algorithm Overview . . . . . . . ... . ... ... ... .....

4 Stereo-based Head Pose Tracker using

the Scale Invariant Feature Transform

4.1 Scale Invariant Feature Transform . . . . . . . .. .. ... ... ...
4.1.1 Detection of scale-space extrema . . . . . . .. .. ... ....
4.1.2 Keypoint localization . . . . . . .. ... ... ... .. .. ..
4.1.3 Orientation Assignment . . . . . ... ... .. ... .....
4.1.4 Local Image Descriptor . . . . . . . . .. .. ... ... .. ..

4.2 Matching . . . . . . . .

4.3 Estimating Motion Parameters. . . . . . . . . . ... ... ... ...

5 Experimental Results

5.1 Tracker Structure . . . . . . . . . .. ...
5.1.1 Face Detection . . . . . .. .. ... ... ... ... ..
5.1.2 Model Building . . . . . ... ..o
5.1.3 Pose Parameters . . . . .. .. ... ... ... ... ...,
5.1.4 Pose Reseting . . . . . .. ... ...

5.2 System Evaluation . . . . ... ... ... 0oL
5.2.1 Test results over synthetic video . . . . . . .. .. .. ... ..
5.2.2 Polhemus Tracker . . . . . .. .. .. ... ... ...
5.2.3 General Performance of the Tracker on Real Data . . . . . . .
5.2.4 Performance Under Time Varying [llumination Changes
5.2.5 Performance Under Spatially Varying lllumination . . . . . . .

5.2.6 Performance Under Occlusion . . . . . . . . . . . . .. . ...

6 Summary and Conclusion

6.1 Future Work . . . . . . . . .

REFERENCES

viil

29
29
30
31
33
33
35
35

37
37
38
38
38
39
40
40
45
47
49
56
60

64
65

66



5.1
5.2
2.3
5.4
2.5

LIST OF TABLES

Computational complexity of the 3 tracking algorithms. . . . . . . . .
Performance results of the trackers over synthetic video sequences . .
Performance results of the trackers over real video sequences . . . . .
Performance results of the trackers under illumination changes. . . . .

Performance results of the trackers over sequences with occlusion.



1.1

3.1
3.2
3.3
3.4

4.1

4.2

4.3

4.4

0.1
5.2
5.3

5.4

2.5
2.6

LIST OF FIGURES

Application of 3D head tracking in a vehicle environment. . . . . . . 2
Influence of color or intensity on matching (taken from [1]) . . . . . . 15
Influence of surface normals on matching (taken from [1]) . . . . . . . 16
Example of a 2D kd-tree construction . . . . . . . ... ... ... .. 18
Block Diagram of ICP Algorithm . . . . . ... ... ... ... ... 28

Difference of Gaussians are computed from a pyramid of Gaussians.
Adjacent Gaussian images are subtracted to produce a difference of
Gaussian(DoG) images. . . . . . . . ... 32
Maxima and minima of the DoG images are detected by comparing
the pixel of interest by its 26 neighbors of the current and adjacent
scales. . .. L 32
SIFT Descriptor. For each pixel around the keypoint gradient magni-
tudes and orientations are computed. These samples are weighted by

a Gaussian and accumulated into 16 orientation histograms for the

16 subregions. . . . . . ... 34
Matching of keypoints . . . . . . . ... oo 35
Block diagram of the tracker system . . . . . . ... .. .. ... ... 37
Result of face detection and model extraction. . . . . .. ... ... 39

Sample video frames from computer generated sequences. The left

column shows intensity images and the right column shows corre-

sponding disparity image. . . . . . ... .. Lo 42
Head tracking results for synthetic images sequences. Each row rep-

resents tracking results at different frames . . . . . . . .. ... ... 43
Head pose estimation plots for synthetic image sequences. . . . . . . . 44

Camera and magnetic tracker coordinate systems . . . . . . .. ... 46



5.7
5.8

2.9

5.10

5.11

5.12

0.13

5.14

5.15

5.16

5.17
5.18

5.19

Head pose estimation plots for real image sequences. . . . . . . . ..
Intensity and depth images from time varying illumination change
sequence 1. . . . ..o
Head tracking results for time varying illumination change sequence
1. Each row represents tracking results at different frames: 0, 60, 90,
140, 180 . . . . o
Head pose estimation plots for time varying illumination change se-
quence 1 . . . ..o
Intensity and depth images from time varying illumination change
SEQUENICE 2. . v v v e e e e
Head tracking results for time varying illumination change sequence
2. Each row represents tracking results at different frames: 90, 100,
180, 240, 360 . . . . ..
Head pose estimation plots for time varying illumination change se-
QUENCE 2 . . v v o o e e e e e e e e e e e e
Intensity and depth images from spatially varying illumination change
sequence 1. . . . . .
Head tracking results for illumination change sequence 1. Each row
represents tracking results at different frames: 90, 100, 180, 240, 360 .
Head pose estimation plots for spatial varying illumination change
sequence 1 . . . . ..o
Intensity and depth images from sequence 1 including occlusion. . . .
Head tracking results for occlusion sequence 1. Each row represents
tracking results at different frames: 70, 80, 90, 100, 110 . . . . . . . .

Head pose estimation plots for occlusion sequence 1 . . . . . . . . ..

x1



CHAPTER 1

Introduction

This thesis presents a novel method for 3D head tracking with 6 degrees of freedom.
The proposed method is robust to in and out of plane rotations and translations,

and illumination changes.

1.1 Motivations

Head Tracking is a very important task for several applications of computer vision. If
head location and 3D pose are known, tasks such as face recognition, facial expression
analysis, lip reading, etc., are more likely to be solved using a stabilized image
generated through the 3D head tracker. One of the applications of 3D head tracking
is the development of intelligent vehicles (Figure 1.1), in which one goal is the
design of a smart system to actively control the driver before he/she becomes too
drowsy, tired or distracted. The pose of the head can reveal numerous clues about
alertness, drowsiness or whether the driver is comfortable or not. Also head pose is
a powerful pointing cue; determining the head pose is fundamental in vision driven
user interfaces. In public kiosks or airplane cockpits, head pose estimation can
be used for direct pointing when hands and/or feet are otherwise engaged or as
complementary information when the desired action has many input parameters [2].
Hands-free cursor control can be an important control for users with disabilities and

is very promising for gaming environments. Furthermore head tracking can be used



for development of very low bit-rate model-based video coding for video-telephone

applications.

A successful head tracking application should be robust to significant head motion,
change in orientation and scale. The tracker must also be able to handle variations
in illumination. Furthermore, the system should work at near video frame rate and
be fast enough to maintain interaction with the user. Such requirements make the

problem of 3D head tracking even more challenging.

Figure 1.1: Application of 3D head tracking in a vehicle environment.

1.2 Related Work

Several techniques have been proposed for free head motion and head tracking. The
proposed techniques can be grouped into 2D and 3D approaches. 2D approaches
to face tracking include color based techniques [3] where the background and the
objects to be tracked are grouped into several color based groups. Template-based
[4] and eigenface-based [5] techniques have also been proposed. In template based
techniques the face is tracked by matching the face template within a small search
region in each frame with the assumption that small 3D head rotation appears as
2D translation of the facial image [6]. Eigenface-based methods use a statistically-

based 3D head model to further constrain the estimated 3D structure. Also tracking



of salient points, features or 2D image patches for recovering 3D head parameters
have been proposed. The outputs of the 2D trackers can be processed and joined
together to recover 3D location, orientation and facial pose [7]. However using 3D
model-based techniques offer better accuracy over 2D methods, but they require
knowledge of the shape of the face. The early methods used simple shape models
such as planar [8], ellipsoidal [9] or cylindrical [7] surfaces to represent the head.
Also a 3D texture mesh [10] or a 3D feature mesh [11, 12] can be used to fill in the
missing 3D data.

Methods like active appearance models [13, 14] or active shape models provide very
accurate shape models for 3D head tracking. Heavy computational requirements
of 3D active appearance models with monocular images makes these methods less
favorable for real time applications. Also these methods often require a separate
model for every individual that uses the system or the trained model to be general
enough for every user, therefore an unfavorable training session is involved in order

to generate the appearance models.

Many of the proposed 2D tracking methods perform tracking on the image plane
with very little to none out of plane translations and rotations. Those methods which
can perform tracking with 6 degrees of freedom often require lots of computation
time, due to missing depth information; therefore these methods are not suitable
for real time usage. Also intensity based 2D tracking methods suffer severely from
time varying illumination changes. Until recently there has not been much research
on head tracking using 3D data. With the development of laser scanners and stereo
cameras, real time depth information became available. Depth information, surface
parameters or point clouds can be extracted easily and surface or shape models
can be generated in real time. Therefore the tracking system can easily adapt to
different users without prior training. Also the depth image acquired through stereo
cameras or laser scanners are not affected from illumination changes thus enabling
the algorithms that use depth image to be more robust to illumination changes. The
proposed methods of estimating 3D rigid body motion using disparity information
can be grouped into two families: optical flow based, and registration based method.
In the thesis we will review normal flow constraint (NFC) and iterative closest

point (ICP) methods and propose a scale invariant feature transform (SIFT) based



tracking method for 3D head tracking.

Normal flow constraint (NFC) [15] is an extension of the original optical flow algo-
rithm [16]. Optical flow is the two-dimensional vector field which is the projection
of the three-dimensional motion onto an image plane [17]. Tt is often required to
use complex 3D models or non-linear estimation techniques to recover the 3D mo-
tion when depth information is not available. However when such observations are
available from devices such as laser range finders or stereo cameras, 3D rigid body
motion can be estimated using linear estimation techniques. Furthermore, combin-
ing brightness and depth constraints tend to provide more accuracy for subpixel

movements and provides robustness against illumination changes[15, 2].

The iterative closest point (ICP) algorithm introduced by Chen and Medioni [18] and
Besl and McKay [19] has been used to merge and stitch laser range scans. The ICP
algorithm tries to find corresponding point sets between two given surfaces or point
clouds and estimates a best transformation that minimizes the distance between the
matched points using Horn’s unit quaternion method [20]. Chen and Medioni try to
minimize a point-to-plane distance, whereas Besl and McKay try to minimize the
point-to-point Euclidean distance. Over the years many derivations of the original
ICP algorithm have been proposed, affecting all phases of the algorithm from the
selection and matching of points to the minimization strategy. Rusinkiewicz and
Levoy [21] present an extensive survey on many derivations of the ICP algorithm.
Often the most tweaked part of the algorithm is the description of the correspondence
function. Features such as color/intensity [22], normal vector directions are often
added to make a better correspondence assignment. ICP has been used for the
purpose of head tracking by Simon [23] and Morency [2]. Morency reported that
ICP performed well on coarse movements especially in translations but was not as

successful as optical flow based methods on fine movements and rotations.

Scale invariant feature transform (SIFT) introduced by Lowe [24] is one of several
computer vision algorithms for extracting distinctive features from images. SIFT
features are often used in object recognition, because of the descriptors invariance
to scale and orientation. Such abilities of SIF'T can be easily adapted for object

tracking in the image plane as well. At run-time, SIFT features are extracted from



the current frame, matched against the SIFT descriptors of the previous frame,
resulting in a set of correspondences. The rigid body motion then can be recovered
using Random Sample Consensus (RANSAC) algorithm. [25, 26, 27, 6].

1.3 Contributions

A new head tracking algorithm based on SIFT features used together with a stereo
camera input has been proposed, developed, and tested. The algorithm provides
one to one point correspondences, which were missing in the original ICP algorithm,
and brings the current frame into registration with the previous frame in order to
obtain the relative pose change between the frames. The algorithm yields better

motion estimates both in translation and rotation then ICP.

14 Organization of the thesis

In chapter 2 a review of the Normal Flow Constraint (NFC) algorithm is presented.
Chapter 3 presents a review of the iterative closest point algorithm (ICP). Chapter 4
provides a brief review of the scale invariant feature transform algorithm and shows
how it can be used for 6DOF rigid body tracking, with the help of optical stereo
data. Chapter 5 presents experimental results of the algorithm over both synthetic

and real video sequences.



CHAPTER 2

Normal flow constraint algorithm (NFC)

In this chapter, the structure of the gradient-based differential tracking algorithm
called NFC [15] is reviewed. NFC is a 3D extension of the original optical flow
algorithm proposed by Horn [16]. Optical flow is the apparent motion of the image
projection of a physical point in an image sequence, where the velocity at each pixel
location is computed under the assumption that projection’s intensity remains con-
stant [6]. Similar constraints can be derived when the disparity image is also avail-
able. Combining the outputs of brightness constancy constraint equation (BCCE)
with depth change constraint equation (DCCE), the NFC algorithm tries to recover

the pose change between two consecutive frames.

2.1 Brightness Constancy Constraint Equation

A 3D point in space is represented by its coordinate vector X = (XY Z]T and
the 3D velocity of this point is represented as V= [V V,, V.]T. When this point is
projected onto the camera image plane using some projection model, the point will
be mapped to 2D image coordinates ¥ = [x y]7 and the motion of the 3D point in
space will induce a corresponding 2D velocity vector onto the camera image plane

U= [vg v,]".

Assume that I(x,y,t) represents the brightness of a point (z,y) in the image plane



at time ¢. It can be assumed that the brightness of a particular point in the pattern
remains constant even though the point has moved; therefore an equation can be
derived that relates the change in image brightness at a point to the motion of the
brightness pattern. This assumption is only partially true in practice. In situations
such as occlusions, disocclusion, changes in intensity due to changes in lighting, the
displacement of pixel patches does not represent physical movement of points in
space. For example a rotating uniform sphere with uniform color would seem fixed

to an observer. The assumption may be expressed for frames at t and t+1 as follows:
I(z,y,t) = I(x + vg(x,y, 1),y +vy(x,y,t),t+ 1) (2.1)

where [(z,y,t) represents the image intensity, and v,(z,y,t) and v,(z,y,t) are the
x and y components of the 2D velocity vector at time ¢. Taylor expansion of the
righthand side of Equation (2.1) is

I(z,y,t) = I(z,y,t) + L(z,y, t)v,(z,y,1)

(2.2)
+1y(z,y, t)vy (2, y,t) + I (2, y,1)

where I,(z,y,t),1,(z,y,t) and I;(x,y,t) are the image gradients with respect to x,
y and t as a function of space and time. Canceling out the I(z,y,t) terms and
rearranging Equation (2.2) into a matrix form yields to the commonly used optical
flow equation:

L=l I [ e ] (2.3)

y
The above equation constraints the velocities in the 2D image plane. However we
are interested in the 3D-world velocities. Therefore, for a perspective projection
camera with focal length f, the relationship between the real world velocities and

the image plane velocities can be derived from the perspective camera equation:

xr = f X and y = Y. Taking derivatives with respect to time yields
de f x
=g =gV g%
dy [,y
=—== 2.4
when written in matrix form
11f 0 Yo
Vg —x
[ =7 0 f Vy (2.5)
U —_
Yy Y v,



By substituting the lefthand side of equation (2.5) for ¢ into equation (2.3), we

obtain the brightness constraint equation for 3D object velocities:
0 - —
0 f —y
(fL. fI, — (zL, +yI,)]|V (2.6)

-1, = %[[z Iy] [

1
Z
Any rigid body motion can be expressed as an object undergoing instantaneous
translation T = [t, t, t.]7 and instantaneous rotation Q = [w, w, w,]T where Q
represents the orientation of the axis of rotation and |Q2] is the magnitude of rotation

per unit time. For small rotations V can be approximated as:

VaT+OxX=T-XxQ (2.7)

The cross product of two vectors can be written as the product of a skew-symmetric

matrix and a vector, therefore X x {2 can be rearranged as

0 —-Z Y
)ZXQ:XQ, where X = Z 0 —-X
-Y X 0

Equation (2.7) can be rearranged into a matrix form
V=Q¢ (2.8)

where ¢ = [TT G7]7 is the instantaneous motion vector and matrix the Q is

100 0 -Z Y
Q=1 —X]={010 Z 0 -X
001 -Y X 0

When the right hand side of equation (2.8) is substituted into equation (2.6), a
linear equation which relates pixel intensity values to rigid body motion parameters

is obtained for a single pixel.

~li= (L f1y (L 41, QF (2.9

This is the generic brightness constraint used in many of the previous approaches

[15] regarding 3D motion and pose tracking. When 3D world coordinates are not

8



known, one needs non-linear estimation techniques to solve for the motion or the
estimation can be simplified to a linear system using 3D models when a shape prior
of the object being tracked is known. Simple models such as planar[8], ellipsoidal[9],
cylindrical[7] or a 3D feature mesh[11, 12] can be used to fill in the missing 3D data.
If 3D-world coordinates are available, it is relatively easy to solve this equation
system and non-linearities can be avoided. Not using 3D shape models reduces any

errors introduced in the latter class of approaches.

2.2 Depth Change Constraint Equation

Assuming that video rate depth information is available for every pixel in the inten-
sity image, similar expressions can be derived using the disparity image. Therefore
any changes in the depth image over time can be related to rigid body motion.
A point on the rigid body surface, located at (z,y) at time ¢t will be at location
(x4 v,y +vy) at time t 4+ 1. The depth values of any particular point in the image
space and time should remain the same unless the particular point goes under a
depth translation between frames ¢t and ¢ + 1. In mathematical terms, this can be

expressed in a way similar to equation (2.1)
Z(x,y, ) + Valz,y,t) = Z(x + vo(x,y,1), y +vy(x, 9, 1), 1 + 1) (2.10)

where Z(x,y,t) represents the disparity image and v,(x,y,t) and v,(x,y,t) are the
x and y components of the 2D velocity vector at time ¢. Following the same steps
that are used to derive the brightness constancy constraint equation, an analogous
depth constancy constraint equation can be derived. Rewriting the first order Taylor
series expansion of the righthand side of Equation (2.10) in matrix form we obtain

Vg

—Z, =2, Z,] —V (2.11)

Uy

By substituting the 3D world velocities into Equation (2.11) using the perspective

projection model yields:

1

f 0 —x
17

V-V. (2.12)
0 f —y

~7, =2, Z,




Since any rigid body motion can be expressed as an object undergoing instantaneous
translation 7' and an instantaneous rotation 2, substituting the 3D velocity vector

V with Qgg as shown previously, produces
1 —
2= |2, §2, —(Z+ 22, +yZ,)Q9 (213)

The derived formulation above is the analogous form of the equation (2.9) that re-
lates the change in image brightness at a point to the rigid body motion. Brightness
constancy constraint equation depends on the assumption that the brightness of a
particular point in the pattern remains constant. Since this assumption is only true
under some conditions, the outcome is an approximation at best, whereas equation
(2.13) makes use of change in the disparity image which reflects the true dynamics

of the motion and the disparity image is not affected by changes in illumination.

2.3 Orthographic Projection

In most cases of interest, camera projection can be modeled as orthographic pro-
jection without introducing much error into the system. Such an approach would

simplify the constraint equations, reducing the computational load.

Deriving the analogous versions of Equations (2.9) and (2.13) are straightforward.
All occurrences of image plane x and y are replaced with their real world counterparts
X and Y. Therefore any real world velocities will be equivalent to their image plane

counterparts; v, = V, and v, = V.

v | [100
v | 010

Inserting the simplified orthographic projection matrix into Equations (2.6) and

v,
(2.14)

Y

(2.12) yields to the orthogonal projection analogs of the Equations (2.9) and (2.13):

—

I = [1,1,0Q¢ (2.15)
~Z, = 2.2, -1Q¢ (2.16)

10



2.4 Shifting the World Coordinate System

Since Euler rotations are defined around the origin, translating 3D coordinates to
the centroid fo = [X, Y, Z,] would increase the numerical stability of the solution.
Such shift in the coordinate system would only affect the matrix Q and the motion
parameter vector q; will compensate the shift. In this case we can rewrite Equation
(2.9) as

7

1

-1 = 7 fL f1, — (zl; +yl,)] Q¢ (2.17)
where

1 00 0 Z-27,) —(Y =Y,

Q=1010 —(Z-2%,) 0 (X —X,)

001 (Y-Y,) —-(X-X,) 0

and ¢ = [T/ (UT|T
2.5 Least Squares Solution

In the previous sections brightness and depth constancy constraint formulations
were derived. These formulations try to approximate a single pixel’s velocity as it
undergoes instantaneous translation and rotation. Since these constraint equations
are linear they can be stacked up in a matrix formulation b; = HI$ across N pixels
which belong to the object that is being tracked, where b? € RV*1 is the temporal
intensity derivative and H; € V6 ig the constraint matrix for brightness values. qz;
is the motion vector that is to be solved for. A similar formulation can be obtained
for depth constraints bp = HDgg. Given that N > 6, the least squares method can
be used to solve for the motion parameter vector gz_g independently for both systems.

Combining the two equations into a single equation,

— — H - b_»
b=Ho, where H = =] L (2.18)
AHp Abp

in order to solve for a combined vector 5, where A is the scaling factor for depth
constraints. In situations where the disparity image is more reliable than the inten-

sity image such as fast changing illumination conditions, values higher than 1 should

11



be chosen for \. In other situations where it is known that intensity image is more
reliable than the disparity image, values smaller than 1 should be chosen for A\. The

least-squares solution for the equation above is:
¢=Hb=HH)'HT (2.19)

where H' is the pseudo inverse. The least squares solution gives out the motion
vector for a set of pixels that belong to the object of interest. These pixels are

selected from the images where both intensity and depth images are well defined.
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CHAPTER 3

Iterative Closest Point Algorithm (ICP)

3.1 Motivation and Problem Definition

Rigid body or head tracking problem can be thought of as a registration problem
[28]. If a transformation can be found that brings the current facial surface into
alignment with the previous surface, then the pose of the head can be updated

based on the previous pose and calculated transformation.

In order to represent the facial surfaces, low level primitives such as point clouds or
triangle meshes are well suited. For any intensity and disparity image set {I;, Z; }
acquired at time ¢, a point cloud, based on point coordinates {zy, v, z, I;} can
be built and can be brought into registration with a previously acquired cloud.

Extraction of this point cloud and the necessary data are explained in Section 5.1.

The algorithm takes two sets of 3D point clouds namely P and X and tries to find
a rigid transformation defined as rotation R and a translation t that minimizes the
least square distances between the corresponding points of P and X. The total

mean-squares distance can be expressed as
1 2
e(R.t) =+ Z [(Rp; +t) — c(p)[I*,pi € P (3.1)

where N is the total number of pairs and the ¢ is the correspondence that associates



every point p; to a corresponding point in set X such that,
c:P— X|Vp; € Py, =c(p;) € X (3.2)

The correspondence function ¢ is not known because the corresponding points of a
surface captured at two different times cannot be obtained from a stereo camera. If
the correspondence function is known then the transformation (R, t) that minimizes
Equation (3.1) can be calculated in closed form. Since ¢ is unknown, solving for R
and t is a complex minimization process. Although the correspondence function c is
unknown, it can be approximated by an estimated function ¢ and by decomposing
Equation (3.1) into several steps that reduce the matching error, it is possible to

solve for R and t iteratively.

The main idea behind an iterative approach is to use the estimated function ¢ to
calculate point correspondences to calculate Ry and ty for the current iteration
based on Ry_; and t;_; from the previous iteration. The total transformation (R,
t) is the accumulation of Ry and tj from all iterations and can be expressed as
follows: Ryy1 = ARgRy and t 1 = Aty + tg, where Ry and t; are initially set to
the 3 x 3 identity matrix and [0 0 0] respectively. Using an iterative approach and
an estimated function ¢, the complex geometric point matching function (3.1) can

be replaced with a simpler one,
N
1 Z A 2

The estimated function ¢ has to be chosen in such a way that at every iteration

complex geometric point matching converges to a minimum.

3.2 Closest Point Matching

The original ICP algorithm assumes that the correspondence function ¢ which as-
sociates every point of the set P with a point with the smallest Euclidean distance
in the set X
¢(p) = argmin d(p,x) = argmin ||p — x||? (3.4)
zeX zeX
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is a good approximation of the unknown function c. If the calculated closest points
reflect the real correspondences, then the algorithm will converge faster, however
it is not always sufficient to establish good correspondences using the Fuclidean

distances.

Often better correspondences can be found if more discriminative features are used,
such as color or intensity information which are usually available with 3D data.
Also secondary or calculated features such as surface normals or curvature can be

extracted from range images or triangle meshes.

3.2.1 Color

Using color information together with surface geometry improves the performance
of the ICP algorithm, since it helps to avoid ambiguous cases where the surface
geometry is not always sufficient for a successful correspondence. Several authors
have reported performance improvements when ICP is used with color features [28,
22,29, 30]. Since intensity information is already available, it can be easily integrated

into the distance function,
d(p,x) = [[p - x|* + a(l, — I,)? (3.5)

where « is a normalizing constant for the intensity value. Figure 3.1 shows how

color helps to find better correspondences.

X X
P t P t
without color with color

Figure 3.1: Influence of color or intensity on matching (taken from [1])
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3.2.2 Surface orientation

In addition to color or intensity information, other geometric features such as surface
normals can also be used in order to improve the coupling and more generally the
registration. The normal vector for an arbitrary point can be computed from the

depth image gradients:

Ny = Du.  Dun (3.6)

In order to add the normals to the distance computation, a similar approach can be

. [(?Zt 0Z, 1}

followed as in color driven matching. For a normal vector n = (u, v, w) the distance

can be stated as:

d(p,x) = [Hp - X“2 + O‘(up - u$)2 + 5(”}? - Uar)Q + V(wp - ww)ﬂ (3.7)

Figure 3.2 shows how using surface normals help to find better correspondences.

without orientation with orientation

Figure 3.2: Influence of surface normals on matching (taken from [1])

3.2.3 Performance optimization using kd-trees

Searching for closest points is the most exhaustive part of the algorithm and thus it

can be optimized for speed when special search structures such as trees, projections
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or clusters are used. In this work, usage of kD-trees is selected for their ability to
integrate several features in the closest point search. The main advantage of the
kD-tree is that it can store multi-dimensional data and can search the ‘real’ closest
point whereas cluster and projection based methods give only close approximations

to the closest point. A review of the other methods can be found in [31].

A kD-tree is a space-partitioning data structure for organizing points in a k-
dimensional space. kD-trees constitute a useful data structure for several appli-
cations, such as searches involving a multidimensional search key, such as range
searches and nearest neighbor searches. kD-trees use only splitting planes, that are
perpendicular to one of the coordinate system axes, in order to divide the entire
space according to one of the feature space dimensions, which are usually used in a
cyclic order. Every splitting plane is represented as a node in the kD-tree and goes

through one of the feature points.

3.2.3.1 Constructing a kd-tree

The canonical method for constructing a kd-tree has the following two constraints:

e As one moves down the tree, one cycles through the axes used to select the
splitting planes. For example, the root would have an x-aligned plane, the root’s
children would both have y-aligned planes, the root’s grandchildren would all

have z-aligned planes, and so on.

e At each step, the point selected to create the splitting plane is the median of
the points being put into the kd-tree, with respect to their coordinates in the

axis being used.

The constraints above lead to a balanced kd-tree. The better the kd-tree is balanced,
the faster the closest point search will be. An example for constructing a kd-tree
is presented in Figure 3.3. Among the points, point A is selected as the root of

the kd-tree because it is the median of the points along the z-axis. Now all points
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on the left-hand side of A possess smaller x coordinates and all the points on the
right-hand side of A have greater x coordinates. The median point E according to
the next key, in this case y, is added to the tree as a left child of A. The construction

of the tree continues iteratively until all point are assigned to a node in the tree.
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Figure 3.3: Example of a 2D kd-tree construction

The generalization to k-dimensions is straightforward. The splitting lines are re-
placed by hyperplanes in k-dimensions. The complexity for building a kd-tree from
N points is O(NlogN) and uses a storage 0(N).

3.2.3.2 Closest point search in a kd-tree

The nearest neighbor (NN) algorithm, to find the nearest neighbor to a given target
point not in the tree, relies on the ability to discard large portions of the tree by
performing a simple test. To perform the NN calculations, the tree is searched in
a depth-first fashion, refining the nearest distance. First the root node is examined
with an initial assumption that the smallest distance to the next point is infinite.
The subdomain (right or left), which is a hyperrectangle containing the target point,
is searched. This is done recursively until a final minimum region containing the
node is found. The algorithm then (through recursion) examines each parent node,
seeing if it is possible for the other domain to contain a point that is closer. This is

performed by testing for the possibility of intersection between the hyperrectangle
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and the hypersphere (formed by the target node and the current minimum radius).
If the rectangle that has not been recursively examined yet, does not intersect this
sphere, then there is no way that the rectangle can contain a point that is a better
nearest neighbor. This is repeated until all domains are either searched or discarded,
thus leaving the nearest neighbor as the final result. Searching for the nearest point

is an O(NlogN) operation.
3.3 Best Transformation

Once the point correspondence set ¢(p; x,yix) has been created between surfaces P
and X, the best transformation is computed by minimizing the mean squared error
of the couplings {p;, yix} as a function of ARy, and Aty.

Np

1

pzl

In order to make the equations more readable, let us drop out the iteration index k&
and in order to be able to regroup the terms in error function, let us minimize the
sum of squared errors instead of their mean value, which produces the same result.

With this simplification, the error function under consideration becomes

¢(AR,At) =) [(ARp; + At) - yi|” (3.9)

i=1
3.3.1 Matching Centroids

The error function (3.9) can be factored out into the following sums

N

N N
e(AR, At) Z IARp; — yil|* + 2At - Z(ARPz‘ —yi)+ Z At (3.10)

i=1 i=1 i=1
The first and the last term only depends on AR and At, but the second term is

mixed. If it can be set to zero, then the error function e can be optimized for AR
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and At separately. In order to set the mixed term to zero, the data sets P and Yy

are translated to their centroids.

1 & 1 <
Hp = sziuuy: NZ}G
=1 =1

P, =Pi— lp Y, = Yi — [y

(3.11)

Now the error function (3.9) can be written as

N
(AR, At) = > [[(ARp] + At) — yi|*, with t' = AR, — i, + At (3.12)

i=1
and factored out into the following sums

N N N
(AR, At) =) " |ARp; — yi|” +2At - Y (ARp] —y}) + Y _[A|*  (3.13)

i=1 i=1 i=1
Because the measurements are now translated to their centroids, the second term
sums up to zero and thus can be dropped. The first and the third term cannot be
set to zero therefore they must be minimized separately. For the total error to be
minimized, the third term must be minimal or zero so the best translation vector

can be defined as
At = p, — ARy, (3.14)

Finally, in order to find the best rotation matrix AR, the following equation needs
to be minimized. N
¢(AR) =) || ARp; - yil (3.15)
i=1
Once the best rotation matrix R is found that minimizes the Equation (3.15), the
best translation vector can be calculated using Equation (3.14). Several methods
have been proposed to solve for the values of R and t that minimize e, such as
steepest decent, and also closed form solutions like singular value decomposition
(SVD), dual number quaternions and unit quaternions [1] [32]. Extensive evaluations

and comparisons of these methods can be found in [32].

In this work, the quaternion method proposed by Faugeras [33] and Horn [20] has

been chosen and used. This method is reviewed in the following sections.

20



3.3.2 Quaternions

This section provides a basic definition of quaternions and basic properties that are

necessary to derive the formulation for computing the best transform.

In mathematics, quaternions are a non-commutative extension of complex numbers.
A quaternion can be thought of as a complex number with four components, with
one real component and three imaginary components (i, j, k). Quaternions can be

represented as

q =qo + ¢zt + quj + q.k with

PR (3.16)
=)° = =1k =

It is also possible to think of quaternions as a vector with four components. The

first component being the scalar and the remaining three being the imaginary part:

4= (90, %, Gy, ¢=) = (90, q) (3.17)

The conjugate of a quaternion can be defined as

4" = (q,—q) (3.18)

and a point in 3D space is represented as a purely imaginary quaternion:

P = (0,p2; py, =) = (0, p) (3.19)

The product of two quaternions is defined as

ar = (gm0 —q- R, @R + 719+ q x R)
=(qoT0 — GuTw — QyTy — Q=725 T2, QoTx + GaT0 + QyT= — Q=T (3.20)
QOTy — qxTz + erO + qzTz, 40T~ + qgﬁ'ry - erx + QZTO)

and one can note that quaternion multiplication is not commutative. It is possible

to associate an orthogonal matrix Q to a quaternion.

g0 —Y9z —Yqy —4: qQ —Yqz —4dy —Qq:

Q _ Qx 4o —(qz Qy and Q _ Gz qo qz _Qy (3'21)
Qy q- qo —Qx qy —4q: qo0 Qx
qz _Qy qz do qz Qy —Qx do
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Such an association makes it possible to express quaternion product as multiplication

of a matrix Q with the quaternion.

4t = Qi # 4 = Qf and gi* = Q'r (3.22)

The magnitude |g|* of a quaternion can be defined as:
A =ad" =44
= (45 + llall*.0) = (lal*,0) = (4~ 4. 0)

A quaternion can be referred as a unit quaternion if its magnitude is 1.

(3.23)

Rotations and Quaternions

A rotation on a data point can be expressed by unit quaternions if there
exists a way to transform purely imaginary quaternions to purely imaginary
quaternions. Such a transformation must preserve the length of the data vector;
furthermore the dot and cross product must also be preserved [20]. It can be shown
that the composite product

B = apq’ (3:24)
is purely imaginary given that p = (0, p., py, p.) is the data point to be rotated and
g is a unit quaternion. This can be proved by extracting the rotation matrix defined

by the quaternion ¢ using the properties presented in (3.22):

P =apa" = (Qp)d" = Q"(Qp) = (Q"Q)p (3.25)
The matrix Q7'Q is in the form
o [10
- -

where R is always a 3 x 3 rotation matrix which is defined by the unit quaternion

4. R has the following values
G+e—aq—¢ 20— 0) 2009+ 0
R=1| 2(@g+9e) @-4¢+a—4¢ 249 — i) (3.27)

242z — @ogy)  2(qyq: + G0%) @ — G —a+ ¢

The upper-right elements of QT Q is zero therefore p’ is purely imaginary.
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3.3.3 Best Rotation

The previous section summarizes some basic properties of quaternions and shows
that a rotation can be represented using quaternions. The minimization function in

3.15 can be rewritten using quaternions for any rotation AR.

N N
=Y [IARp], - yi[I> =D llapia” — ilI* = e(d) (3.28)
=1 =1

In order to allow the grouping of different terms into one multiplication the error
function is multiplied with the square magnitude of the unit quaternion ¢ which

does not change its value.

leqplq - villPllall® (3.29)

which can be factorized and simplified into

apia*q — yial with [|an|* = ||g]*lal®
(3.30)

N
2|
N

> llaw; - yial® with ¢°q = [l4)* = (1,0)
Since the imaginary part of the error quaternion € is a zero vector only the real part

of & is observed and can be regrouped using properties described in (3.23)
N
&, = giall® = D (@b} - yia)-(ap; - yia)
! = (3.31)

Mz

%

(ap;)(ap;) — 2(ap;)-(¥i4) + (¥ia).(¥:4)

Mz

=1
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and when rewritten in matrix representation as described in (3.21),

e(q) =

WE

(Pidq).(Pia) — 2(Pq).(Yiq) + (Yia).(Piq)

1

.
I

[
WE

(Pia)" (Pia) — 2(Pia))" (Yiq) + (Yia)" (Pia)

.
Il

1

N (3.32)
=Y 4"PIPia-24"PYiq+ 4 Y'Pig
i=1
N
= (PP 2PV YY)
i=1
Finally the minimization problem can now be stated as
N
e(d) =) qTAq=q"Aq
i=1
N
where A; = P/'P; — 2P/ Y| + Y;"Y]and A =) " A, (3.33)
i=1
N
A= IpillPT—2B + [|yi°T
i=1
where
(Szz + Syy + S:2) Syz + Sy Sez + Sew Szy + Sy
B= Syz + Szy (Szm - Syy - Szz) Sa:y + Syz Szx + sz
Szz + Sacz Sxy + Syz <_Sx:r + Syy - Szz) Syz + Szy
S:vy + Syx Szz - S:L"z Syz + Szy <_Sx:r - Syy + Szz)
At this point it is convenient to introduce a 3 X 3 cross-correlation matrix:
N
Coy =D Pi" ¥ (3.34)
i=1
The individual elements of matrix (,y can be identified as
Sxar: S:cy sz
Coy = | Syz Syy Sy (3.35)
Szw Szy Szz
where
N
Spn = Zp;m Y, With m,n € (z,y, 2) (3.36)
i=1

24



The matrix (py contains all the information required to obtain the matrix A in the
minimization function. Once the elements of (5, are known, the matrix A can be

expressed as
trace(Cyy) AT

A oy + CZ;, — trace((py)ls

where I3 is a 3 x 3 identity matrix and A is a column vector formed by the cyclic

A= (3.37)

elements of the anti symmetric matrix Cy; = ¢,y — pr and the elements of A are

defined as A = [023 C31 Clz]T.

Using Lagrange multipliers technique, Equation (3.33) is equivalent to

find mingL = [§"Agq+ (1 —
b= [a"AG+ (1 [al”)] 9
with constraint ||¢* = 1

where the above equation can be solved by setting the partial derivatives of L to

7Zero

oL
a4

Since A is a symmetric matrix, Equation (3.39) becomes

=Aq+ (AT -220q=0 (3.39)

2A4 — 20§ =0

(3.40)
Aq=Aq

which states that q is an eigenvector of the matrix A. Combining Equations (3.33)

and (3.40) we can come up with the following relation
emin(@) = 4" Aq =" = A4 q = Aq]* = A (3.41)

This equation lads us to conclude that the unit quaternion that minimizes the error

function e is the eigenvector corresponding to the smallest eigenvalue of matrix A.

3.3.4 Summary of quaternion method

The unit quaternion method to calculate the optimal rigid transformation which

minimizes the coupling error can be summarized as follows:
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(1) Translate point clouds to the origin.
(2) Build matrix A

(3) Calculate the smallest eigenvalue of A and its corresponding eigenvector and

use it as quaternion ¢
(4) Calculate the best rotation matrix AR using §

(5) Calculate the best translation vector At using Equation (3.14)

3.4 Iteration Termination

ICP is a computationally intensive operation; therefore the number of iterations
should be kept as low as possible. Various approaches have been proposed in lit-
erature that automatically stop the iterations of the algorithm. These methods

are:

e Absolute error criterion:
Iterations stop when the mean square error, described in Equation (3.1), falls
below a threshold, e < 7.

e Error change criterion:

[terations stop when the error change falls below a threshold e;_; —ep < 7.

e Pose change criterion: The iteration stops when the calculated rigid transfor-

mation (ARy, Aty) at iteration k is relatively small and ineffective [32].

3.5 ICP Algorithm Overview

The ICP algorithm to register two point clouds is formulated in a procedural de-

scription as follows:
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input: Two sets of point sets, P = {p;} with N, points and X = {z;} with N,

points.

output: A transformation (R,t) which registers P to X

initialization: k=0, Py = P, Ry =1 and t, = [0 0 07

iteration k:

(1) Compute closest points:
Use the squared Euclidean distance
d(p,z) = [lp — =|* (3.42)
to compute a correspondence set C*)(j5;, ;) of closest point with size N being

the number of points in set P. The closest point y; is defined as follows

yi = c(pi) = min d(pi, v) with p; = Rp; + t (3.43)
S

(2) Compute registration (ARyg, Aty):

Define a mean error function of couplings in set ¢ (;, yix) as a function of

(AR, Aty).
|
e(ARy, Aty) = — Y [[(ARypio + Aty) — yixl (3.44)
Np =1
and calculate the rigid transformation (ARy, Aty) such that
er, = argmin e(ARy, Aty) (3.45)
ARy Aty

(3) Apply the registration:
Apply the transformation obtained to get the next point set Pri1 = {pixt1}
defined as

Pik+1 = RiPpo + ti (3.46)
and update Ryy1 = ARgRy and t, .1 = Aty + t;

(4) Stop iterating if the matching has converged to a desired error rate or if the

maximum number of iterations is reached. Set R = R, and t = t,,

The block diagram of the algorithm is presented in Figure 3.4
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Figure 3.4: Block Diagram of ICP Algorithm
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CHAPTER 4

Stereo-based Head Pose Tracker using
the Scale Invariant Feature Transform

In the previous chapter, the ICP algorithm is explained. The major drawback of
the ICP algorithm is its iterative nature. Since the corresponding points between
the current and previous frames are not known, the correspondence function is
estimated and the registration problem is solved iteratively. If the correspondence
function is known, then the registration problem can have a closed form solution.
To solve this problem we have extracted and matched the Scale Invariant Feature
Transform (SIFT) features between consecutive frames providing us with the missing
correspondence function. If good correspondences are computed using the SIFT
algorithm, then the registration problem can be solved in a single step avoiding any

iterations.

In the next section, a brief description of the SIFT algorithm is given and the steps
of 3D rigid body motion tracking using SIFT and the unit quaternion method is

explained.

4.1 Scale Invariant Feature Transform

Scale-invariant feature transform (SIFT) is one of several computer vision algorithms

for extracting distinctive features from images [24]. SIFT interest points are based



on a Difference of Gaussian detector. Its high-dimensional descriptor vector relies
on gradient histograms. In addition to key point location, Lowe’s method [24] also
provides a way to extract features which are invariant to scale, rotation, and trans-
lation. The name Scale-invariant Feature Transform was chosen, as the algorithm
transforms image data into scale-invariant coordinates. Following are the major

stages of computation used to generate the set of image features:

Scale-space extrema detection

Keypoint localization

Orientation assignment

Keypoint descriptor

4.1.1 Detection of scale-space extrema

The first stage of keypoint detection is to determine location and scales that can
be repeatably assigned under differing views of the same object. Detection of these
locations can be done by searching for stable features across all possible scales,
using a continuous function scale known as scale space [34]. Using the Gaussian
function as the scale-space kernel, the scale space of an image can be defined as
a function L(z,y, o), which is produced from the convolution of the image, I(z,y)

with a variable-scale Gaussian, G(z,y,0):

L(z,y,0) = G(z,y,0) x I(z,y) (4.1)
where * is the convolution operator in x and y and
1
G(2,9,0) = g @ H)20" (42)
2mo?

In order to detect stable keypoint locations in the scale-space, difference-of-Gaussian
(DoG) function D(z,y,0) is used, which is computed from the difference of two

nearby scales that are separated by a constant multiplicative factor k:
D(l’7 Y, 0-) - (G(:Eu Y, k}O’) - G(ZL‘, Y, U)) * ](Ia y)

(4.3)
= L(z,y, ko) — L(z,y,0)
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Figure 4.1 shows an efficient way to construct D(z,y, o). In the left column, the
initial image is incrementally convolved by Gaussians of different scales, which are
separated by a constant factor k£ in the scale space to build an image pyramid. Each
octave of scale space is divided into an integer number s, of intervals, so k = 21/5.
Adjacent image scales are subtracted to produce the DoG images as shown on the
right. Once one octave is complete, the Gaussian image in the current octave that
has a variance of 20 is sub-sampled. It is often problematic to downsize an image
by an arbitrary scale; therefore scaling down can be mimicked by convolving the
image with a Gaussian and sub-sampling by taking every second pixel in each row

and column.

Once the DoG images are computed, the local maxima and minima are to be de-
tected. In the scale-space, each pixel has 26 neighbors, eight in the current scale,
nine in scale below and nine in the scale above (See Fig.4.2). Each pixel is compared
with its 26 neighbors and is selected as a local extrema if its larger than all of its
neighbors or smaller then all of them. Since most pixels are eliminated after a few

comparisons, the cost of detecting is much lower than building of the pyramid.

4.1.2 Keypoint localization

Once a set of potential keypoints have been found in the image by comparing a pixel
to its neighbors in the scale space, for each keypoint, its sub-pixel and sub-space
location (z,y, o) are determined. This information allows points with low contrast
to be rejected. Furthermore, keypoints that lie on edges are needed to be removed
as well, because edges are poor keypoints since their location cannot be determined
well along the edge. Poorly defined peaks in the DoG function will have a large
principal curvature across the edge but a small one in the perpendicular direction.

The 2 x 2 Hessian matrix H can be computed at the location and the scale of the

DCCx Dac
H = [ v ] (4.4)
ny Dyy

keypoint:

The derivatives are estimated by taking differences of neighboring sample pixels.

The eigenvalues of H are proportional to the principal curvature of D. Based on the
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Figure 4.1: Difference of Gaussians are computed from a pyramid of Gaussians.
Adjacent Gaussian images are subtracted to produce a difference of Gaussian(DoG)
images.

Figure 4.2: Maxima and minima of the DoG images are detected by comparing the
pixel of interest by its 26 neighbors of the current and adjacent scales.
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proportion of the eigenvalues, edge like features can be detected and eliminated.

4.1.3 Orientation Assignment

Finally by calculating the dominant orientation of each keypoint, the keypoint de-
scriptor represented with this orientation becomes invariant to image rotation. First
the Gaussian image in the octave with the closest scale is selected, so that all compu-
tations are carried out in a scale-invariant manner. For each keypoint the gradient
magnitude, m(x,y) and orientation, 0(z,y) are computed using pixel differences for

the current scale L(x,y).

m(z,y) = V(L(z +1,y) = L(z — Ly))* + (L(z,y + 1) = L(z,y — 1))?

(4.5)
0(x,y) = tan ' (L(z,y + 1) — L(z,y — 1))/L(z + 1,y) — L(z — 1,y)))

An orientation histogram is build using the gradient orientations within a region
around the keypoint. The histogram contains 36 bins, separating the 360 degree
orientations into regions of 10 degrees. Each sample is weighted by its gradient
magnitude before being added to the histogram. Significant peaks in the histogram
correspond to dominant directions in the gradient. The highest peak in the his-
togram is selected to be the orientation of the keypoint, however if other local peaks
within 80% of the highest peak are detected, a new keypoint with that orientation is
created. For any keypoints with multiple peaks, multiple keypoints will be created.

This improves the orientation invariance of the SIF'T algorithm.

4.1.4 Local Image Descriptor

The previous operations extract image location, scale and orientation for keypoints
from a given image. The next step is to describe a local image region in a manner
which is invariant to scale and orientation as well as to changes in illumination and

to 3D viewpoint.

Figure 4.3 shows how keypoint descriptors are computed. In a region around the
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Figure 4.3: SIFT Descriptor. For each pixel around the keypoint gradient magni-
tudes and orientations are computed. These samples are weighted by a Gaussian
and accumulated into 16 orientation histograms for the 16 subregions.

keypoint, image gradient magnitudes and orientations are computed. The gradient
magnitudes are weighted by a Gaussian centered on the keypoint location. In a
typical application the window is divided into 4 x 4 = 16 subregions and for each
subregion, an orientation histogram is build and the histograms are placed at the
center of the subregion. Boundary effects, in which the descriptor abruptly changes
as a subregion shifts smoothly from one histogram to another or from one orientation
to another, are avoided by interpolation where each gradient votes for an orientation
in its neighboring histograms. The vote is weighted by 1 — d for each dimension,
where d is the distance to the histogram. The coordinates of the descriptor and
the gradient orientations are rotated relative to the keypoint orientation in order
to maintain orientation invariance. The 4 x 4 descriptors computed from a 16 x 16

sample array provide a 128-dimensional descriptor array.

Finally, in order to reduce the effects of illumination changes, the feature vector
is normalized to unit length. Since a change in image contrast where each pixel
value is multiplied by a constant will also reflect the gradients by the same constant,
normalizing the feature vector will remove the effect of contrast change. A brightness
change where a constant is added to every image pixel will not change the gradient
magnitudes since they are computed from pixel differences. Therefore, affine changes
in illumination do not affect the normalized keypoint descriptor. In order to reduce
the affects of non-linear illumination changes, which can occur due to camera change
or due to a change in illumination orientation or amount that affect 3D surfaces, the

influence of large gradient magnitudes in the unit feature vector are thresholded to be
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no longer than 0.2 and then the feature vector is renormalized to unit length. This is
because nonlinear illumination changes are more likely to effect gradient magnitudes
rather than gradient orientations, therefore by thresholding the magnitudes, more
emphasis is put onto orientations. The value 0.2 is determined experimentally by
Lowe [24].

4.2 Matching

The SIFT features for the current and the previous frame are extracted, creating
two sets of features F; and F;. Feature matching is then performed between the
features in each of the two sets. For each feature in Fj, the nearest neighbor is found
in Fy, where the nearest neighbor is defined using some distance measure based on
feature descriptors or other properties such as scale and orientation. In order to
speed up the matching, nearest-neighbor algorithm on a 128 dimensional kd-tree is

applied.

Figure 4.4: Matching of keypoints

4.3 Estimating Motion Parameters

Once the SIFT descriptors are matched, 3D point correspondence set C(p;,y;) is
generated by back projecting the descriptor pixels using the disparity image to get
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the real world coordinates for the pixel. The best transformation is then computed
by minimizing the mean squared error of the couplings {p;,y;} as a function of
R and t. The error function can be minimized using the unit quaternion method

explained in Section 3.3

N,
1 p
dR¢%=37§:HGhn+¢)—yM2 (4.6)
P =1

The point sets pi and yj are translated to their centroids

1w 1
Hp = sziauy = Nzyz
i=1 i=1

P, =Pi— lp Y, = Yi — [y

(4.7)

Translating the point sets to the origin drops out the t in the minimization function
and by representing the rotation R using quaternions the following error function is

obtained
N N
e(R) =) |Rp;—yill =) lapia” — yil” = e(d) (4.8)
=1 =1

From the new point sets defined around the origin, a 3 x 3 cross-correlation matrix
is build.

N
Cpy = Z P; Y (4.9)
i=1
The individual elements of the matrix ¢, can be identified as
Sex Szy  Szz
pr = Sy:c Syy Syz (410)
Sie Suy iz

The matrix Q is formed using the elements of (,y and the unit quaternion that mini-
mizes the error function e is the eigenvector corresponding to the smallest eigenvalue

of matrix Q.
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CHAPTER 5

Experimental Results

5.1 Tracker Structure

Figure 5.1 presents the block diagram of the whole tracker system. Prior to running
the tracking algorithms, a fast face detector system initializes the tracker and a face
model is build around the 3D real world points found by the face detector. One
of the NFC, ICP or SIFT algorithms are executed together with the pose reseting

algorithm to estimate the pose change between the previous and the current frame.

- Icp -

| |

| |

I I
Initialization with T Accumulate pose
face detection [—| Medel Building |-y SIFT | parameters

1 1

| |

- NFC B

4 Pose Reseting [

Figure 5.1: Block diagram of the tracker system



5.1.1 Face Detection

At the beginning of the motion estimation algorithm, a fast face detector [35] scans
the intensity image for face regions. The face detector is trained to detect only
frontal faces; therefore it can be assumed that the initial rotation of the head is
aligned with the camera. The initial region for the head is detected by the face
detector at the first frame and then in each step the region is updated based on the
tracker output. For this work we assumed that the face of the user is towards the

camera and all the experimentation data has been collected with this assumption.

5.1.2 Model Building

Once the face detector gives a rough estimate of where the head is located in the
intensity image, 3D world coordinates of the center of the head is extracted using the
disparity image and a point cloud is formed by selecting the pixels that are within
a selected range to the center of the head. Also a face mask, cropped intensity
and disparity images are stored to be used by the tracking algorithms. Figure 5.2
shows the output of the face detection algorithm and the head model extracted using
disparity and intensity images. One advantage of building such a model based on
depth thresholding is that it provides robustness to partial occlusions. The occluded

points appear as missing data in the face model.

5.1.3 Pose Parameters

The goal of the tracker is to find rigid body pose change parameters gg = [f, Q]T
between two models, where () is the instantaneous rotation vector represented with
three Euler angles and ¢ is the translation vector in z, y and z directions. Since the

pose changes are additive, the current pose estimation is updated as follows:

new _ 8ld + ¢q

new _ ?ld s

(5.1)
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Front Wiew

Face Detector Output Side View

Figure 5.2: Result of face detection and model extraction.

where d; is initially set to the head’s position vector acquired through face detection

and d,, is initially set to zero.

5.1.4 Pose Reseting

All the tracking algorithms, either reviewed or proposed in this thesis are differential
methods that can only estimate the pose change between consecutive frames. In
order to obtain the pose of the head at a given time ¢ relative to the first frame,
pose differences between adjacent frames need to be accumulated. However since
each pose change measurement is noisy, the accumulation of these measurements

becomes noisier with time, potentially resulting in an unbounded drift. [2]

In order to overcome this problem, we use a simple and effective method for resetting
the pose parameters when the head pose of the user is close to its original pose. We
compute the change in appearance between the first frame and the current frame.
If the change in their appearance is smaller than a threshold, we reset the pose back
to its original state at time t;. We compute the L, distance between the current
and the first frame after aligning the two intensity images and selecting the pixels

within the face mask.
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5.2 System Evaluation

We have tested the proposed SIFT based stereo tracker on both synthetic and real
video sequences captured using a Bumblebee [36] stereo camera, which can deliver
images of size 320 by 240 pixels at 15 frames per second, from Point Grey Research.
We compared the results with those of the NFC, and the ICP algorithms. For
NFC and ICP algorithms all the points/pixels that belong to the head are used for
registration. Also for the ICP algorithm, the correspondence function uses both
geometry and intensity information as given in Equation 3.5. Since The motivating
application of this thesis is on driver fatigue detection in a vehicle environment, the
collected data are, with a user sitting on a chair, doing free head movement. In order
to get a decent resolution of the user’s face, the users were asked to sit about 80cm

away from the camera which is also a reasonable distance for a vehicle environment.

Without special optimizations, the SIFT tracker can update the pose changes at
around 2 frames per second on a Celeron 1500Mhz Laptop with 512MB of RAM.
Table 5.1 presents the time complexity comparison of the SIFT algorithm against
NFC and ICP algorithms.

Table 5.1: Computational complexity of the 3 tracking algorithms.

Algorithm Frames per second

NFC 30 fps

ICP (at most 10 iterations) 0.3 fps

SIF'T 2 fps
5.2.1 Test results over synthetic video

In order to perform a quantitative evaluation of the optical flow and 3D pose es-
timation algorithms in a noise free environment with precise ground truth data
available, several synthetic image sequences were generated. Using a 3D texture

mapped head model and animating according to predefined motion parameters, we
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were able to generate video sequences that were realistic enough to do performance
tests on the tracker. Disparity images are rendered using Bumblebee’s back projec-
tion API, therefore the resulting disparity image is compatible with images captured
from the Bumblebee. Figure 5.3 shows sample frames from the sequences. Six se-
quences were recorded; 3 for translations in z,y,z axis and 3 for rotations around
x,y,z axis. Translations were performed as 10cm in every direction, twice in a row.
Rotations were performed as 25, 60, 35 degrees around x,y,z axis respectively. Fig-
ures 5.5 present the estimated translation and rotation parameters during tracking
compared to ground truth. Table 5.2 shows the mean error and variance of each
tracker over synthetic data. As shown in the Table, the proposed SIFT tracker
performs better than NFC in all translation cases. Although ICP performs better
than SIFT in X-axis translation, SIFT is more reliable considering other cases. In
rotation examples, NFC outperforms both ICP and SIFT, but SIFT tracker’s re-
sults are close to NFC’s results. Also as seen in Figure 5.5 NFC method can easily
drift because it uses image gradients to estimate the motion rather than well defined

correspondences like SIFT does.
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Figure 5.3: Sample video frames from computer generated sequences. The left

column shows intensity images and the right column shows corresponding disparity
image.



NFC ICP SIFT

Figure 5.4: Head tracking results for synthetic images sequences. Each row repre-
sents tracking results at different frames
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Figure 5.5: Head pose estimation plots for synthetic
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Table 5.2: Performance results of the trackers over synthetic video sequences

Mean error and variance in cm NFC ICP SIFT
Mean | Var || Mean | Var Mean | Var
Translation in X-Axis 2.21 1.27 || 0.84 | 0.43 1.57 | 0.59
Translation in Y-Axis 5.20 | 11.20 || 5.31 7.09 1.11 | 0.27
Translation in Z-Axis 0.85 | 0.17 1.71 1.86 0.67 | 0.08
Mean error and variance in degrees NFC 1CP SIFT
Mean | Var || Mean Var Mean | Var
Rotation around X-Axis 4.42 5.93 5.36 5.36 2.84 | 3.57
Rotation around Y-Axis 2.52 | 4.78 || 28.25 | 151.93 || 3.78 | 4.88
Rotation around Z-Axis 2.56 | 3.20 || 17.69 | 74.10 2.81 | 4.85

5.2.2 Polhemus Tracker

For testing the performance of our tracker we have used a hardware based tracker,
Polhemus Fastrak [37] as the ground truth. The tracker consists of 3 parts: System
Electronics Unit (SEU), a transmitter, and a receiver. SEU contains the hard-
ware necessary to generate and sense the magnetic fields, compute position and
orientation, and interface with the host computer via a RS-232 or a USB interface.
The transmitter contains electromagnetic coils and is responsible for emitting the
magnetic fields. The transmitter is the system’s reference frame for receiver mea-
surements. The receiver unit contains the magnetic coils that detect the magnetic
field emitted by the transmitter. Polhemus is a 3D motion tracker with 6 degrees of
freedom. The tracker has an accuracy of 0.076cm RMS with 0.0005 cm resolution
for the position and an accuracy 0.15° RMS with an 0.025° resolution for the ori-
entation. In a laboratory environment with computers and metal furniture around,
we observed lower accuracy than the specifications. However, the ground truth
captured was still visually good enough to evaluate the head tracking algorithms

considered in the thesis.

The ground truth obtained through the Polhemus tracker and the outputs of the
vision based trackers are expressed in different coordinate systems. In order to

compare the outputs of the Polhemus and vision based trackers, the output of the
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Figure 5.6: Camera and magnetic tracker coordinate systems

Polhemus tracker must be converted to the coordinate system of the vision based
trackers. As shown in Figure 5.6, we have positioned the camera and the magnetic
transmitter as close as possible to minimize the offset between the two coordinate
systems, and aligned them so that the two coordinate systems are parallel to each
other. The position vector acquired through the Polhemus tracker is translated
along the Polhemus’ orientation vector by 10cm so that the ground truth position
is roughly aligned with the neck’s pivot of rotation. At the initialization and model
building step, the center of the head is calculated by both the Polhemus tracker and
the vision based trackers, the offset between the two coordinate systems is calculated
and the measured offset is added to the magnetic tracker’s position vector in order to

obtain the Polhemus tracker output in the vision based tracker’s coordinate system.
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5.2.3 General Performance of the Tracker on Real Data

This experiment was designed to test the performance of the trackers in real video
sequences. Six sequences were recorded. In the first three sequences, the user
translates his head in x, y and z axis for about 10cm. In the final 3 sequences the

user rotates his head around z, y and z axis for more than 20 degrees.

Table 5.3 shows the average error and variance values. Figure 5.7 shows the results
of the three trackers against the ground truth data observed using the Polhemus
tracker. From the plots it can be observed that SIFT and ICP perform better than
NFC for translations; however ICP performs poorly on rotations in line with the
observations reported in [28]. NFC performs slightly better than SIFT on rotations.
In general we can conclude that SIFT tracking is a solution that performs better

than ICP and NFC for translations, and performs as good as NFC in rotations.

Table 5.3: Performance results of the trackers over real video sequences

Mean error and variance in cm NFC 1cP SIFT
Mean | Var Mean | Var | Mean | Var
Translation in X-Axis 4.72 | 15.50 3.12 | 6.05 0.66 | 0.54
Translation in Y-Axis 5.80 | 21.34 2.63 | 2.21 1.11 | 0.69
Translation in Z-Axis 1.71 1.50 1.52 | 1.58 || 1.21 | 0.67
Mean error and variance in degrees NFC SIFT IcP
Mean | Var Mean | Var || Mean | Var
Rotation around X-Axis 2.76 | 4.51 7.72 | 26.67 || 4.67 | 8.67
Rotation around Y-Axis 2.72 | 6.44 | 1247 | 61.28 | 4.71 | 12.44
Rotation around Z-Axis 5.43 | 14.26 | 8.66 | 33.11 | 4.70 | 6.85
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Figure 5.7: Head pose estimation plots for real image sequences.

48



5.2.4 Performance Under Time Varying Illumination Changes

This set of experiments were conducted to measure the performance of the track-
ers under time varying illumination conditions. Five sequences were recorded with
different subjects and under time varying illumination conditions. During the se-
quence, the subjects were asked to rotate their head up to 30° along the y axis then
the z axis and finally along the z axis with translation up to 10cm in the x axis.
Figures 5.8 and 5.11 present some key frames from sequences 1 and 2. Figures 5.9
and 5.12 show some tracker outputs for sequences 1 and 2. Table 5.4 shows the av-
erage error and variance values over 5 recorded sequences. As it can be seen in the
table both NFC and SIF'T are robust to illumination changes. NFC is not affected
by illumination changes due to its depth constancy constraint equation and SIFT is
not affected because of its illumination invariant features. In this set of experiments,
SIFT and NFC perform similar in translations. SIFT perform slightly better than
NFC for rotations.

Robustness to illumination changes is very important for applications in real life
environments. For example in a vehicle environment, the illumination changes sud-
denly based on location and the orientation of the vehicle; therefore a head tracking

system must be invariant to time varying illumination changes.
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Figure 5.8: Intensity and depth images from time varying illumination change se-
quence 1.
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Figure 5.9: Head tracking results for time varying illumination change sequence 1.
Each row represents tracking results at different frames: 0, 60, 90, 140, 180
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Figure 5.11: Intensity and depth images from time varying illumination change
sequence 2.
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Figure 5.12: Head tracking results for time varying illumination change sequence 2.
Each row represents tracking results at different frames: 90, 100, 180, 240, 360
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Table 5.4: Performance results of the trackers under illumination changes.

Mean error and variance in cm NFC 1cp SIFT
Mean | Var | Mean | Var Mean | Var
Translation in X-Axis 1.76 | 2.15 1.45 1.51 1.65 1.65
Translation in Y-Axis 0.69 | 0.55 1.16 1.43 0.98 1.23
Translation in Z-Axis 1.21 | 1.61 || 2.62 4.47 1.16 1.44
Mean error and variance in degrees NFC SIFT 1P
Mean | Var || Mean | Var Mean | Var
Rotation around X-Axis 3.82 | 13.06 || 5.39 | 28.59 || 3.14 | 8.15
Rotation around Y-Axis 6.03 | 28.84 || 10.13 | 107.33 || 4.63 | 19.87
Rotation around Z-Axis 4.23 | 1875 || 4.66 | 28.98 || 3.04 | 6.95
5.2.5 Performance Under Spatially Varying Illumination

This set of experiments were designed to measure the performance of the trackers
under spatially varying illumination conditions. Three sequences were recorded
under spatially varying illumination. During the sequence, moving shadows over the
user’s face were created by inserting objects between the face and the light source,
thus creating very large contrast changes. Also since the shadows are moving, it
creates an illusion of movement on intensity images even though the head itself is
not moving. Figure 5.14 presents some key frames from sequence 1 of this set. As
it can be seen from the images, this is a very challenging sequence. Figure 5.15
shows some tracker output frames for sequence 1. Figure 5.16 presents the plots of
the 6 axes over time. As it can be seen from the plots, all of the methods did fail
tracking the head successfully and after frame 80, the SIF'T algorithm totally lost
the target. NFC algorithm fails since moving shadows on the face contradicts with
the brightness constancy constraint equation and similarly ICP fails because of the
correspondence function which incorporates intensity information into the distance
metric. While intensities are changing continuously the correspondence function

cannot find good correspondences and the algorithm suffers from drift.
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Figure 5.14: Intensity and depth images from spatially varying illumination change
sequence 1.
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Figure 5.15: Head tracking results for illumination change sequence 1. Each row
represents tracking results at different frames: 90, 100, 180, 240, 360
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5.2.6 Performance Under Occlusion

This set of experiments were conducted to measure the performance of the track-
ers under occlusions. Three sequences were recorded with different subjects with
partial occlusions involved. During the sequence, the subjects were asked to par-
tially occlude their faces with hands or other objects. Figure 5.17 present some
key frames from sequence 1. Figure 5.18 shows some tracker outputs for sequence
1. Figure 5.19, present the estimated translation and rotation parameters during
tracking compared to ground truth. Table 5.5 shows the average error and variance
over three recorded sequences. As it can be seen in the table, both NFC and SIFT
are robust to partial occlusions and both can successfully continue to track. NFC

in general performs better than SIFT for occlusion cases.

Table 5.5: Performance results of the trackers over sequences with occlusion.

Mean error and variance in cm NFC 1ICP SIFT
Mean | Var Mean Var Mean | Var
Translation in X-Axis 1.90 0.91 0.97 | 0.57 1.35 | 0.49
Translation in Y-Axis 0.26 0.06 0.18 0.05 0.35 0.11
Translation in Z-Axis 0.27 0.07 0.22 | 0.06 0.34 | 0.09
Mean error and variance in degrees NFC SIFT 1CP
Mean | Var Mean | Var Mean | Var
Rotation around X-Axis 2.28 3.44 3.17 8.15 2.27 | 4.68
Rotation around Y-Axis 6.58 | 42.02 | 15.13 | 267.87 || 7.34 | 53.60
Rotation around Z-Axis 1.91 | 2.11 2.14 4.50 3.28 | 13.34
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Figure 5.17: Intensity and depth images from sequence 1 including occlusion.
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Figure 5.18: Head tracking results for occlusion sequence 1. Each row represents
tracking results at different frames: 70, 80, 90, 100, 110
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Figure 5.19: Head pose estimation plots for occlusion sequence 1

140 160

Translation in centimeters

Rotation in degrees

Rotation in degrees

Translation in Y-axis

i i i i i

T
—=— Ground Truth
—— NFC
—— SIFT

ICP.

60

20 40 60 80 100
Frame No

Rotation around X-axis

120 140 160

a0t

T
—— Ground Truth
—— NFC
—— SIFT

ICP

20} 4
40 4
~60 i i i i i i i
20 40 60 80 100 120 140 160
Frame No
Rotation around Z-axis
60 T T T T
—— Ground Truth
—— NFC
—— SIFT
w0k IcP |
20 b
0
20} 4
_a0f 4
~60 i i i i i i i
20 40 60 80 100 120 140 160
Frame No



CHAPTER 6

Summary and Conclusion

In this study we have explored several methods for 3D head tracking using a stereo
camera input where disparity information is available together with intensity infor-
mation. In this thesis we proposed a salient-point based 3D tracking algorithm and

reviewed two other methods for rigid body object tracking.

In the first part of the thesis, we explored an optical flow based stereo head track-
ing system that combines motion information recovered through gradients of both
intensity and disparity images. During our tests, we have observed that NFC track-
ing algorithm is robust to illumination changes and also provides accurate tracking
results for rotations, but the tracker can easily lose the target in translations. In
the second part, we reviewed a surface registration based algorithm, namely itera-
tive closest point, applied to head tracking on stereo disparity data. Experiments
showed that the ICP algorithm was not well suited for tracking rotations, and we

also observed that it was not very successful for tracking translations.

In the third part we proposed a 3D tracking algorithm that combines SIF'T features
with disparity images to estimate the differential head pose. Our proposed algorithm
performs as well as NFC algorithm in rotations and outperforms both NFC and
ICP alone in translations. Since SIFT features are invariant to linear illumination

changes, our algorithm is also not affected by sudden changes in illumination.



6.1 Future Work

Our technique can be improved on several fronts. On initialization part we assumed
that the initial pose of the head is aligned with the camera, but this may not always
be the case; a precise head pose detection algorithm can be used to initialize the

tracker system.

Also since all the trackers we reviewed or proposed are differential trackers, they
compute motion only relative to the previous frame. An error made in an arbitrary
frame is carried throughout the sequence and these accumulating errors can cause
an unbounded drift. A probabilistic framework can be used to estimate the pose

changes not only relative to the previous frame, but to several other past frames.

During our experiments we have observed that the NFC algorithm is better suited
for sub-pixel movements and rotations and SIFT is robust to coarse translations and
rotations. A hybrid approach, combining the outputs of NFC and SIFT based on a

confidence function, will result in a more accurate tracking system.

Extracting the SIFT keypoints is a computationally heavy process and results in
low rates of frames per second. However exploiting the processing power of the
graphics card and the graphic processing unit (GPU), real-time extraction of the
SIFT features is possible.
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