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ABSTRACT

Microarray data is very important for identification of complex diseases and the
development of diagnostic kits. This topic exhibits considerable aid especially to cancer research.
Therefore, an influential number of biological and medical researchers have to deal with the
datasets obtained from microarray experiments. Usage of these huge datasets is not efficient in
terms of time and cost. Thus, many researchers contribute to tumor classification via effective use
of microarray technologies for cancer research. To be able to obtain the most relevant subset
containing the signature genes that are included in the pathway of certain diseases and therefore

capable of classifying the entire data, is very crucial for true disease diagnosis.

There are several approaches in the literature for this classification purpose. In this thesis,
we present an approach to use, Genetic Algorithms for this feature subset selection problem.
Genetic Algorithm is combined with Support Vector Machines for the calculation of
classification accuracies of each gene. These classification accuracies denote the survival
probabilities of the genes in our algorithm. The genes having higher classification accuracy will

have more probability to survive.

Three different real life cancer datasets are used for the tests. Our algorithm converged to
better results then all other approaches in the literature. In colon tumor dataset which is one of
our test datasets, we were able to classify the entire data with the accuracy of 100% using only 4
features ( genes ). In prostate cancer dataset we classified the data using 3 features with the
accuracy of 100%. And finally we tested our Genetic Algorithm using an ovarian cancer dataset

and we found only 3 significant features out of 15154 genes, again with the accuracy of 100%.



OZET

Giliniimlizde hastaliklarin tespit edilmesinde ve tami aparatlarinin gelistirilmesinde
microarray verilerinin ¢ok O6nemli bir yeri vardir. Bu konu 6zellikle kanser arastirmalarinda
biliylik rol oynamaktadir. Bu sebeple, biyolojik alanda ve tip alaninda c¢alisan cok sayida
arastirmaci microarray veritabanlarindan elde edilmis verilerle ¢alismak zorundadir. Fakat bu
veritabanlar1 ¢ok biiylik miktarda veri i¢ermektedir, dolayisi ile zaman ve bununla baglantil
olarak maliyet agisindan verimli ¢aligmak miimkiin degildir. Bu sebeple, ¢cok sayida aragtirmaci
bu kanser veritabanlarin1 anlaml sekilde ayiklamaya katkida bulunma calismalar1 yapmaktadir.
Bunun sebebi, kanser verisini ayirdetmeye yariyacak ve tanida kolaylik saglayacak kayda deger

genlerden olusan bir alt kiime bulmak, dogru teshis agisindan biiylik dnem tasir.

Verileri ayirdetme konusunda literatiirde bir ¢ok farkli yaklasim mevcuttur. Bu tezde, bu
ozellik altkiimesini se¢me problemine bizim sundugumuz yaklasim Genetik Algoritmalar
kullanmaktir. Bu altkiimeyi olusturabilecek o6zelligin ( genin ) veriyi dogru simiflandirma
becerisini hesaplayabilmek i¢in Genetik Algoritma ile birlikte Destek Vektor Makinalar
kullanildi. Bu smiflandirma becerileri ayn1 zamanda her genin hayatta kalabilme olasiligin
hesaplamaktadir. Yiiksek siniflandirma becerisine sahip genler, diger genlere oranla daha yiiksek

olasilikla kullanilacak ve algoritmanin ileri safhalarinda da rol alma sansina sahip olacaklardir.

Algoritmanin testlerinde, ger¢cek hayattan elde edilmis kanser verilerinden olusan ti¢ farkl
kanser veritabani kullanilmistir. Testler sonucunda, sunmus oldugumuz bu yaklasimla literatiirde
bugiine kadar elde edilmis sonuglardan ¢ok daha iyi sonuglar elde etmis oldugumuzu gordiik.
Kullanmis oldugumuz veritabanlarindan biri kolon kanseri  verileri igermektedir. Testler
sonucunda yalnizca 4 gen kullanarak biitiin veriyi %100 dogru olarak ayirdedebildigimizi
gordiik. Bir diger veritabanindan elde ettigimiz prostate kanseri verisini sadece 3 gen kullanarak
yine %100 dogru ayirdedebilmeyi basardik. Son olarak Genetik Algoritmamizi bir ovaryen
veritabani iizerinde denedik ve her birey i¢in 15154 genden olusan bu veritabanini da yalniz 3

gen kullanarak %100 dogru olarak ayiredebildik.
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1 INTRODUCTION

Genomics refers to have a wide scope of study of genes and their function. Progresses in
bioinformatics such as microarray data analysis are very important for understanding the gene
regulation mechanisms. Microarray experiments provide us with measuring the expression levels
of thousands or ten thousands of genes in a single experiment and this technology allows
examining gene expression patterns that have distinctive qualities for certain diseases. In today’s
world, a crucial number of biological and medical experts have been contributing to tumor

classification via use of microarray technologies for cancer research.

Microarray experiments evincing significant issues in terms of diagnostics of relevant
diseases generally bring about large datasets in which there are thousands of genes. Due to the
fact that biological and medical researchers might suffer from difficulties of the use of such large
datasets, this huge amount of data should be filtered. A possible solution to this problem is to
obtain considerable set of genes which indicates the diseased individuals, via comparing the
disease and the control data sets [1]. This subset consisting of significant genes may be useful for
developing diagnostic kits and least number of genes would require least cost of test, would be
more time efficient. Because of this reason, although reaching the exact classification in such
large datasets using the least number of genes is not an easy responsibility, it is extremely

important for successful diagnosis and treatment.



According to the facts discussed at the previous paragraph, the importance of determining
the subset consisting of minimum number of genes which enables the classification of the disease
data with the highest accuracy can not be disregarded. The problem might be associated with the
selection of useful set of attributes rather than mutually redundant and irrelevant ones. In addition
to the fact that this abundance of the ineffectual attributes causes a needless increase in the work
space, it may also decrease the accuracy of the classification algorithm. The feature selection,
which is also known as the subset selection, plays an important role in classification. Feature
selection methods are frequently used in machine learning. In this process a subset of those
features available from the data are selected, while the unimportant features are not taken into
consideration. The best subset comprehends the least number of attributes, which we hope to aid

to reach the highest accuracy.

Our proposition for minimizing the number of genes in a large dataset, is to treat the
dataset with Genetic Algorithms using roulette wheel selection. Support Vector Machines are

used to analyze the classification accuracy ( the character ) of the genes.

1.1 Organization Of Thesis

Chapter 2 is a review part in which describes the microarray technology in detail. The
biological and the historical background of our approach are also mentioned in this chapter. The
methodology used in this thesis is covered in Chapter 3. Results and the various experiments
done using three different datasets are included in the following chapter; Chapter 4. The last

chapter is the conclusion and the discussion part of the work.



2 OVERVIEW

2.1 Microarray

DNA microarray technology has the ability to analyze thousands of genes at the same
time. This simultaneous analysis acquired by the ability of microarray technology to measure the
activities and interactions of the related genes. In DNA microarray the method used is mostly
based on the comparisons of the expression levels of the genes. So that to be able to understand
uses of microarray technology a simple knowledge of the elementary mechanism of gene

expression is necessary.

2.1.1 Gene Expression

Having knowledge of deoxyribonucleic acid ( DNA ) and ribonucleic acid ( RNA ) is
crucial to understand gene expression. Both DNA and RNA consist of sequences of lined
nucleotides. The nucleotides consist of a base, a sugar and a phosphate group ( Figure 2.1 ). The
sugar phosphate backbone ( sugar and phosphate group ) are bound to one after another by
phosphodiester bond, in a row forming the linear strand posture of the DNA and the RNA. On the

other hand the bases protrude from the sugars.



Phosphate
group

Figure 2.1 Example of a Nucleotide [16]

The bases that are mentioned above can be paired with each other via hydrogen bonds. An
adenine ( A ) pairs with a thymine ( T ) and a guanine ( G ) pairs with cytosine ( C ) since they

complement with each other in a way to maximize the number of hydrogen bonds ( Figure 2.2 ).

Figure 2.2 Base-paring [17]

If this base-pairing occurs between two complementary strands, this form of the DNA is
called double-stranded which is also known with its three-dimensional helix structure as shown in
the Figure2.3. According to the principle of base pairing, the complementary DNA ( cDNA)

assembles.



C : Cytosine
A : Adenine

Figure 2.3 DNA, Helix Structure [22]

The sugar of DNA is deoxyribose from which it gets its name, while the sugar of RNA is
ribose. The other difference between DNA and RNA is in their bases; the four bases of DNA are

guanine, adenine, thymine and cytosine but instead of thymine, RNA has a base named uracil.

Each strand of the double stranded DNA has the ability to replicate itself and to encode
information. The storage capacity of the DNA is extremely huge for an encoding device. 150

Mbytes of information can be encoded by one cubic micrometer of DNA.

A gene is a nucleic acid segment, which contains the information necessary to rule for any
function in the organism. To be able to function, these ruling DNA segments enable synthesis of
proteins, by coding for functional RNAs that has the sequence information of the proteins they
encode for. The hereditary information encoded in the DNA, including the genes and the non-
coding sequences, is called the genome of an organism. The human genome consists of
approximately 3.2 billion of DNA base pairs [32]. These base pairs contain 20,000-25,000 genes.
1.5% of the whole human genome is only capable of synthesizing proteins; those protein coding

regions are called exons. The rest of the genome is called junk DNA.



Proteins are the machines that control the function of all living things. Typical examples
of their responsibilities are the catalytic activity, binding and transport. The function of a protein
is dictated by its shape. The information needed to build up a protein is hidden in the cell genome
which is composed of the genes. Each gene which is a unique sequence within the DNA, is
basically an instruction manual for the directions to synthesize a protein. On the other hand it also
has the responsibility to decide under which conditions, which proteins, through which cells
should the synthesizing process be done, according to the information embedded in it. This
process of transformation of the gene to the protein is called the gene expression and it occurs in
two steps. The first step of the transformation is the phase which is said to be the transcription. In
this step, the gene which is located in one strand of the double stranded DNA is used as a
template for building up the RNA. This RNA is called messenger RNA ( mRNA ). In the second
step which is called the franslation, the RNA which had been constructed in the first step, is
responsible for synthesizing proteins and the proteins are the ultimate products of the gene
expressions. Proteins are known to be composed of amino acids covalently linked via peptide
bonds. Three bases of RNAs are necessary to form a single amino acid. This gathering of
reasonable three mRNAs is called a codon. Every codon over an mRNA corresponds to an anti-
codon on a tranfer RNA ( tRNA ). There are twenty different amino acids and each can only be
expressed by distinct combinations of anti-codons ( or codons ). This second step of the gene
expression, occurs in the cytoplasm, within the ribosomes. The codons that are arrived to the
ribosome, respectively call for charged tRNAs. A charged tRNA is the tRNA which is already
connected to an aminoacid. These aminoacids bind to each other in a linear order. Those bound
aminoacids are the products of gene expression ( Figure 2.4 illustrates the two steps of the gene
expression. ). The linear sequence formed by binding of the amino acids is the primary structure
of the protein. Through certain phases, a protein, later folds into its characteristic three-

dimensional structure.



DNA deoxyribonucleic acid
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Protein

Figure 2.4 Gene Expression [18]

When the gene is transcribed upon instructions from certain signals within the cell, its
mRNA will be present in the cell at that stage. mRNA within the cell show what genes are
transcribed and the amount of transcripts at a certain stage of the cell. Microarray technology

enables to determine these levels in a high throughput manner.

2.1.2 Microarray Experiments

For measuring gene expression, there exist various techniques. Certain examples for those
techniques are differential display, northern blots and serial analysis of gene expression. In all of
the techniques a complementary DNA ( ¢cDNA ) strand is formed for both two strands of the
DNA. This process is said to be hybridization which is a chemical reaction that forms a double
stranded nucleic acid by joining two complementary strands of DNA and RNA. If it is a DNA-
DNA match, the bases matching should be adenine-thymine and guanine-cytosine. ( As

mentioned in the previous sections RNA has uracil instead of thymine. )

For a microarray experiment two transcribed mRNAs from two distinct sources and a
probe consisting of a chain of nucleotides are needed. There has to be enough probe sequence to
give both sample 1 and sample 2 to bind with as much probe as they will and in both samples
there may exists multiple copies of many genes. The aim is to detect which sample will have
higher concentration of mRNA complementary. To be able to separate the samples at the end of

the experiment, they must be pre-labeled. For the labeling fluorescent dyes are used; Cyanine 5



( Cy 5) and Cyanine 3 ( Cy 3 ). Cy 5 is the green dye and Cy 3 is red. Both the sample dyed
green and the sample dyed red should be mixed with the probe in parallel. The mixing will let the
hybridization occur. To decide which sample has the higher performance to match with the probe
sequence, the concentrations of the colors will be compared [2]. ( The Figure 2.5 illustrates a

microarray experiment )

Cancer Cells Normal Cells
RMNA Isolation
¥ v
mRMNA mRMA
Reverse
Transcriptase
Labeling
¥ ¥
"Red Fluorescent” Targets "Green Fluorescent” Targets

Combine Targets

Hybridize to
Microarray

\J

Figure 2.5 A Microarray Experiment [19]



2.1.3 Different Microarray Technologies

Various microarray technologies might be added up in two general titles.

» Spotted microarrays in which generally the probes are either oligonucleotides or
complementary DNA ( ¢cDNA )s. The probe is spotted on to the surface of the microarray.
Each spot to reflect different gene expression levels. The hybridization is done with
cDNA labeled either green or red, to be able to identify the diseased tissue or the normal.

As a result the differences between the colors with respect to each other are acquired.

» The oligonucleotide microarrays give the absolute value of gene expressions and use the
probes to match the sequence of known mRNAs. To make comparison of different genes
exhibiting character, two separate microarrays should be used. Affymetrix microarrays

are the example of oligonucleotide microarrays.

2.1.4 The Usage of Microarrays

In Differential Gene Expression Studies the genes are examined under distinct
experimental conditions like comparing the organisms in different development stages or genes
in different tissue types. A very typical example of differential gene expression study is

comparing the gene of normal tissues with the gene of the diseased [2].

A very similar study of differential Gene Expression is Gene Co-regulation Studies which
compares the profiles of the genes with each other. The aim is to select the genes that show
difference under variant conditions, coordinated or correlated with each other. So that the gene
co-regulation studies, is an experiment which is made with two or more genes [2]. Correlated
genes are considered to be on the same pathway. Through such studies one can determine which

pathways are affected by the disease.



The Gene Function Identification Studies deal with the novel genes. The expression level
of the novel genes is examined under different experimental conditions to be compared with a
prescienced gene's expression levels under the same conditions. The known genes acting

considerably similar to the novel gene are the clue for determining the function of the new gene

[2].

Taking same gene from same source at different period of time and comparing the gene
expression level differences is called 7Time-Course Studies [2]. Time course studies are similar to
correlated gene studies in a way they both help to find which genes are correlated and which

pathways are triggered by the disease.

Studying over a sample, a tissue or a patient's reaction to an exposure of different dosages
of a chemical ( mostly drugs ) is called the Dose-Response Studies [2]. Effected genes reveal

which pathways this drug shows its effect on.

Identification of Pathways is trying to disclose the route like which genes and which
products of the genes function in which cells. Identification of the Gene Regulatory Networks is

important because of the gene regulatory network's specialty of controlling the gene expression

[2].

Predictive Toxicology Studies are based on microarray databases storing huge amounts of
involved organs and their response to specific toxic agents. In such a study, the goal for the
pharmaceutical industries, is to identify toxic influence of an unapprehended compound as

seasonable as possible [2].
As they have the ability to uncover the expression patterns which have distinguishing
traits for particular diseases, the gene expression experiments of microarrays are important for

Clinical Diagnosis [2].

In Sequence-variation Studies the goal is to reveal the sequence variations of DNA which

is correlated with the phenotypic changes [2].

10



Our experiments in which real world data is chosen, three different datasets presenting the
expression levels of genes obtained from cancer and control patients is used. Initially a colon
cancer data which consists of 62 tissue samples comprising of 40 tumor, 22 normal, each with
2000 distinct gene expression levels. This data set is obtained from the usage of Affymetrics
oligonucleotide microarrays by Alon et. al. [15]. Secondly an ovarian cancer data set obtained
from Petricoin et. al. is used. This data set contains 162 tumor and 91 normal tissue samples, each
represented with 15154 gene expression levels [20]. Finally a prostate data set covering 12600
gene expression levels for 52 cancer and 50 control genes is used. This prostate data set is
obtained from Singh et. al. [21]. Microarray experiments were used by the researchers, to obtain

the three data sets of expression levels.

As a result of microarray experiments, very large amounts of expression levels of genes
are achieved from the simultaneous works from thousands of genes. Therefore, although it is
extremely important to use these datasets for accurate classifications for diagnosis and treatment
of relevant diseases, it is not very easy to succeed [1]. Recently scientists are concentrating on

this subject. There are a number of proposed solutions for this problem [3, 4].

2.2 Feature Selection

It is important to represent the data in a range of features in pattern recognition problems.

In terms of time and cost, it is not profitable to gather and handle all the data available [2, 5].

Therefore in machine learning, Feature Selection methods are frequently used. Feature
Selection which is also said to be subset selection, is basically eliminating the irrelevant and
redundant attributes and selecting a reasonable subset out of the entire data. This selection of the
plausible features among the whole extensive data may have an impact which is considerable

over the effectiveness of the resulting algorithm [5, 6, 7].

11



There exist two different approaches for the feature selection problem in the literature.

These approaches are called filter approach and wrapper approach.

In wrapper approach, the classifier system is trained with the feature subset as an input.
In this method, the variable subsets are selected by the classifier are assessed by the learning
algorithm. The problem with this method is known to be the large amount of computation that it
requires because every time the classifier should be retrained [8]. There are two ways for the
wrapper approach. One of them is the forward selection and the other is the backward
elimination. In backward elimination, the initial set consisting of all variables is diminished by
the elimination of the less significant variables. Oppositely, larger subsets are formed by

combining the variables in forward selection [37].

On the other hand, in filter approach features are selected before the actual learning
algorithm that uses a predefined measure. Because of preselecting the features, selection method
does not affect the performance of the learning algorithm [37]. In the literature there exist various
approaches which computer scientists proposed about the feature selection problem and since the

filter approach uses less amount of CPU, it can appreciably be seen in the most recent works [9].

The preliminary focus of the researchers for the feature selection problem was on the
breadth first and branch and bound algorithms. The results were satisfactory with the
conventional statistical classifiers, which are simple probabilistic classifiers but experiments with
the non-linear classifiers gave destitute results [10,11]. On the other hand to perform effective
feature selection heuristic search and randomized population based algorithms are also being
tried. An example to these kinds of algorithms are Genetic Algorithms which made the biggest

impact among other concerned examples [12,13].

In the literature, the problems that require searches within the microarray datasets are one
of the most conspicuous examples that the Genetic Algorithms are used for. The microarray
datasets compose very large search spaces because they contain very large number of feature and
in addition there exists two opportunities for every feature in feature selection problem ( the

feature is selected, or not selected ). Thus, in many approaches in which the aim is to filter out the
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significant features within the microarray datasets, genetic algorithms in combination with

distinct classification methods are preferred recently.

2.3 Genetic Algorithms

The term Genetic Algorithm is abbreviated as GA. The principal that the GAs are based
on was first proposed in 1960's. Those days the idea of evolutionary strategy was being
transpired in Germany by Ingo Rechenberg and by Hans-Paul Schwefel and in USA. A very
similar idea was being worked on by Lawrence J. Fogel naming his research evolutionary
programming. In both of the approaches, the search is done using mutations and selections. The
missing idea with these reseaches was considered by Fraser and Bremermann. That idea was the
recombination. Those researches, including mutations, recombination and selection, enlighten the

approach of John Holland's which is said to be the GAs [12,14].

The basic idea of the evolutionary programming and the GA is simply based on imitating
the laws of the nature. The evolution is the model to be imitated. One of the basic ideas
underlying the evolution is the natural selection. Charles Darwin is the natural scientist who
proposed the idea of natural selection. According to natural selection, an increase in fitness of the
organism and an increase in the organism’s ability to reproduce are provided by the small
heritable variations in organisms. The theory of natural selection is set out in detail in Charles
Darwin’s book called The Origin of the Species which is published in 1859 [23]. After
inheritance based on genetics is discovered by Gregor Mendel, in 1930’s the combination of
these two approaches gave the evolution its modern shape. Evolution is known to be the
variations from one generation to next during recombination. The nature follows the Darwinian
principle of survival of the fittest and mostly selects the fitter ones rather than less fits to let them
to reproduce [25]. The variations occur among the gene expressions of the parents and the
offsprings. This variation is achieved mostly from the process of cross-over. During cross-over
the chromosomes ( a single large DNA molecule containing many genes ) from each parent are

paired to exchange some pieces of their genes as shown in the Figure 2.6. In addition to this, the
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mutations which are the random changes in the base-pair sequence of the genes, may also rarely

lead to genetic heritable variations.

“

Figure 2.6 Crossing-over Chromosomes [24]

The processes of cross-over and the mutation which were mentioned in the previous
paragraph, are called the genetic operators within Genetic Algorithms ( GAs ). In the basic GA,
initial population is constituted from a set of individuals; this population is transacted with the
genetic operations to form offsprings. This procedure is continued from one generation to another
by replacing the individuals of the concerned generation with the offsprings. So that, the
offsprings belonging to the related generation, will be the parents of the next generation. The only
need of a basic GA is a function to calculate how suitable the offsprings are [14]. This function
will generate the solution for the use of GA to behave relevant to the Darwinian mentality of
survival of the fittest and imitate the environment to decide how fit the solutions are. So GA will
be able to use the historical information achieved from the previous generations and speculate on
the offsprings which are expected to have better performance with respect to the previous
generations [26]. This function is called the fitness function. A scheme for the basic GA is shown

below ( Figure 2.7).
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Figure 2.7 A Basic GA

2.3.1 Encoding

In a GA, there are several coding schemes to represent the genes in the individuals. The

preference about the encoding technique is made according to the related problem. One of the
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most used techniques is binary encoding. This technique is popular because the first works for
GA is done using binary encoding and certain patterns can be followed. In binary encoding, an
individual will be formed of a string that consists of Os and 1s, and it will be represented as
{10011,00101,..... ,11001}. Another way to encode the individuals is permutation encoding
which is generally used in ordering problems. The idea in such encoding is based on trying to
find the minimum path. The individuals have a string consisting of numbers and one individual
will be represented as {1,7,5,....,9}. In permutation encoding the search is generally done using
mutations, cross-over is generally not used. Value encoding is another technique, in which the
real values are used to express thee individual. A formula that signifies the problem is arranged.
The solution of the equation coming from a candidate parent is hoped to be zero. The surviving
probability of the individual is calculated according to the result taken from that individual with
respect to the equation. So an individual with the solution that is closest to zero will have the
highest probability to survive. Another way to encode the individuals is called tree encoding. In
this technique, a tree is used to represent the calculations. Error for every point is calculated and
the point with low error has higher fitness value. In this technique, the cross-over is done among
the branches and each node can be changed during the mutation. An example of this type of

encoding is shown below ( Figure 2.8 ) :

(*z(+xy))

Figure 2.8 Tree Encoding
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2.3.2 Initialization of the Population

A population is formed by a set of individuals. The initial population is usually generated
randomly. Usually the population size is kept constant but depending on the aim of the algorithm,
in the future generations the number of individuals in a population may be allowed to vary. The
fitness evaluation function is again chosen with respect to the problem. The individuals that are
highly fit according to the fitness criterion will have more probability for getting selected as a
parent to reproduce the children. The parents are chosen and form another population under the
name of mating pool [25], so that the parent candidate with a high fitness value will be able to
have more copies in the mating pool. By this means, the knowledge from the high fit individuals
will be more effective over the next generations. For the constitution of the mating pool mostly
Roulette Wheel Parent Selection or Linear Selection is used [25]. To the parents selected with

respect to their fitness values, genetic operators are applied.

2.3.3 Fitness Function

This function decides how fit the individuals are. The character of each individual is
evaluated at this part. So that, this function is be called as the objective function of GA. Each
individual is taken as an input, and according to the individual’s ability to solve the problem, the
fitness values are calculated. At the end, each individual is calculated to have a single numerical
value to represent its fitness value. The fitness values returned by the objective function are used
to calculate survival probabilities of the individuals depending on the selection scheme.
Individuals having higher fitness values will have the right to survive for the next generation,

others are eliminated. This idea is directly based on the nature’s survival of the fittest principle.
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2.3.4 Cross-over

As mentioned before, while cross-over is applied to two randomly selected parents, the
main goal is to exchange the information between selected individuals. As a result the
offspring(s) is generated with the combination of the knowledge acquired from these two parents.
There exist different cross-over techniques. Some of them are one-point cross-over, two point
cross-over, multiple-point cross-over, cut and splice and uniform cross-over [25]. In one-point
cross-over, a point is detected within each parent and starting from those points the strings ( so
that the information ) is exchanged ( Figure 2.9 ). In two-point cross-over, instead of one point
for the exchange, two point are determined and the region in between the points are swapped
( Figure 2.10 ) while in the multi-point cross-over, as following the same principle, more then
two points are chosen. On the other hand, in cut and splice technique, two distinct points are
chosen for each parent and because of that the children possibly end up with different number of
genes as illustrated in the Figure 2.11. In uniform cross-over, as it is in the other approaches two
parents may form two offsprings. In this technique, every gene ( or every bit in each gene
depending on the structure chosen for the population of GA ) of two parents are compared in one
by one with each other. The genes that constitute the offsprings are selected from each parent

according to a uniform distribution.
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Figure 2.9 One-Point Cross-over [27] Figure 2.10 Two-Point Cross-over [28]
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Figure 2.11 Cut and Splice Cross-over [29]
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Depending on the chosen cross-over technique, an optimization for the parameter of the
cross-over rate might be needed. This parameter stands for deciding what percentage of the two
parents ( that are matched for the recombination to occur and generate children ) will be
exchanged. Too high cross-over rate might cause loss of information gained and generally

mutation rate is chosen around 10% in the literature.

2.3.5 Mutation

Final operation of a basic GA is mutation. The goal of this genetic operator is to provide
random genetic diversity. Algorithmically it lets the code to search a distant area apart from the
region that it is concentrated on. The information lost in the previous generations might be
regained with the help of this random search. The idea is basically, selecting a random individual
among the new generated children and changes a randomly selected gene in that child. The
mutation rate is generally kept low with respect to the cross-over rate. A relatively high mutation
rate would cause loss of information and change the GA in to a random algorithm. In general
there are three mutation techniques. One of them is called one-point mutation. When encoding
technique is binary encoding, one bit is chosen to be changed from 0 to 1 or vice versa. This
selected to be replaced is called the mutation point. In bit mutation, which is another mutation
technique, every bit in the individual which is decided to be mutated is changed from 0 tol or 1
to 0. The last mutation technique is called the uniform mutation. In this technique a template
individual is generated for the individual who is decided to be mutated. This template has the
same length with the individuals. This template reveals which bits ( genes ) of the individual will

be changed. An example for uniform mutation is illustrated in Figure 2.12 :
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Figure 2.12 Uniform Mutation
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3 METHODOLOGY

In our approach, we used genetic algorithms with roulette wheel selection for the feature
selection problem. We try to select minimum number of features that are relevant for the
classification of gene expression data among three different datasets obtained from

oligonucteotide affymetrix microarrays. The datasets are mentioned in the previous chapter.

3.1 About the Algorithm

3.1.1 Data Structure

Generally in the literature binary encoding is preferred to be used for the data structure. But
we preferred to store the indices of the features ( genes ) that exist in an individual, in to the array
of that individual. The reason for our preference is the efficiency of the search within an
individual. There exist two other different variables for an individual. One of them, which is
named FeatureCount is used to store the total number of genes that are owned by the individual
and the other stores the fitness value of the individual within the generation, so called Fitness.
Zero-based indices are used to name the genes. This means the first gene is indexed as 0, the
second gene is indexed as 1, and the third one is indexed as 2 and so on. According to above

information, the parameters, for an individual in one generation, are exampled below:
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double m_dFitness=1.0;
int m_nFeature=3;
int m_nFeaturesinMAX FEATURES];

|

m_nFeatures[0]=7;
m_nFeatures[1]=39;
m_nFeatures[2]=125;

The indices for the genes, belonging to an individual, are placed in a sorted formation.
Every individual may have different number of genes and the algorithm is capable of crossing

over the individuals having different lengths.

3.1.2 Random Number Generator

In our program, a very recent version of the Mersenne Twister ( MT )is used to generate
random numbers. MT which is a pseudorandom number generator, is developed in 1997, by
Makoto Matsumoto and Takuji Nishimura [31]. Its running time is much faster then the other
statistical generators and because of this reason it is mostly used in the statistical problems. The

algorithm has the period of 2'%%*’

—1 and has 623-dimensional equidistribution property. These
properties make MT the best random number generator which is implemented. The version that is
preferred in our approach has just been released in March, 2005 and it returns the random number
directly as a double number. This expedites the run time of the entire program by not loosing any

time with the conversion of integers to doubles.

3.1.3 Calculation of the Fitness

As mentioned in the previous chapter, our GA requires an external algorithm to calculate
the fitness values of the individual. In our work, we decided to use Support Vector Machines for

this purpose.
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Support Vector Machines ( SVMs ) are commonly used for classification and regression.
The basic aim is to classify the items that are similar in their feature values. These supervised
learning algorithms are known to be enhanced from linear classifiers. The input vectors are
mapped to a higher dimensional space and data is separated with a hyperplane. This hyperplane
puts the data in to two distinct classes. To both sides of this hyperplane which shows the border
of different classes of the data, two hyperplanes in parallel are also invented. The generalization
is known to be better as the margin between two parallel hyperplanes is larger. Thus, the distance
between these two parallel hyperplanes, is aimed to be maximized, while the effects of the
classification error is minimized [33]. The algorithm for SVM was originally proposed by

Vladimir Vapnik in 1963 ( see Figure 3.1 )

class 2

class 1

Figure 3.1 The margin between two classes achieved from SVM [36]

3.2 The Flow of the GA

Several trials with various combinations of the parameters are done in order to be able to
decide which combination to be used. All of the data is considered for this optimization of the
parameters. The constant parameters are decided to be as follows. The maximum number of

genes ( features ) that an individual can have within a generation is limited to 30 ( This parameter
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will be called as Maximum Feature in the following sections. ). The mutation rate was decided to

be 0.1.

A possible problem with the previous work of our project might be the inefficient
exploration of the search which may be responsible for the loss of the genes that were important
for the classification, in the very beginning of the algorithm. For that reason, these genes would
possibly not have the chance to represent their classification powers in the further generations.
Our approach overcomes this problem by assigning a parameter set for the minimum occurrence
of every gene in the search procedure that controls each feature to be assigned to more than one
individual. To be able to perform this, in a loop, for each gene we assigned two random numbers
which are representing the individuals they are going to be set to. A suitable individual for a
particular gene is decided on the basis of two constraints. The individual that is randomly
selected for the related gene to be assigned, should own less than 30 genes. The second control is
done by checking through the selected individual, to see whether it had already taken the related
gene in the consideration or not. If both conditions are satisfied, the gene will be assigned to that
randomly selected individual. Otherwise, the algorithm will look for the succeeding individuals
one by one, until it finds a suitable individual to place the gene. Thus, a homogenous distribution
of genes over the individuals is expected. The constant number chosen for this parameter affects
another variable which is the maximum size of the population. This is important for the decision
of the optimum number for the population. After a number of tests, the constant number is chosen
as 2, and this parameter named Feature Repeat. This number makes sure that every gene is
represented at least in two different individuals and unlike the previous approach; it gives a

survival chance to every gene.

The population size is the variable that stands for the number of individuals that are going
to exist in the initial population. Before the GA is initialized this number is calculated according
to three facts. The population size is directly proportional to the total number of genes in the
dataset and the number of repeats we want each gene to appear in our population. On the other
hand, it is inversely proportional to the parameter standing for the maximum number of genes
that each individual might have. This parameter is called as Maximum Feature within the

formula. The formula used in our algorithm, for the population size is as follows:
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(Feature Repeat) * (Total Number of Genes in Dataset)

Max Population =

Maximum Feature

( The result is rounded to the integer above not to loose any data from the Maximum Feature. )

The initial population is generated randomly according to the parameters above. The
algorithm consists of two distinct parts. The first part is made up of runs contributed to search the
fitness space to generate fitness values of all the genes and the second part is the main algorithm

where the feature reduction is achieved while maximizing the classification accuracy

3.2.1 Runs for Searching the Fitness Space

To be able to search the fitness space a certain number of initial runs are done. The goal of
this part is not to find minimum set of features but to establish a foundation for the second part at
which results will be obtained. In this part the algorithm aims to search the space and to assign
fitness values to each gene separately. For this purpose, a population consisting of all the genes,
which is already generated, will be used. The goal is not to protect any gene or individual with
regard to its fitness value, but to collect the fitness values of each gene in combination with
maximum number of different, random genes. For this kind of selection, a standard random
selection is applied. Mersenne twister is decided to be used as the random number generator. As a
result each gene will have the equal opportunity to exhibit its character in combination with
various genes. The fitness values are calculated to be stored. Depending on this idea, a cross-over
technique which does not destruct any gene, is selected and no mutations are done in this step

since it is not necessary.

As the cross-over technique, uniform cross-over is used in this part of the algorithm,
randomly two parents are selected among the individuals. Since mating is not decided up on the
fitness scores, each parent is mated once in one generation. The genes are stored and ranked in an
individual. Each gene for the children is selected with either from the first parent or the second

according to the probability of 50%. For this process, for each gene a random number is
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generated between 0 and 1, if the result is less then 0.5, first parent’s related gene is assigned to
the first child and the second parent’s related gene is assigned to the second child’s related gene.
Otherwise exactly the opposite assignments are done. The cross-over in these initial runs is
expected to give the maximum variations related with our aim, to enable the usage of all genes
with different combinations. For this reason, the cross-over rate is selected as 50%. Below, the
cross-over technique used in this part of the algorithm is exampled using 2 parents consisting of 2

distinct genes ( Figure 3.2 ).

To decide the first genes of
the children:

Generate a random number
between 0 and 1.

The random number generated: 0.25

0.25<0.50
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27 0

i I i — Child 2

To decide the second genes of
the children:

Generate a random number
between 0 and 1.

The random number generated: 0.78

0.78 > 0.50

27 47

I I I — Child 1

I I I ﬁ Child 2
Figure 3.2 Cross-over in the Runs for Searching the Fitness Space

Another parameter to be chosen is the number generations to be run for the initial phase of
the algorithm. We tried several values for this parameter such as 10, 20, 50 and 70. As a result, it

is observed that the more the number of the generations increased, the earlier the solutions are

27



achieved in the main algorithm. The gap between the trials 10, 20, 50 was more conspicuous, so

initial search step is decided to be run for 50 generation.

3.2.2 The Main Algorithm

At the end of the initial run we acquired considerable knowledge about the characters of
the genes. In each generation, the average fitness scores of the genes are taken and added to
average fitness score of that gene from previous generations for their use in the next step; the
main algorithm. The fitness score of a gene is the sum of the average fitness score of that gene for

every generation.

As the data structure of the main simulation the fitness coefficient of the genes and the
array for the fitness values of the individuals are used. The fitness coefficient of the genes stands
for average of the summation of the fitness values of the individuals that contain the related gene

[30]. Below, the array is shown schematically for colon dataset having 2000 genes ( Figure 3.3 ) :

| 0 | ‘I | .............................................................. | ] QQQ |
| | | | | — Feature Scores
A B
first individual indexed “0” > {0,1,437,1587} > Fitness Value = x
second individual indexed “1” > {1,765,1154} > Fitness Value =y
A (Gene0)=x

B (Genel)=(xty)/2

Figure 3.3 Calculating the Fitness Values of the Genes
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This value is calculated as the average fitness score for each gene in each generation and
added to average fitness of that gene from previous generations. Thus, as the generations
progress, the genes that are highly used, will have the chance to make their fitness values larger.
Those genes which have larger fitness values definitely have higher probabilities to be selected
by the roulette wheel selection algorithm. The fitness values of the individuals that involve a
certain gene are averaged within the generation so that is, the dramatic gap that might occur

between the fitness values of the genes if they are summed could be eliminated.

Although in the literature it is possible to see studies destroying all the population in
certain number of generations, converging to significant results [30], in our test runs we saw that
not destroying the population yields to better results. Thus, we decided not to destroy the
population. Destroying the population means destroying the accumulated know-how; the only
remaining thing will be the feature scores. But it seems to be better to continue from the existing

point and try to improve it until convergence.
To select the crossing-over scheme various methods with different cross-over rates are
tried. We ran the algorithm for 3000 generations to be able to see the differences between the

cross-over methods clearly.

The graphics acquired from the trials of three different cross-over methods is shown

below, in Figure 3.4:
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Figure 3.4 Comparisons of Some Cross-Over Techniques

In the above graphics, the vertical axis stands for the generations that the algorithm ran for
and the horizontal axis stands for the number of features that the algorithm could filter out. The
dots represent the solutions achieved in the corresponding generation using the corresponding

number of feature with the accuracy of 100%.

The first trial which is symbolized with the color grey in the chart, was using the cross-
over rate 20% and the second trial which is colored yellow in the chart, was using the cross-over
rate 50%. As it can be seen above, we could not detect any obvious differences. Then we tried
uniform cross-over generating single child and this technique significantly improved the

performance of the algorithm in terms of time and precision.
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Therefore, we decided to use uniform cross-over in which two parents matched to
constitute a single child. When a single child is attained from two parents, the variation in the
search is increased and as we are searching within huge datasets, this kind of cross-over
technique is suitable for our work. In this method to be able to generate a single child, two
parents are selected among the population while the ones with higher fitness values are favored.
So that, the relevant parents would have more chance to evince themselves and the size of the

population is avoided from being reduced through every generation.

In the uniform cross-over ascertaining a single child, two parents are chosen with the
roulette wheel selection and matched. Every single gene of the child is chosen either from the
first parent or the second with the probability of 0.5. If the sizes of the two parents are not equal,
the parent having the least number of genes is maximized by using one or more gene of that

parent more then once.

The genes within the significant parents are highly used and so have higher fitness values.
This means as the generations go further, the parents having same genes will have higher
probability to mate. The genes are stored sorted within the parents and so same genes might be in
the same place within two different parents. So that, either on or the other gene will be selected
for the child and the child will have no identical genes. But on the other hand, when same genes
are placed in different places of two parents, the child may contain two identical genes at the end
of cross-over. In that situation, the identical genes are merged and so the size of the child will be

reduced.
Below, each possibility is illustrated. Figure 3.4 demonstrates an example of match of

parents having identical genes in the same order, while Figure 3.5 demonstrates having identical

parents in different order.
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Parent 1 > {4,15,140,670}

P | Child >  {10,15,140,670}

Parent 2 > {10,56, 140,898}

Child > {10,15,140,670}

( no need to merge )

Figure 3.4 A Match Causing No Shrink

Parent1 >  {4,15,140,670}

sl | Child >  {140,15,140,898}

Parent 2 > {140,510,870,898}

Child > {15,140,898}

( sorted and merged )

Figure 3.5 A Match Causing a Shrink
The next genetic operator applied to the algorithm is mutation. In mutations a chaotic

element is injected in to the algorithm in low ratios. This provides the possibility to search a

random point or points apart from the space that the algorithm is concentrated on. Deciding to
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mutation rate is a delicate thing to do, for the reason that high mutation rate can cause big jumps
from the existing solution which leads to information loss and eventually leads to divergence. If
the dataset used is large enough, then the rate could be relatively large. In this work mutation rate
is tried to be 5%, 7%, 10% and 20%. The best solution is taken from the tests done with using the
mutation rate 10%. For the mutation step, for each gene of an individual, a random number
between 0 and 1 is generated. If the number is larger then 0.1, then the related gene is obliterated

and instead randomly a popular gene is chosen by roulette wheel selection.

After the mutation a new generation is created and the fitness values of the new
individuals are calculated by SVM. A constant number of worst individuals of new generations
are replaced with same number of best individuals of the previous generation. Those individuals
with the best fitness values of the old generation are called the elitist parent. We tried the elitist
parent ratio as 10% and 20%, 10% gave the optimum results. Higher ratios for the elitist parent is
to become conservative that, the more you do not risk to loose the information gained, the more
you can not find betters. In further generations the number of individuals which have the fitness
value 100% will increase. In our algorithm, the ones having the least number of genes among
those highest fitness valued individuals have the first priority to be chosen as the elitist parent.
Accordingly, in the children, the ones having the highest number of genes are replaced. This

helped the algorithm to work faster and so converge to better results.
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4 RESULTS

4.1 Datasets

In our approach, we have tested our genetic algorithm implementation with real world

data as mentioned in the previous chapters.

The first data used is a colon tumor dataset obtained by Alon et. al. using
Affymetrics oligonucleotide arrays, exhibiting gene expression levels of 2000

genes for 40 tumor and 22 normal colon tissue samples [15].

In the second dataset which is obtained from Singh et. al. [21], consists of 12600

gene expression levels of 52 prostate cancer data and 50 control patient data.

Third dataset contains ovarian cancer data with the gene expression levels of
15154 genes taken from 162 diseased and 91 control patients. This data is

obtained from Patricoin et. al. [20].
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4.1.1 Previous Approaches Using The Same Datasets

These three datasets are worked on, by various researches to be able to achieve the
minimum subset of features ( genes ) that classifies the entire data. Although there were some
other approaches to this problem using the same datasets like Liu et. al. [34] and Bing et. al. [35],
the best results in the literature were gained by Kiigiikural ez. al. [9]. This work was the previous
approach of our group. Kiigiikural et. al. was able to classify the colon cancer data with 98.38%
accuracy using 12 features, ovarian cancer data 100% using 12 features and prostate cancer data

with 96.7% using 19 features.

The best results up to 2002, for ovarian cancer dataset was achieved by Lui et. al. [34].
They had achieved 17 features that have the ability to classify the data with the accuracy of
100%. To be able to select those successful features, they used an entropy-based, an y’-statistics,
a correlation-based ( CFS ), a t-statistics and a MIT correlation-based feature selection methods.
In their approach, instead of ranking the individual features, subsets of features were scored and
ranked. They checked for the validity of their results using several different classifiers like £ —
nearest neighbor algorithm ( A&-NN ), C4.5, Naive Bayes ( NB ), SVM and PCL ( Prediction by

Collective Likelihood of emerging patterns ). They chose 10-fold cross-validation for their tests.

Bing et. al. used prostate cancer and colon cancer datasets in their research in 2004 [35].
Their approach was to use combination of some feature selection methods with clustering
algorithms. These methods were ranksum test, Principle Component Analysis ( PCA ), clustering
and t test. They used three different neural networks. In the first network, the ranksum test was
used to be able to extract and select the top ranked 30 genes. In the second network, PCA was
used to achieve 15 principle components. In the third network, the entire data was clustered into
50 groups consisting of genes, and then t test was used to select top 30 genes which are the
significant. Here, each cluster was assumed to belong to the same pathway, so they hoped to be

able to prefilter the set of genes by eliminating the highly correlated ones. Then the averages of
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the results were taken to set the output. They made the verification of their results using 3-fold,
10-fold, leave-one-out cross-validation ( LOOCV ). Using this technique with those two
datasets, they achieved the best results that had ever been obtained up to 2004. With this
approach, they were able to select 30 features within the colon cancer dataset classifying the data
with the accuracy of 91.4% and 30 features within the prostate cancer dataset classifying the data

with the accuracy of 97.06%.

4.2 Experiments

Cross validation is a confirmation technique in which the data is partitioned in to subsets.
The algorithm is performed on the initial subset which is called the training set. And the other
testing subsets are used to validate the initial analysis. In n-fold cross validation, the data is
partitioned in to n subsets and the one of them is used as a test, while there are n-1 training sets.
This process is repeated n times to be able to let all n subsets to become training set. Then as a

result the average of each fold is taken to give a single result.

In our work, we used LIBSVM and we only changed one of the constant parameters of
LIBSVM which is the cost parameter C. That parameter is a user specific parameter. The default
value for this parameter was 1 and replaced the value with 100. The parameter gamma which sets
the kernel function used in the SVM is 1/k by default, where k represents the number of training

sets. Thus, to be able to validate a result with n features, k is assigned to n.
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4.2.1 Experiments with Five-Fold Cross-Validation

We ran the algorithm with five-fold cross validation, and we got relevant features
classifying the data with the accuracy of 100%. Our algorithm is run for 500 generations for each

three datasets.

Below the results we obtained from each of there datasets compared with some other

results in the literature and explained separately:

COLON CANCER DATASET

(having 2000 features originally)

ACCURACY | # of FEATURES

Our Features 100% 4
The Best Result so far 98.38%* 12*
Other Previous
Results 91.4%** 30**

*Results from Kiigiikural et. al. [9]
**Results from Bing et. al. [35]
Table 4.1 Classification Accuracy of the Results from Colon Cancer Dataset Compared

with the Other Results in the Literature

The table above presents the comparison of our results with other results in the literature.
For the colon tumor dataset, the first subset of features that we obtained consists of 15 features,
those feature were able to classify the entire data with the accuracy of 100%. This subset is
achieved in the 100. generation. At the end of 500 generations of runs, we were able to classify
the entire colon tumor dataset using only 4 features with the accuracy of 100%. We got this
solution at the generation of 215. In the literature highest classification accuracy was again
obtained by the previous work of our group. The classification accuracy of that approach was

98.38% using 12 features. Other result which has the classification accuracy of 91.4% using 30
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features, was obtained by Bing et. al. in 2004. Considering this information, we can say that our
approach is the first one to converge to the accuracy of 100% and for this accuracy just 4 features

were used.

PROSTATE CANCER
DATASET

(having 12600 features originally)

ACCURACY | # of FEATURES

Our Features 100% 3
The Best Result so far 96.07%* 19*
Other Previous
Results 97.06%** 30**

*Results from Kiiciikural et. al. [9]
**Results from Bing et. al. [35]
Table 4.2 Classification Accuracy of the Results from Prostate Cancer Dataset Compared

with the Other Results in the Literature

This table shows the results we obtained from the prostate cancer dataset and comparison
of this result with the other approaches in the literature. In this dataset, first result with the
accuracy of 100% using only 17 features was obtained at the generation of 110. Our algorithm
converged to again the accuracy of 100% using only 3 features out of 12600 features that exist in
the dataset. This result had taken in the generation 216. In this dataset, the best previous best
result again belongs to our group’s previous work. The results of that approach were 96.07%
using 19 features. Another approach by Bing et. al., was able to classify the data using 30
features with the accuracy of 97.06%. So, our approach is the first one to be able to achieve the
classification accuracy of 100% with a feature subset. In addition we used the subset consisting

of only 3 features to get this accuracy.
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OVARIAN CANCER DATASET

(having 15154 features originally)

ACCURACY | # of FEATURES

Our Features 100% 3
The Best Result so far 100%* 12*
Other Previous
Results 100%*** 17***

*Results from Kii¢iikural et. al. [9]
***Results from Liu et. al. [34]
Table 4.3 Classification Accuracy of the Results from Ovarian Cancer Dataset Compared

with the Other Results in the Literature

Table 4.3 summarizes our results taken from the ovarian cancer dataset. The ovarian
cancer dataset, we found 29 features to classify the data. This was the first result which gave the
accuracy of 100% using this dataset. Finally we achieved the classification accuracy of 100%
using just 3 features at the generation of 204. Our group’s previous approach which had given the
best previous result, could also achieve the classification accuracy of 100%. But they used a
larger of features which is 12, not to lower the accuracy. Other approaches could obtain 17
features that classify the data with the accuracy of 100%. So in the literature there exist
approaches that converge to some number of feature subsets and give the accuracy of 100%, but

our approach reached this accuracy using very few numbers of features.
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4.2.2 An Experiment with Leave-One-Out Cross-Validation

Increasing the number of folds greatly increases the computational overhead. On the other
hand, any tool should confirm the same results with the same data. As mentioned in the previous
chapter, originally, we used a population having maximum 30 features for all of the datasets, and
the constant parameter feature repeat ( see chapter 3.2 ) was assigned 2; after switching to
LOOCYV, we had to fall back to maximum number of 20 features, with an initial repeat factor of 1
and we ran the algorithm for 1000 generations. We only tried one dataset for the test and we

chose the prostate cancer dataset.

Our results for the prostate cancer dataset are shown in the following graph ( Figure 4.1).
The horizontal axis is the number of features, and the vertical axis is the number of generations a
solution is found. The dots represent the solutions achieved in the corresponding generation using

the corresponding number of feature with the accuracy of 100%.

Prostate 102 x 12600

300

150

Generations

// 4

27 26 25 24 23 22 21 20 139 18 17 le 15 14 13 12 11 10 9 8 7 3 5 4

# of Features

—&— Prostate 102 x 12600

Figure 4.1 The pattern of the results
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As it can be seen from the graph above, we were able to achieve at least 4 features with
the validation accuracy 100%. Figure 4.1 shows the curve of the converging results through
generations. The algorithm finds 27 features having the accuracy of 100% at the generation of 42

and finally it converges up to only 4 features at the generation of 276 with the accuracy of 100%.

4.3 Independent Tests to Verify Our Results

For all of the results aforesaid, we made independent tests using eighteen different
classifiers which are Support Vector Classifier, Bayes-Normal-1, Bayes-Normal-2, Fisher,
Polynomial Classifier, Decision Tree, Quadr, Linear Perceptron, PC Bayes-Normal-1, KL Bayes-
Normal-1, Random Neural Net, K-NN Classifier, Parzen Classifier, Parzen Classifier, Bayes-
Normal-U, Subspace Classifier, Scaled Nearest Mean and Nearest Mean. So that were able to

confirm that we classified the dataset using our subsets of features with the accuracy of 100%.
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5 CONCLUSION AND DISCUSSION

For diagnostic purposes, it is crucial to be able to identify the genes that are included in a
disease pathway. On the other hand it is not possible to make a heuristic search within a
microarray dataset consisting of real life disease data, since these datasets contain huge numbers
of features and therefore the search space is too large. To deal with such large datasets,
eliminating this data and filtering out the signature genes for related disease ( selecting the

features ) is very important.

According to the information above, in this thesis our aim was to select the minimum set
of features ( genes ) that has the ability to distinguish the diseased and control patients, out of
three different real life cancer datasets. All of these three datasets consist of massive amount of n

gene ( feature) expression information.

To be able to handle this problem, in our work, we preferred to use Genetic Algorithms in
combination with SVM. In the literature there are several researches using GAs in combination
with various classification methods. In most of those researches, a fix number of features are used
within the GA. Searching the space with different combinations of features was the only
responsibility of GA. Every individual consisting of these combinations of features ( genes ) were
only capable of retaining the fixed number of features. The classification accuracies were kept
while the GA is running. After that according to these accuracies, the number of the features was

tried to be reduced.
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The previously proposed method by our group for this problem, set another point of view
for reducing the number of features. In that approach, any gene could have a personal fitness
value during parent generation step. By using the information obtained from the previous
generations, the fitter individuals were generated for new population of every new generation.
And in every specific number of generations, the whole population was destroyed and a totally
new population was constituted according to the survival probabilities of the genes that were
calculated and stored within the previous generations. During this reconstruction, the number of
the features within an individual was hoped to reduce. With this approach, it became possible to

converge faster then other approaches in the literature.

On the other hand, we were concerned about the importance of the unchecked genes in the
very first step of the algorithm. During initialization of GA, 30 genes were selected for each
individual and a population of 100 individuals was created. Therefore, genes that were selected
randomly in the very beginning of the algorithm were being favored because they had the chance
to increase their survival probability. After this initialization roulette wheel selection was getting
stared and unfairly favored genes had higher probability to be chosen. Thus, probably the search
was occurring around almost those same features. The genetic operator mutation is never enough

to compensate this huge amount of information loss.

Our approach to handle this problem consists of two phases;

e We constituted a control mechanism responsible to the check that every feature in
the whole database should occur in the initial population twice, while same

features are not allowed to be assigned to the same parent.

e In the very beginning of the algorithm a specific number of initial runs are made,
to be able to give equal chance to any gene in the database, to exhibit its
classification accuracy. In those initial runs, roulette wheel selection was not used,
therefore the genes with higher classification accuracies was not favored. This

inhibits the algorithm to concentrate on the features that are not relevant but just
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luckily exist in combination with significant features within one parent. After
these completely random runs, every feature will have the chance to gather its
classification accuracy in combination with several random features. This will lead

the main GA truly.

Another major change in the idea of our previous algorithm was in the part that whole

population is destroyed in every certain number of generations.

e We decided that, this affects the flow of the algorithm negatively that it causes loss
of some information gained in the previous group of generations. Thus, we
decided to keep the progress of the algorithm steady. The number of features is
reduced with the merges in the child. These merges occur when the two same

features are assigned to one child.

In addition to the differences that are mention above, we also used a different cross-over

technique in our algorithm, to be able to increase the variations in the search space.
Applying our algorithm to all three databases that we used for our tests, we achieved by

far the best results in the literature. In each dataset, we obtained the minimum subset of

significant features ( that had ever been achieved ) with the classification accuracy of 100%.
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5.1 Biological Relevancy of Our Results

Our results achieved from the colon tumor dataset are shown in Table 5.1. ( Related colon

tumor dataset can be obtained from [38] )

Attribute 186 homosapiens thyroid receptor interactor (TRIP 1) mRNA
Attribute 493 Myosin Heavy Chain, Non-Muscle (gallus gallus)
Attribute 1110 human heat shock, e.coli homologue mRNA

Attribute 1740 human semenogelin I (SEMGII) gene

Table 5.1 Genes Achieved from Colon Tumor Dataset

One of the genes that we obtained is called homosapiens thyroid receptor interactor (
TRIP 1 ) mRNA. TRIP 1 ( the TGFp protein ) is a cytoplasmic WD-domain protein. Some of the
TGFp responsive pathways are enhanced by the over expression of TRIP 1 [39,40]. TGFp has
responsibility in cell proliferation and differentiation. In human cancers, generally changes in the
signaling of TGFp ( like any mutations or deletions within the signaling pathway ) are observed.
Therefore, for the diagnostics of cancer TGFf and the members in its the signaling pathway are
characteristic [41]. The type II TGFB which is abbreviated as TPRII, is a cell serine/theorine
kinase receptor ( STRAP ) [42,43]. In colon cancer patients a loss of TPRII is highly observed
[44,45].

Myosin Heavy Chain, Non-Muscle (gallus gallus) is one of our four results which
classified the entire colon tumor data with the accuracy of 100%. In the literature there a number
of approaches which indicate this gene as one of the most relevant genes that is involved in the

pathway of colon cancer [46,47,48]. It was also experimentally ascertained that the NMHC is a
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target for the protein which is encoded by mts-1 gene. Mts-1 gene is known as a metastasis-

related gene [49].

Human Heat Shock, e.coli homologue mRNA and Human Semenogelin Il (SEMGII) gene

are the other genes that we obtained from colon tumor dataset.

Our results achieved from the prostate cancer dataset are shown in Table 5.2. ( Related

prostate cancer dataset can be obtained from [50] )

37639 at hepsin (transmembrane protease, serine 1)
41504 s at v-maf musculoaponeurotic fibrosarcoma oncogene homolog (avian)

1991 s at mitogen-activated protein kinase-activated protein kinase3

Table 5.2 Genes Achieved from Colon Tumor Dataset

One of our genes that we had achieved from the prostate cancer data set is called hepsin
( transmembrane protease, serine 1 ) and this gene is abbreviated as HPN. HPN is known to be
related with the prostate cancer because transmembrane cell surface serum is encoded by HPN

and in prostates cancer transmembrane cell serum protease is over expressed [51].

Another gene that we achieved from prostate cancer dataset, as a gene that has the ability
to classify the diseased and control patients is called mitogen-activated protein kinase-activated
protein kinase3 ( MAPKAPK3 ). MAPKAPK3 is a member of serine/threonine kinases. It is
known that it is phosphorylated by a MAP kinase family ( like p38, JNK, ERK ). ERK which
activates MAPKAPK3, is also known to be activated in tissues of several cancer types including

prostate cancer [52].

The other gene we obtained from this dataset is called MAF (v-maf musculoaponeurotic

fibrosarcoma oncogene homolog) which is an oncogene that is known to cause cancer.
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