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Abstract

This thesis explores model free visual servoing algorithms by experimentally

evaluating their performances for various tasks performed both in macro and micro

domains. Model free or so called uncalibrated visual servoing does not need the

system (vision system + robotic system) calibration and the model of the observed

scene, since it provides an online estimation of the composite (image + robot) Ja-

cobian. It is robust to parameter changes and disturbances. A model free visual

servoing scheme is tested on a 7 DOF Mitsubishi PA10 robotic arm and on a mi-

croassembly workstation which is developed in our lab. In macro domain, a new

approach for planar shape alignment is presented. The alignment task is performed

based on bitangent points which are acquired using convex-hull of a curve. Both

calibrated and uncalibrated visual servoing schemes are employed and compared.

Furthermore, model free visual servoing is used for various trajectory following tasks

such as square, circle, sine etc. and these reference trajectories are generated by a

linear interpolator which produces midway targets along them. Model free visual

servoing can provide more flexibility in microsystems, since the calibration of the

optical system is a tedious and error prone process, and recalibration is required

at each focusing level of the optical system. Therefore, micropositioning and three

different trajectory following tasks are also performed in micro world. Experimental

results validate the utility of model free visual servoing algorithms in both domains.



MAKRO VE MİKRO DÜNYADAKİ ROBOTİK UYGULAMALARDA

MODELDEN BAĞIMSIZ GÖRSEL GERİ BESLEMELİ KONTROL

Erol ÖZGÜR

Elektronik Mühendisliği ve Bilgisayar Bilimi, Yüksek Lisans Tezi, 2007

Tez Danışmanı: Doç. Dr. Mustafa ÜNEL

Anahtar Kelimeler: Model bağımsız, görsel geri beslemeli kontrol, şekil hizalama,

iki noktada teğetler, mikrosistemler

Özet

Bu çalışmada, makro ve mikro düzeylerde gerçekleştirilmiş değişik görevler için

deney sonuçlarını değerlendirerek, modelden bağımsız görsel geri beslemeli kontrol

algoritmaları üzerine performans araştırması yapılmıştır. Modelden bağımsız yada

bir diğer adıyla kalibre edilmemiş görsel geri beslemeli kontrol, komposit (imge+robot)

Jakobyan’ı çevrimiçi olarak kestirebildiğinden sistemin kalibre edilmesine (görme sis-

temi + robotik sistem) ve incelenen ortamın modeline ihtiyaç duymaz. Parametre

değişimlerine ve bozucu dış etkilere karşı gürbüzdür. Modelden bağımsız görsel geri

beslemeli kontrol yöntemi 7 serbestlik derecesine sahip Mitsubishi PA10 robotik kol

ve mikromontaj iş istasyonu üzerinde test edilmiştir. Makro dünyada, düzlemsel

şekil hizalama için yeni bir yaklaşım sunulmuştur. Şekil hizalama işlemi, bir eğrinin

dışbükey zarfı (convex-hull) kullanılarak elde edilen, iki noktada teğetler (bitan-

gents) yardımıyla gerçekleştirilmiştir. Hizalama işlemi kalibre edilmiş ve kalibre

edilmemiş görsel geri beslemeli kontrol yaklaşımları kullanılarak gerçekleştirilmiş

ve sonuçlar karşılaştırılmıştır. Buna ilave olarak, modelden bağımsız görsel geri

beslemeli kontrol kare, çember ve sinüs gibi değişik yörünge takibi görevleri için

denenmiştir ve bu yörüngeler kendileri boyunca ara hedefler üreten bir doğrusal

aradeğerleyici kullanılarak oluşturulmuştur. Modelden bağımsız görsel geri beslemeli

kontrol metodunun, kalibrasyonu oldukça usandırıcı ve hata olasılığı yüksek olan

ve ayrıca her farklı yakınlaştırma seviyesinde sistemin yeniden kalibre edilmesini

gerektiren optik sistemlerde kullanımı oldukça rahatlık sağlamaktadır. Bu nedenle



makro dünyada yapılanların dışında, mikrokonumlandırma ve üç farklı yörünge

takip görevi de mikro dünyada gerçekleştirilmiştir. Sunulan deneysel sonuçlar,

modelden bağımsız görsel geri beslemeli kontrol algoritmalarının makro ve mikro

düzeylerde gerçekleştirilen görevlerde kullanılmasında sağladığı faydaları ortaya

koymuştur.
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Chapter 1

Introduction

1.1 Motivation for Visual Servoing

Today’s manufacturing robots can perform assembly and manipulation of parts with

certain speed and precision, but they have a distinct disadvantage in that they

cannot “see” what they are doing, when compared to humans. Consequently, in the

domain of applications, a significant engineering effort is expended in setting up a

desirable work environment for these blind machines, which necessitates the design

and manufacture of specialized mechanisms, such as task based end-effectors.

Once the desired work environment has been composed, the spatial coordinates

of all relevant points must then be taught. Even so, due to low robot accuracy

manual teaching is often required. The reason that causes this low accuracy is the

obtained end-effector pose from measured joint angles using the kinematic model of

the robot. Discrepancies between the model and the actual robot lead to tool-tip

pose errors. By integrating sensory capabilities to robotic systems these errors can

be removed and substantial increase in the versatility and application domain of

robotic systems can be ensured [1].

Vision is a useful robotic sensor since it mimics the human sense of vision and

allows for noncontact measurement of the environment. Since the early work of Shi-

rai and Inoue [2] who describe how a visual feedback loop can be used to correct the

position of a robot to increase task accuracy, considerable effort has been devoted

to the visual control of robotic manipulators. Typically visual sensing and manip-

ulation are combined in an open-loop fashion, looking then moving. To increase

the accuracy of these subsystems is to use a visual-feedback control loop that will

increase the overall accuracy of the system. Taken to the extreme, machine vision

1



can provide closed-loop position control for a robot end-effector -this is referred to

as visual servoing. This term appears to have been first introduced by Hill and

Park [3] in 1979 to distinguish their approach from earlier works where the system

alternated between picture taking and moving. Prior to the introduction of this

term, the less specific term visual feedback was generally used.

A visually guided robotic system does not need to know a priori the coordinates

of workpieces or other objects in its workspace. In a manufacturing environment

visual servoing could thus eliminate robot teaching and allow tasks that were not

strictly repetitive, such as assembly without precise fixturing and with components

that were unoriented.

Visual servoing schemes can be classified on the basis of the knowledge that

system structure and parameters are available or not. If these parameters are known,

one can use a “calibrated visual servoing” approach, while if they are only roughly

known an “uncalibrated visual servoing” or so called “model free visual servoing”

approach can be used.

1.2 Why Model Free Visual Servoing?

In most of the previous work on visual servoing, it is assumed that the system

structure and parameters were known, or that the parameters could be identified

in an off-line process. Such systems, however is not robust to disturbances [4],

changes of the parameters and have found limited use outside of the laboratories

since they require complete information on the system model and geometry of the

robotic workspace.

Obtaining these parameters require calibration methods. These methods are

often difficult to understand, inconvenient to use in many robotic environments,

and may require the minimization of several, complex, non-linear equations which

is not guaranteed to be numerically robust or stable. Moreover, calibrations are

typically only accurate in a small subspace of the workspace; accuracy degenerates

quickly as the calibration area is left and for a mobile system it is not feasible to

recalibrate at each time the system moves.

To overcome these problems, some adaptive visual servoing methods consisting

of on-line estimators and feedback controllers have been proposed for controlling

2



robotic systems with visual feedback from cameras whose relations with robotic

manipulator are not known, i.e uncalibrated visual servoing problem. These adaptive

visual servoing methods have the following common features:

• The estimator does not need a priori knowledge on the system parameters

nor on the kinematic structure of the system. That is, we need not to devote

ourselves to tedious calibration process, or to separate the unknown parame-

ters from the system equations, which depends on the detailed knowledge on

the kinematic structure of the system.

• There is no restriction on a camera-manipulator system: the number of cam-

eras, kinds of image features, structure of the system (eye-in-hand or eye-to-

hand), the number of inputs and outputs (SISO or MIMO). Proposed methods

are applicable to any kind of systems.

• The aim of the estimator is not to obtain the true parameters but to ensure

asymptotical convergence of the image features to the desired values under the

proposed controller. Therefore, the estimated parameters do not necessarily

converge to the true values.

Most of the previous works on uncalibrated visual servoing focus on the Image-

Jacobian based scheme. The Image Jacobian model was first introduced by Weiss [5]

and used to linearly describe the differential relation between visual feedback space

and the robot motion space. In literature, researches on the online estimation of

the Jacobian have been extensively studied. Hosoda and Asada have estimated the

Jacobian matrix using an extended least squares algorithm with exponential data

weighting [4]. Jagersand employed a Broyden’s method in the Jacobian estima-

tion [6]. Piepmeier used a recursive least squares (RLS) estimate and a dynamic

Quasi-Newton method for model free visual servoing [7]- [8]. Qian exploited the

Kalman filtering technique to estimate the Jacobian elements [9]. Lv has employed

the Kalman filtering with fuzzy logic adaptive controller to ensure stable Jacobian

estimation [10].

3



1.3 Contribution of The Thesis

This thesis explores model free visual servoing algorithms by experimentally eval-

uating their performances for various tasks performed both in macro and micro

domains. In macro domain, a new approach [11] for planar shape alignment is

presented. The alignment task is performed based on bitangent points which are

acquired using convex-hull of a curve. Both calibrated and uncalibrated visual ser-

voing schemes are employed and compared. Furthermore, model free visual servoing

is used for square, circle and sine trajectory following tasks both in macro and micro

domains and it has been shown that it can provide more flexibility in microsystems,

since the calibration of the optical system is a tedious and error prone process, and

recalibration is required at each focusing level of the optical system.

The remaining of this thesis is organized as follows: Chapter 2 summarizes

visual servoing fundamentals. Chapter 3 presents the theory of both model based

and model free visual servoing methods. Chapter 4 develops a novel approach for

planar shape alignment in the context of visual servoing. Chapter 5 is on the

experimental results performed both on a robotic arm and on a microassembly

workstation. Finally, Chapter 6 concludes the thesis with some remarks and future

works.
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Chapter 2

Visual Servoing Fundamentals

In this chapter, a short review of visual servoing is presented. Visual servoing

concerns several fields of research including vision, robotics and control. Visual

servoing can be useful for a wide range of applications and it can be used to control

many different dynamic systems like manipulator arms, mobile robots, aircrafts,

etc. Visual servoing systems are generally classified depending on the number of

cameras, on the position of the camera with respect to the robot, on the design of

the error function to minimize in order to reposition the robot.

2.1 Background

2.1.1 Camera Configurations

Single camera vision systems are generally used since they are cheaper and easier

to build than multi-camera vision systems. On the other hand, using two cameras

in a stereo configuration make several computer vision problems easier. If the cam-

era(s) are mounted on the robot end-effector, the system is called “eye-in-hand”. In

contrast, if the camera observe the robot from a stationary pose, the system can be

called “eye-to-hand” (see Figure 2.1). There exist hybrid systems where one camera

is in-hand and another camera is fixed somewhere to observe the scene [12]. Figs.

2.2-2.3 show various camera configurations on 7 DOF PA10 robot.

In visual control systems, if the camera only observes the target object it is

referred as endpoint open-loop (EOL) system and camera that observes both the

target object and the robot end-effector is referred as endpoint closed-loop (ECL)

system (see Figure 2.4).

5



Figure 2.1: Eye-in-hand and eye-to-hand camera configurations

Figure 2.2: Eye-in-hand and eye-to-hand configuration on PA10

Figure 2.3: Stereo camera configurations on PA10

2.1.2 Camera Model

A “pinhole” camera performs the perspective projection of a 3D point onto the

image plane. The image plane is a matrix of light sensitive cells. The resolution of

the image is the size of the matrix. The single cell is called a “pixel”. For each pixel

of coordinates [u, v]T , the camera measures the intensity of the light. For example,

6



Figure 2.4: Endpoint open-loop and endpoint closed-loop systems

a 3D point, with homogeneous coordinates P = [X, Y, Z, 1]T project to an image

point with homogeneous coordinates p = [u, v, 1]T (see Figure 2.5):

p ∝
(

K 0
)

P (2.1)

where K is a matrix containing the intrinsic parameters of the camera:

K =








fku fkucot(φ) u0

0 fkv

sin(φ)
v0

0 0 1








(2.2)

where u0 and v0 are the pixels coordinates of the principal point, ku and kv are the

scaling factors along the ~u and ~v axes (in pixels/meters), φ is the angle between

these axes and f is the focal length. For most of the commercial cameras, it is a

reasonable approximation to suppose square pixels (i.e. φ = π
2

and ku = kv).

The intrinsic parameters of the camera are often only roughly known. Precise

calibration of the parameters is a tedious procedure which needs a specific calibration

grid [13]. It is thus preferable to estimate the intrinsic parameters without knowing

the model of the observed object. If several images of any rigid object are available

it is possible to use a self-calibration algorithm [14] to estimate the camera intrinsic

parameters.
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Figure 2.5: Camera Model

2.1.3 Image Features

In the computer vision literature, an image feature is defined as any meaningful,

detectable part that can be extracted from an image e.g. an edge or a corner.

Typically, an image feature will correspond to the projection of a physical feature of

some object (e.g. the robot tool) onto the image plane. An image feature parameter

is defined to be any real-valued quantity that can be calculated from one or more

image features. Some of the parameters that have been used for visual servoing

include the image plane coordinates of points in the image [15], the distance between

two points in the image plane and the orientation of the line connecting those

two points, perceived edge length [5], the area of projected surfaces, the centroid

and higher order moments of a projected surface, the parameters of line and the

parameters of an ellipse in the image plane [15].

2.1.4 Feature Extraction and Tracking

A vision system is required to extract the information needed to perform the servoing

task. For this purpose, many reported implementations plan the vision problem to

be simple: e.g. painting objects white, using artificial targets, and so forth.

In less structured situations, vision has typically relied on the extraction of sharp

contrast changes, referred to as “corners” or “edges”, to point the presence of object

boundaries or surface markings in an image. The most known algorithms have been
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proposed by Harris [16] to extract corners and by Canny [17] to get edges from the

image.

Processing the entire image to extract these features necessitates the use of

extremely high-speed hardware in order to work with a sequence of images at video

rate. However not all pixels in the image are of interest, and computation time can

be greatly reduced if only a small region around each image feature is processed.

Thus, a favorable technique for making vision cheap and tractable is to use window-

based tracking techniques [18]. Window-based methods have several advantages,

among them: computational simplicity, little requirement for special hardware, and

easy reconfiguration for different applications. However, that initial positioning of

of each window typically presupposes an automated or human-supplied solution to

a potentially complex vision problem.

2.1.5 Visual Task Function

In general, the task in vision based control is to control a robotic manipulator to

manipulate its environment using vision as opposed to just observing the environ-

ment. A visual task is also referred to as a visual task function or a control error

function as defined in [19]. For a given visual task, a set of s visual features have

to be chosen for achieving the task. These visual features must be tracked over the

entire course of the task because the differences between their references, which are

determined before the task is initiated, and these visual features are defined as error

functions which are inputs to visual controller.

Representing some desired set of features by s∗ and the set of current features

with s, the objective of visual servoing is to regulate the task function to zero. When

the task is completed, the following equality holds:

e(s − s∗) = 0 (2.3)

Visual features are selected depending on a priori knowledge that we have about

the goal of the task.
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2.2 Vision Based Control Architectures

A fundamental classification of visual servoing approaches is presented by Sander-

son and Weiss [20]. First classification depends on the design of the control scheme.

Two different control schemes are generally used for the visual servoing of a robot.

The first control scheme is called “direct visual servoing” where the vision-based

controller directly computes the joint inputs by eliminating robot controller. The

second control scheme can be called, contrary to the first one, “indirect visual ser-

voing” where the vision-based controller computes set-point inputs to the joint-

level controller, thus making use of joint feedback to internally stabilize the robot.

For several reasons, most of the visual servoing structures proposed in the litera-

ture follows an indirect control scheme which is called “dynamic look-and-move”.

Firstly, the relatively low sampling rates available from vision make direct control

of a robot end-effector with complex, nonlinear dynamics an extremely challeng-

ing control problem. Using internal feedback with a high sampling rate generally

presents the visual controller with idealized axis dynamics. Secondly, many robots

already have an interface for accepting Cartesian velocity or incremental position

commands. This simplifies the construction of the visual servo system, and also

makes the methods more portable.

The second major classification of visual servoing systems builds on the definition

of error signal which is computed in 3D task space coordinates or directly in terms of

image features. These visual servoing schemes are called position-based control and

image-based control, respectively. So, general classification of vision based control

architectures are given as follows:

• Dynamic Position Based Look-and-Move

• Position Based Direct Visual Servoing

• Dynamic Image Based Look-and-Move

• Image Based Direct Visual Servoing

In the order given, Figs. 2.6-2.9 depict these architectures.

In position-based control, features are extracted from the image and used in

conjunction with geometric model of the target and the known camera model to
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Figure 2.6: Dynamic position based look and move

Figure 2.7: Position based direct visual servoing

estimate the pose of the target with respect to camera. Feedback is computed by

reducing errors in estimated pose space. In image-based servoing, control values are

computed on the basis of image features directly. The image-based approach may

reduce computational delay, eliminate the necessity for image interpretation and

eliminate errors due to sensor modeling and camera calibration. However it does

present a significant challenge to controller design since the plant is nonlinear and

highly coupled.
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Figure 2.8: Dynamic image based look and move

Figure 2.9: Image based direct visual servoing
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Chapter 3

Model Based Versus Model Free Visual Servoing

This chapter presents image based, calibrated and uncalibrated, vision guided robotic

control methods with a fixed imaging system. These control methods are referred to

as model based and model free approaches. Since they are image based visual servo

systems the error signal is defined directly in terms of image feature parameters and

the motion of the manipulator causes changes to the image observed by the vision

system. Thus, specification of an image based visual servo task involves determining

an appropriate error function e, such that when the task is achieved, e = 0. This

can be done by directly using the projection equations, or via “teach-by-showing”

method in which the robot is moved to a goal position and the corresponding image

is used to compute a vector of desired image feature parameters, s∗. Although the

error, e, is defined on the image parameter space, the manipulator control input is

typically defined either in joint coordinates or in task space coordinates. Therefore,

it is necessary to relate changes in the image feature parameters to changes in the

position of the robot. To capture these relationships an image Jacobian was first

introduced by Weiss [5], who referred to it as the feature sensitivity matrix. It is

also called an interaction matrix [15].

Let s = [s1, s2, . . . , sm]T (s ∈ <m) and r = [tx, ty, tz, αx, αy, αz]
T (r ∈ <6) de-

note vectors of image feature parameters obtained from visual sensors and the pose

(position + orientation) of the end-effector of the robot, respectively. The relation

between s and r is given as s = s(r(t)) and its differentiation with respect to time

yields,

ṡ =
∂s

∂r
ṙ = JI ṙ (3.1)

13



where JI ∈ <m×6 is the image Jacobian, and

JI ,
∂s

∂r
=








∂s1

∂r1

· · · ∂s1

∂r6

...
. . .

...

∂sm

∂r1

· · · ∂sm

∂r6








(3.2)

The relationship given by (3.1) describes how image feature parameters change

with respect to changing manipulator pose and the ṙ is the camera velocity screw,

Vc. Let θ ∈ <n denote the vector of joint variables of a robot (see Fig. 3.1).

Figure 3.1: Joint variables of a robot

The differential relation between θ and r with respect to time implies

ṙ =
∂r

∂θ
θ̇ = JR(θ)θ̇ (3.3)

where JR(θ) = ∂r/∂θ ∈ <6×n is the robot Jacobian which describes the relation

between the robot joint velocities and the velocities of its end-effector in Cartesian

space. The composite Jacobian is defined as

J , JIJR (3.4)

where J ∈ <m×n is a matrix which is the product of image and robot Jacobians.

Thus, the relation between joint coordinates and image features is given by

ṡ = Jθ̇ (3.5)
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3.1 Model Based Visual Servoing

Model based approach needs system parameters which are acquired by calibrat-

ing the visual sensor and robotic manipulator, in order to evaluate the available

analytical model of the image Jacobian for an image feature.

3.1.1 Image Jacobian for a Point Feature

Let P = (X, Y, Z)T be a point rigidly attached to the end effector. The velocity of

the point P , expressed relative to the camera frame, is given by

Ṗ = V + Ω × P (3.6)

where V = (Vx, Vy, Vz)
T is translational velocity and Ω = (Ωx, Ωy, Ωz)

T is rotational

velocity. Equation (3.6) can be written in matrix form as follow:

Ṗ = V − [P ]xΩ (3.7)

where [P ]x is the skew-symmetric matrix associated with vector P and note that

[a]xb = [−b]xa.

[P ]x =








0 −Z Y

Z 0 −X

−Y X 0








(3.8)

A single point feature vector s in a fixed-camera system is given as

s =




x

y



 (3.9)

where x and y are normalized, unity focal length, image coordinates of P in camera

frame obtained using the following perspective projection equations,

x =
X

Z
, y =

Y

Z
(3.10)

Inserting (3.10) into (3.9) and differentiating with respect to time,

ṡ =




ẋ

ẏ



 =





d
dt

(
X
Z

)

d
dt

(
Y
Z

)



 =





ẊZ−XŻ
Z2

Ẏ Z−Y Ż
Z2



 =





Ẋ
Z
− X

Z
Ż
Z

Ẏ
Z
− Y

Z
Ż
Z



 =





Ẋ
Z
− x Ż

Z

Ẏ
Z
− y Ż

Z





(3.11)
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⇒ ṡ =




ẋ

ẏ



 =





1
Z

0 − x
Z

0 1
Z

− y
Z












Ẋ

Ẏ

Ż








︸ ︷︷ ︸

Ṗ

(3.12)

Combining (3.7) and (3.12), and rearranging, one gets

ṡ =




ẋ

ẏ



 =





1
Z

0 − x
Z

0 1
Z

− y
Z



















Vx

Vy

Vz








+








0 Z −Y

−Z 0 X

Y −X 0















Ωx

Ωy

Ωz















(3.13)

ṡ =




ẋ

ẏ



 =





1
Z

0 −x
Z

−xy (1 + x2) −y

0 1
Z

−y
Z

−(1 + y2) xy x





︸ ︷︷ ︸

,ĴI

















Vx

Vy

Vz

Ωx

Ωy

Ωz

















︸ ︷︷ ︸

ṙ

(3.14)

where

x =
xp − xc

fx
, y =

yp − yc

fy
(3.15)

and (xp, yp) are pixel coordinates of the image point and (xc, yc) are the coordi-

nates of the principal point (image center), and (fx, fy) are effective focal lengths

of the vision sensor, respectively. From (3.15), to derive image Jacobian using pixel

coordinates, we proceed as follows:

xp = fxx + xc, yp = fyy + yc (3.16)

⇒ ẋp = fxẋ, ẏp = fyẏ (3.17)

and defining s with new image feature parameters s = [xp, yp]
T , (3.17) can be

rewritten in matrix form as below,
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⇒ ṡ =




ẋp

ẏp



 =




fx 0

o fy








ẋ

ẏ



 (3.18)

⇒ ṡ =




ẋp

ẏp



 =




fx 0

o fy









1
Z

0 −x
Z

−xy (1 + x2) −y

0 1
Z

−y
Z

−(1 + y2) xy x





︸ ︷︷ ︸

,JI

















Vx

Vy

Vz

Ωx

Ωy

Ωz

















︸ ︷︷ ︸

ṙ

(3.19)

⇒ ṡ = JI ṙ (3.20)

where JI is the pixel-image Jacobian. In eye-to-hand case, the image jacobian has

to consider the mapping from the camera frame onto the robot control frame. This

relationship is given by the robot-to-camera transformation, denoted by:

ṙ = Vc = TVR (3.21)

where VR is the end-effector velocity screw in robot control frame. The robot-to-

camera velocity transformation T ∈ <6×6 is defined as below

T =




R [t]xR

03 R



 (3.22)

where [R, t] are being the rotational matrix and the translation vector that map cam-

era frame onto robot control frame and [t]x is the skew symmetric matrix associated

with vector t.

Substituting (3.21) into (3.20), an expression that relates the image motion to

the end-effector velocity is acquired:

ṡ = JIT
︸︷︷︸

, J̄I

VR = J̄IVR (3.23)

where J̄I is the new image Jacobian which directly relates the changes of the image

features to the end-effector velocity in robot control frame. Note that if k feature

17



points are taken into account, e.g. s = [x1, y1 . . . xk, yk]
T , J̄I is given by the following

stacked image Jacobian

J̄I =








J̄1
I

...

J̄k
I








(3.24)

3.1.2 Visual Control Design

The results of the previous section shows how to relate robot end-effector motion to

perceived motion in a camera image. However, visual servoing applications typically

require the reverse -computation of ṙ given ṡ as input. Suppose that the goal of

particular task is to reach a constant desired image feature parameter vector s∗ ∈ <m

and and the error e ∈ <m is defined on image plane as

e = s − s∗ (3.25)

Then the visual control problem can be formulated as follows: design an end-effector

velocity screw ṙ in such a way that the error disappears, i.e. e → 0.

By imposing ė = −Λe and solving (3.23), a simple proportional control law

for the end-effector motion with an exponential decrease of the error function, is

obtained as follow:

VR = −J̄†
I Λ(s − s∗) (3.26)

where Λ ∈ <6×6 is a positive constant gain matrix, J̄†
I is the pseudo-inverse of the

image Jacobian and VR =
(

Vx Vy Vz Ωx Ωy Ωz

)T

.

3.2 Model Free Visual Servoing

Model free approach estimates the composite Jacobian dynamically by assuming

that elements of composite Jacobian are unknown. Dynamic Broyden’s Update and

Recursive Least Square methods for composite Jacobian estimation are proposed

by Piepmeier in [7], [8]. Design of Optimal and Dynamic Gauss-Newton visual

controllers with dynamic Jacobian estimation schemes are also presented in [21]

and [8], respectively. Using these controllers, the robot can be servoed to both static

and moving targets, even with uncalibrated robot kinematics and camera models.
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The control methods are completely independent of robot type, camera type, and

camera location. In other words, they are independent of the system model.

3.2.1 Problem Formulation

A stationary vision system is assumed that can sense sufficient end-effector and

target features to locate both bodies in space. This renders the target features,

s∗(t), as functions of only time t, and the end-effector features, s(θ), as functions

of only the robot joint angles, θ ∈ <n. It is important to note that t and θ are

independent variables, since as time varies, the joint angles can be held constant,

and conversely, at every given time, the joint angles can take on any values. There

are no assumptions yet about target tracking. To optimally track the target, a

constraint relationship is imposed between θ and t so joint angles are selected as a

function of time, θ(t) = g(s∗(t)). This establishes an optimal end-effector trajectory

s(θ(t)) to follow the moving target. The constraint is established by minimizing the

tracking error, e ∈ <m, as seen in the image plane

e(θ, t) = s(θ) − s∗(t) (3.27)

The combined transformations of forward kinematics and imaging geometry render

e(θ, t) a highly nonlinear function. This multivariate optimization problem is solved

at each increment by a dynamic quasi-Newton controller with a dynamic Jacobian

estimator.

3.2.2 Visual Controllers

A. Dynamic Gauss-Newton Controller

The imposed trajectory θ(t) that causes the end-effector to follow the target is

established by minimizing the squared image error

E(θ, t) =
1

2
eT (θ, t)e(θ, t) (3.28)

which can also be modified by a weighting matrix, but is omitted for simplicity. The

Taylor series expansion about (θ, t) is

E(θ + hθ, t + ht) = E(θ, t) + Eθhθ + Etht + . . . (3.29)
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where Eθ and Et are partial derivatives, and hθ = θk − θk−1 and ht = tk − tk−1 are

increments of θ and t. For a fixed sampling period ht, E is minimized by solving

∂E(θ + hθ, t + ht)

∂θ
= 0 (3.30)

which in turn implies

Eθ + Eθθhθ + Etθht + O(h2) = 0 (3.31)

where O(h2) indicates 2nd order terms in ht and hθ. Dropping these terms and

recalling the definition of the joint-to-image feature error composite Jacobian J as

J ≡ ∂e
∂θ

,

one can proceed as follows:

Eθ =
∂E

∂θ
=

∂

∂θ

(
1

2
eT e

)

=
1

2

∂eT

∂θ
e +

1

2
eT ∂e

∂θ
=

∂eT

∂θ
e = JT e (3.32)

Define ∂JT

∂θ
e by S, namely

S ≡
∂JT

∂θ
e (3.33)

It follows that

Eθθ =
∂

∂θ
(Eθ) =

∂

∂θ
(JT e) =

∂JT

∂θ
e + JT ∂e

∂θ
︸︷︷︸

J

= S + JT J = JT J + S (3.34)

and

Etθ =
∂

∂t
(Eθ) =

∂

∂t
(JT e) = JT ∂e

∂t
(3.35)

Hence,

hθ = −(JT J + S)−1JT (e +
∂e

∂t
ht) (3.36)

Adding θ to both sides of this equation gives what is referred to as a dynamic

Newtons method

θ + hθ = θ − (JT J + S)−1JT

(

e +
∂e

∂t
ht

)

(3.37)

To compute the terms S and J analytically requires a calibrated system model.

The term S is difficult to estimate, but as θ approaches the solution, it approaches
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zero and it is often dropped to give what is sometimes called a Gauss-Newton

method. It can be shown that for a small enough time increment, ht, the method is

well defined for all θ and converges linearly to a finite steady-state error. When an es-

timated Jacobian, Ĵ , is used, the algorithm becomes a dynamic quasi-(Gauss)Newton

method, such that at the kth increment

θk+1 = θk − (ĴT
k Ĵk)

−1ĴT
k (ek +

∂ek

∂t
ht) (3.38)

where ht = tk − tk−1. The qualifier dynamic specifically refers to the presence of the

error velocity term (∂ek/∂t) which is used to linearly predict the error vector at the

next time increment as ek+1 ≈ ek + (∂ek/∂t)ht, assuming the robot remains at its

current position. Then control is defined as

uk+1 = θ̇k+1 = −KpĴ
†
k(ek +

∂ek

∂t
ht) (3.39)

where Kp and Ĵ†
k are some positive proportional gain and the pseudo-inverse of the

estimated Jacobian at kth iteration, respectively.

B. Optimal Controller

Equation (3.5) can be discretized as

s(θk+1) = s(θk) + T Ĵkuk (3.40)

where T is the sampling time of the vision sensor and uk = θ̇k is the velocity vector of

the end effector. [21] presents an optimal control strategy based on the minimization

of the following objective function which penalizes the pixelized position errors and

the control energy or input uk

Ek+1 = (sk+1 − s∗k+1)
T Q(sk+1 − s∗k+1) + uT

k Luk (3.41)

where Q and L are the weighting matrices. The resulting optimal control input uk

can be derived as

uk = −(T ĴT
k QT Ĵk + L)−1T ĴT

k Q(sk − s∗k+1) (3.42)

Since there is no standard procedure to compute the weighting matrices Q and

L, they are adjusted to obtain desired transient and steady state response.
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3.2.3 Dynamic Jacobian Estimation

A. Dynamic Broyden’s Update Method

The affine model of the error function e(θ, t) is a first-order Taylor series approxi-

mation denoted as m(θ, t) and mk(θ, t) is an expansion of m(θ, t) about the kth data

point as follows:

mk(θ, t) = e(θk, tk) + Ĵk(θ − θk) +
∂ek

∂t
(t − tk) (3.43)

Requiring that the affine model (3.43) correctly specifies the error at (θ, t) =

(θk−1, tk−1) gives,

mk(θk−1, tk−1) = e(θk−1, tk−1) (3.44)

Next, writing mk(θ, t) for increment (θ, t) = (θk−1, tk−1) yields

mk(θk−1, tk−1) = e(θk, tk) + Ĵk(θk−1 − θk) +
∂ek

∂t
(tk−1 − tk) (3.45)

Substituting (3.44) into (3.45)

e(θk−1, tk−1) = e(θk, tk) + Ĵk(θk−1 − θk) +
∂ek

∂t
(tk−1 − tk) (3.46)

and rearranging (3.46) yields the so-called secant equation

Ĵkhθ +
∂ek

∂t
ht = ∆e (3.47)

where ∆e = ek − ek−1. Broydens method requires that (3.47) holds. Subtracting

Ĵk−1hθ from each side, rearranging, and transposing gives

hT
θ ∆ĴT =

(

∆e −
∂ek

∂t
ht − Ĵk−1hθ

)T

(3.48)

where ∆Ĵ = Ĵk − Ĵk−1. The Jacobian update ∆Ĵ is selected to minimize the

Frobenius norm ‖∆Ĵ‖F =
(
∑

(∆Ĵ)2
ij

)(1/2)

subject to the constraint (3.48), where

(∆Ĵ)ij indexes ∆Ĵ ∈ <m×n. By stacking the elements into a vector and rewriting

(3.48) accordingly, the problem is cast into a familiar form with a minimum norm

solution. The stacked form of (3.48) can be written as,
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hT
θ · · · 0

0
. . . 0

0 · · · hT
θ















(

∆ĴT
)

1
...

(

∆ĴT
)

m








=








(φ)1

...

(φ)m








(3.49)

where
(

∆ĴT
)

i
is the ith column of ∆ĴT , and (φ)i is the ith element of

(

∆e − ∂ek

∂t
ht − Ĵk−1hθ

)T

.

Note that (3.49) is in the form Ax = b, and that the norm ‖x‖2 is equal to

‖∆Ĵ‖2
F . The minimum norm solution is x = AT (AAT )−1b which minimizes ‖x‖

subject to Ax = b. Unstacking the result gives the dynamic Broyden update,

Ĵk = Ĵk−1 +

(

∆e − Ĵk−1hθ −
∂ek

∂t
ht

)

hT
θ

hT
θ hθ

(3.50)

The qualifier dynamic specifically refers to the presence of the error velocity term

(∂ek/∂t).

B. Recursive Least Square Method

An exponentially weighted recursive least square (RLS) algorithm [22] that mini-

mizes a cost function Gk based on the change in the affine model of error over time

is used to estimate composite Jacobian J .

Gk =
k−1∑

i=0

λk−i−1‖∆mki‖
2 (3.51)

where

∆mki = mk(θi, ti) − mi(θi, ti) (3.52)

In light of (3.43), (3.52) becomes

∆mki = e(θk, tk) − e(θi, ti) −
∂ek

∂t
(tk − ti) − Ĵkhki (3.53)

where hki = θk − θi, the weighting factor λ satisfies 0 < λ < 1, and the unknown

variables are the elements of Ĵk. Minimizing Gk is equivalent to minimizing the

Frobenius norm of the term (∆M)T Λ(∆M) where ∆M is a k × m matrix, whose

ith column is mk(θi−1, ti−1)−mi−1(θi−1, ti−1) and Λ is a k × k diagonal matrix with

λk−i at the ith diagonal element.
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Solution of the minimization problem yields the following recursive update rule

for the composite Jacobian:

Ĵk = Ĵk−1 + (∆e − Ĵk−1hθ −
∂ek

∂t
ht)(λ + hT

θ Pk−1hθ)
−1hT

θ Pk−1 (3.54)

where

Pk =
1

λ
(Pk−1 − Pk−1hθ(λ + hT

θ Pk−1hθ)
−1hT

θ Pk−1) (3.55)

and hθ = θk − θk−1, ht = tk − tk−1, ∆e = ek − ek−1, and ek = sk − s∗k, which is the

difference between the end-effector position and the target position at kth iteration.

The term ∂ek

∂t
predicts the change in the error function for the next iteration, and

in the case of a static camera it can directly be estimated from the target image

feature vector with a first-order difference:

∂ek

∂t
∼= −

s∗k − s∗k−1

ht

(3.56)

The weighting factor is 0 < λ ≤ 1 and when close to 1 results in a filter with a

longer memory.
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Chapter 4

Shape Alignment

Shape alignment is one of the central problems in vision research and has played

a key role in many particular domain of applications such as object recognition

[23], [24] and tracking [25]. In the domain of visual servoing, most of the current

alignment systems are based on known geometrical shaped objects such as industrial

parts or those that have good features like corners, straight edges which are feasible

to extract and track in real time [26]. The alignment of smooth free-form planar

objects in unknown environments presents a challenge in visually guided assembly

tasks.

It is proposed in [11] to use bitangent points in aligning planar shapes by employ-

ing both calibrated [27] and uncalibrated image based visual servoing [7] schemes.

In literature the use of bitangents in recognizing planar objects by affine invari-

ant alignment was first considered in [28] and for servoing purposes bitangent lines

(lines joining corresponding features on the superposition of two views of a scene)

were utilized to align the orientation between two cameras at different locations in

space by [29]. In [30] similar principles were applied on landing and surveillance

of aerial vehicles using vanishing points and lines. In order to acquire bitangent

points, convex-hull [31] of a curve is used. Bitangent points are then employed in

the construction of a feature vector.

4.1 Invariants

In mathematics a quantity is said to be invariant if its value does not change following

a given operation. There are two types of well known invariants, which are algebraic

and geometric, respectively.
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4.1.1 Algebraic Invariance

Algebraic invariance refers to combinations of coefficients from certain functions

that remain constant when the coordinate system in which they are expressed is

translated, or rotated. An example of this kind of invariance is seen in the behavior

of the conic sections. The general equation of a conic section is

ax2 + bxy + cy2 + dx + ey + f = 0

Each of the equations of a circle, or an ellipse, a parabola, or hyperbola repre-

sents a special case of this equation. One combination of coefficients, (b2 − 4ac),

from this equation is called the discriminant. For a parabola, the value of the dis-

criminant is zero, for an ellipse it is less than zero, and for a hyperbola is greater

than zero. However, regardless of its value, when the axes of the coordinate system

in which the figure is being graphed are rotated through an arbitrary angle, the

value of the discriminant (b2 − 4ac) is unchanged. Thus, the discriminant is said

to be invariant under a rotation of axes. In other words, knowing the value of the

discriminant reveals the identity of a particular conic section regardless of its ori-

entation in the coordinate system. Still another invariant of the general equation

of the conic sections, under a rotation of axes, is the sum of the coefficients of the

squared terms (a + c), i.e. trace of the 2 × 2 matrix of 2nd degree terms.

4.1.2 Geometric Invariance

In geometry, the invariant properties of points, lines, angles, and various planar and

solid objects are all understood in terms of the invariant properties of these objects

under such operations as translation, rotation, reflection, and magnification. For

example, the area of a triangle is invariant under translation, rotation and reflection,

but not under magnification. On the other hand, the interior angles of a triangle

are invariant under magnification, and so are the proportionalities of the lengths of

its sides.

4.1.3 Invariance of Features

Extraction upon features related to a model object, a similarity may be used to

compare the shape features. The similarity measure is referred to as a shape mea-
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Euclidean Similarity Affine Projective

Transformation

Rotation o o o o

Translation o o o o

Uniform scaling o o o

Non-uniform scaling o o

Shear o o

Perspective Projection o

Composition of projections o

Invariants

Length o

Angle o o

Ratio of lengths o o

Parallelism o o o

Incidence o o o o

Cross-Ratio o o o o

Table 4.1: Geometric transformations versus invariant feature properties.

sure. The shape measure should be invariant under certain class of geometric trans-

formation of the object. In the simple scenario, shape measures are invariant to

translation, rotation and scale. In this case, the shape measures are invariant un-

der similarity transformation. When included the invariance of shape measures to

shear effect, the shape measures are said to be invariant under affine transforma-

tion. Finally in the complicated case, shape measures are invariant under perspective

transformation, a special projective transformation, when included the effect caused

by perspective projection. Table 4.1 tabulates the geometric transformations versus

the invariant feature properties.

4.2 Bitangents

A line that is tangent to a curve at two points is called a bitangent and the points

of tangency are called bitangent points. (See Fig. 4.1).
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Figure 4.1: Some curves and their bitangents.

4.2.1 Properties of Bitangent Points

It is well known [33] that these bitangent points directly map to one another under

projective transformations since they are projective invariants. They are also called

contact points. Bitangent points are local features, so they are robust to occlusion,

clutter and can be easily computed and tracked in real-time. They can also be

extended to wide range of differing feature types.

4.2.2 Convex-Hull

Computing a convex hull (or just “hull”) is one of the first sophisticated geometry

algorithms, and there are many variations of it. The most common form of this

algorithm involves determining the smallest convex set (called the “convex hull”)

containing a discrete set of points. There are numerous applications for convex hulls:

collision avoidance, hidden object determination, and shape analysis.

The most popular algorithms are the “Graham scan” algorithm [34] and the

“divide-and-conquer” algorithm [35]. Implementations of both these algorithms are

readily available and both are O(n log n) time algorithms.

In the example below (see Fig. 4.2) the convex hull of the points is the line that

contains them. Informally, we can say that it is a rubber band wrapped around the

“outside” points.

4.2.3 Computation of Bitangent Points

Computation of bitangent points of a curve is presented as a block diagram in Fig.

4.3. Block-I receives a sequence of images from a camera and tracks a region in a

specified window using a tracking algorithm such as ESM algorithm [36]. Block-
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(a) (b) (c)

Figure 4.2: (a) Randomly scattered points, (b) illustration of convex-hull and (c)

points that are on convex-hull

II applies Canny edge detection algorithm to the specified region and extracts the

curve boundary data. Finally, Block-III employs a Convex-hull algorithm [31] to

find convex hull of the curve. Fig. 4.4 depicts various curves with different number

of concavities. The convex-hull algorithm yields convex portion of the original data.

Initial and final points of each convex portion are bitangent points.

Region
Tracking

Curve
Detection

Convex
Hull

Bitangent
Points

I II III

Image
Sequence

Figure 4.3: Block diagram representation of the algorithm for extracting bitangents.

If we apply the same algorithm to each concave portion of the curve we get two

more tangent points for that concavity (see Fig. 4.5).

4.3 Bitangent Points In Computer Vision

They can be used in image alignment, 3D reconstruction by allowing computation

of homography and fundamental matrices, motion tracking, and object recognition

[32].
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(a) (b) (c)

Figure 4.4: Acquiring the bitangent points of curves with one, two and three concav-

ities. (a) superimposed (solid) convex-hull on curves, (b) overlapped data between

the convex-hull and the curves, and the bitangent points, (c) concave data portions

Figure 4.5: Concave portion of a curve and the tangent points.

4.3.1 Projective Equivalence and Peq-Points

The projective transformations are defined as non-linear mappings of the form,

x̄ =
t11x + t12y + t13
t31x + t32y + t33

, ȳ =
t21x + t22y + t23
t31x + t32y + t33

(4.1)
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It is not easy to derive a projection matrix similar to the euclidean and affine

matrices. We need to introduce another transformation called homogenous trans-

formation. The homogenous transformation converts Cartesian coordinates (x, y)

into homogenous coordinates (wx,wy,w). In this transformation each x, y coordi-

nate is multiplied by a constant w, and w is appended as the third component of

the vector. Similarly, the inverse homogenous transform converts the homogenous

coordinates (xh, yh, w) into the Cartesian coordinates (xh

w
, yh

w
), by dividing each of

the two components with the third component.

x =
xh

w
, y =

yh

w
x̄ =

x̄h

w̄
, ȳ =

ȳh

w̄
(4.2)

Substituting x, y, x̄, ȳ, and rearranging we get:

x̄h

w̄
=

(t11
xh

w
+ t12

yh

w
+ t13)w

(t31
xh

w
+ t32

yh

w
+ t33)w

=
t11xh + t12yh + t13w

t31xh + t32yh + t33w
(4.3)

ȳh

w̄
=

(t21
xh

w
+ t22

yh

w
+ t23)w

(t31
xh

w
+ t32

yh

w
+ t33)w

=
t21xh + t22yh + t23w

t31xh + t32yh + t33w
(4.4)

x̄h = t11xh + t12yh + t13w

ȳh = t21xh + t22yh + t23w

w̄ = t31xh + t32yh + t33w

We can write the projection matrix T from above equations as in the following

form: 






x̄h

ȳh

w̄








︸ ︷︷ ︸

C̄h

=








t11 t12 t13

t21 t22 t23

t31 t32 t33








︸ ︷︷ ︸

T








xh

yh

w








︸ ︷︷ ︸

Ch

(4.5)

Two corresponding peq-points (projective equivalent points) of two curves, such

as C = (xi, yi) and C̄ = (x̄i, ȳi), respectively, will be defined by the condition that,








x̄ih

ȳih

w̄








=








t11 t12 t13

t21 t22 t23

t31 t32 t33








︸ ︷︷ ︸

T








xih

yih

w








(4.6)
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4.3.2 Comparison and Recognition via Canonical Models

If C = (xi, yi)|
n
i=1 and C̄ = (x̄i, ȳi)|

n
i=1 are points of projective equivalent curves, the

known mappings of any four or more peq-points of C = (xi, yi)|
n
i=1 to any four or

more peq-points of C̄ = (x̄i, ȳi)|
n
i=1, such as

(xi, yi)
T

−→ (x̄i, ȳi) for i = 1, 2, 3, 4, . . . , n

will define the projective transformation matrix, T . The matrix T is 3 × 3, which

has 9 unknowns. We can arbitrarily fix one of them and determine the remaining 8

unknowns. Rearranging equations in (4.1) we get:

t11x + t12y + t13 − t31xx̄ − t32yx̄ − t33x̄ = 0

t21x + t22y + t23 − t31xȳ − t32yȳ − t33ȳ = 0

There are 9 unknowns (t11, . . . , t33). One pair of corresponding peq-points (x, y) and

(x̄, ȳ) give rise to two such equations in 9 unknowns. n such points will imply 2n

equations, which can be solved for 9 unknowns.

t11x1 + t12y1 + t13 − x̄1t31x1 − x̄1t32y1 − x̄1t33 = 0

t11x2 + t12y2 + t13 − x̄2t31x2 − x̄2t32y2 − x̄2t33 = 0

...

t11xn + t12yn + t13 − x̄nt31xn − x̄nt32yn − x̄nt33 = 0

t21x1 + t22y1 + t23 − ȳ1t31x1 − ȳ1t32y1 − ȳ1t33 = 0

t21x2 + t22y2 + t23 − ȳ2t31x2 − ȳ2t32y2 − ȳ2t33 = 0

...

t21xn + t22yn + t23 − ȳnt31xn − ȳnt32yn − ȳnt33 = 0
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These equations can be written in matrix form as:























x1 y1 1 0 0 0 −x̄1x1 −x̄1y1 −x̄1

x2 y2 1 0 0 0 −x̄2x2 −x̄2y2 −x̄2

...

xn yn 1 0 0 0 −x̄nxn −x̄nyn −x̄n

0 0 0 x1 y1 1 −ȳ1x1 −ȳ1y1 −ȳ1

0 0 0 x2 y2 1 −ȳ2x2 −ȳ2y2 −ȳ2

...

0 0 0 xn yn 1 −ȳnxn −ȳnyn −ȳn
















































t11

t12

t13

t21

t22

t23

t31

t32

t33


























=























0

0
...

0

0

0
...

0























⇒ CQ = 0 (4.7)

where C is a 2n×9 matrix, Q is a 9×1 vector, and 0 is also 2n×1 vector. This is a

homogenous system which has multiple solutions. Therefore, we can arbitrarily fix

one of the unknowns, and determine the remaining ones. Let t33 = 1, and rewrite

above equation as:























x1 y1 1 0 0 0 −x̄1x1 −x̄1y1

x2 y2 1 0 0 0 −x̄2x2 −x̄2y2

...

xn yn 1 0 0 0 −x̄nxn −x̄nyn

0 0 0 x1 y1 1 −ȳ1x1 −ȳ1y1

0 0 0 x2 y2 1 −ȳ2x2 −ȳ2y2

...

0 0 0 xn yn 1 −ȳnxn −ȳnyn













































t11

t12

t13

t21

t22

t23

t31

t32























=























x̄1

x̄2

...

x̄n

ȳ1

ȳ2

...

ȳn























⇒ DR = S (4.8)

We can determine the unknown vector R by using pseudo-inverse, if at least 4 or

more points and their corresponding point coordinates are known, namely

R = D†S = (DTD)−1DTS (4.9)

Once R is computed, the projection matrix T is automatically known.

The canonical projective transformation matrix Tc that transforms the curve

C = (xi, yi)|
n
i=1 to the corresponding canonical curve Cc = (Xi, Yi)|

n
i=1, namely

C = (xi, yi)|
n
i=1

Tc−→ Cc = (Xi, Yi)|
n
i=1 (4.10)
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(a) (b) (c)

Figure 4.6: (a) A curve with its four bitangent points, (b) the frame of unit square,

(c) canonic projection of the curve.

(a) (b) (c)

Figure 4.7: (a) A curve with its bitangent and tangent points, (b)the frame of unit

square, (c) canonic projection of the curve.

will be defined by mapping 4 peq-points, either 4 bitangent points or 2 bitangent

and 2 tangent points, of C = (xi, yi)|
n
i=1 to the corners of the unit square as shown

in Fig. 4.6 and 4.7.

In light of equations (4.8) and (4.9), substituting {Xi, Yi} for i = 1, 2, 3, 4, with

the corners of unit square {(0, 0), (0, 1), (1, 1), (1, 0)}, we get:
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x1 y1 1 0 0 0 0 0

x2 y2 1 0 0 0 0 0

x3 y3 1 0 0 0 −x3 −y3

x4 y4 1 0 0 0 −x4 −y4

0 0 0 x1 y1 1 0 0

0 0 0 x2 y2 1 −x2 −y2

0 0 0 x3 y3 1 −x3 −y3

0 0 0 x4 y4 1 0 0













































tc11

tc12

tc13

tc21

tc22

tc23

tc31

tc32























=























X1

X2

X3

X4

Y1

Y2

Y3

Y4























⇒ DR = S ⇒ R = D−1S

(4.11)

The canonical projective transformation matrix Tc can then be defined by the

components of vector R with tc33 = 1.

Note that this construction of canonical curves allows us to introduce multiple

canonical curves, each of which can be defined by mapping 4 bitangent points of

pairs of concavities to the corners of the unit square. This way, we will have more

flexibility for the comparison and recognition of shapes with some similarity metrics.

4.3.3 Recognition with Invariants

The recognition of a partially occluded object is a major problem in computer vision.

This problem has not been sufficiently resolved yet, although many people have been

working on it for about last twenty years. Invariant measures like the cross-ratio

(geometric invariant under perspective transformations) of four points on a line as

shown in Fig. 4.8 can contain shape information and be used for identification of

objects seen by a camera. For simplicity, we will restrict ourselves to planar objects

here, so that the mapping from scene points to image ones is one to one. Figure 4.8

shows two planar curves with their tangent points (B, C) and (B̄, C̄), respectively,

and the intersection points (A, D) and (Ā, D̄), respectively, which are acquired by

intersecting the lines constructed from these tangent points with the curves, and

their projection points (a, b, c, d) and (ā, b̄, c̄, d̄), respectively.

The ratio of ratios of lengths on the line, called the cross-ratio, is given by

I =
(C − A)(D − B)

(C − B)(D − A)
=

(c − a)(d − b)

(c − b)(d − a)
(4.12)
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Figure 4.8: A one-dimensional construction of perspective viewing. The optical

center of the camera is O. Under perspective projection, the length, and ratios of

lengths, on a line are not invariant, but ratios of ratios are.

and

Ī =
(C̄ − Ā)(D̄ − B̄)

(C̄ − B̄)(D̄ − Ā)
=

(c̄ − ā)(d̄ − b̄)

(c̄ − b̄)(d̄ − ā)
(4.13)

where (. − .) denotes euclidean distance between the points. If I = Ī, then one

can conclude that these curves might be equivalent. In summary, the cross-ratio is

an invariant of any sets of four collinear points in projective correspondence. It is

unaffected by the relative position of the line or the position of the optical center.

4.4 Bitangent Points In Visual Servoing

In this scenario bitangent points will be used in “teaching-by-show” method for

shape alignment purpose. Let C = (xk, yk)|
n
k=1 and C∗ = (x∗

k, y
∗
k)|

n
k=1 are the ex-

tracted contours of the planar shape at initial and desired poses of the robot and

(bxk,
b yk)|

m
k=1 and (bx∗

k,
b y∗

k)|
m
k=1 are corresponding bitangent points of them, respec-

tively. Then these points can be used to construct the visual feature vectors s and
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s∗ as follows:

s =














bx1

by1

...

bxm

bym














, s∗ =














bx∗
1

by∗
1

...

bx∗
m

by∗
m














Once the visual feature vectors are obtained, one can compute the control law

as explained in Section 3.1.2 for steering the robotic system in order to align planar

shapes.
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Chapter 5

Experimental Results

This section presents experimental results for shape alignment, positioning and tra-

jectory following tasks. The reference trajectories, which are pursued by the end-

effector in experiments, are generated using a linear interpolator. This linear in-

terpolator produces midway targets along the reference trajectory within the image

and in the experiments performed. The interpolation speed was defined as follows,

νmid = np × fps (5.1)

where νmid, np and fps denote velocity of the midway target in pixel/s, shift distance

in pixels, and the number of retrieved frames in a second of the camera, respectively.

5.1 Experiments On A Robotic Arm

5.1.1 Shape Alignment

In this section, experimental results on planar shape alignment using model free

visual servoing are presented. For comparison purposes, a calibrated approach using

bitangents is also provided.

Experiments were conducted with a 7 DOF Mitsubishi PA10 robot arm and a

Unibrain Fire-i400 digital camera. The camera is mounted on a tripod in eye-to-

hand configuration in order to observe the motion of the end-effector. The images

were digitized at 320 × 240 resolution. The system setup is shown in Fig.5.1. The

visual control and image processing modules are implemented in VC++ 6.0 using

OpenCV library and run on P4 2.26GHz with 1GB ram personal computer.

Fig. 5.2 shows a test shape, which is on a plane and rigidly attached to the end-

effector. Bitangent points of the shape are acquired using the proposed algorithm in
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Figure 5.1: System setup with drawn robot control frame and camera frame.

Section 4.2. For visual servoing purposes, either bitangent points or their midpoints,

see points denoted by 1, 2 and 3 in Fig. 5.2, can be used. Unlike bitangent points,

which are projective invariant, midpoints are affine invariant. If the scene’s depth is

much less than its distance from the camera, a weak-perspective projection can be

assumed. Throughout the experiments weak-perspective assumption is made and

the visual feature vector s is constructed from the midpoints as follows:

s = [x1, y1, x2, y2, x3, y3]
T .

Figure 5.2: Test shape and its feature points.
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In the case of perspective projection, i.e. if the weak-perspective assumption

does not hold, one can use bitangent points to construct the visual feature vector.

For alignment task, desired pose of the shape is obtained during an off-line stage

by moving the robot in xz-plane of the robot control frame (see Fig. 5.1) with some

translational velocities Vx, Vz and rotational velocity Ωy for a certain time interval.

Consequently, the desired feature vector s∗ is constructed from this reference pose.

A. Calibrated Visual Servoing Results

The parameters fx = 1000, fy = 1000, xc = 160, yc = 120 are obtained by a coarse

calibration of the camera and Z = 2000 mm. The robot base frame is positioned

at z = 2000 mm in z-axis and y = 1000 mm in y-axis away from the camera frame.

Thus, we have

R =








−1 0 0

0 0 −1

0 −1 0








, t =








0

1000

2000








where R is the rotational matrix and t is the translational vector that are used for

the construction of robot-to-camera transformation matrix T which is defined in

(3.22). The gain matrix Λ in (3.26) is tuned as Λi = 0.3 for i = 1, 2, .., 6. The

control input is defined as

u =
(

Vx Vz Ωy

)T

where u consists of the 1st and 3rd components of VR (end-effector velocity screw)

for the motion in xz-plane and 5th component of VR for the rotation around y-axis

in robot control frame, respectively. Fig. 5.3 depicts the initial and the desired

images. Fig. 5.4 shows feature trajectories. Alignment errors and control signals

are plotted in Figs. 5.5-5.6. The norm of the resulting alignment error is found to

be less than 1 pixel.

B. Uncalibrated Visual Servoing Results

Here we do not need the calibration parameters since the composite Jacobian J ∈

<6×3 is estimated in a recursive manner using RLS. Only 3 joints, namely the 2nd,

the 4th and the 6th joints of PA10 robot are used to steer the end-effector by locking
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Figure 5.3: Initial and desired images

Figure 5.4: Feature trajectories on the image plane

the remaining 4 joints. The control parameters are set as λ = 0.96 and Kp = 0.6

for Dynamic Gauss-Newton controller with RLS Jacobian estimation. The control

input is defined as

u =
(

Ω2 Ω4 Ω6

)T

where Ω2, Ω4 and Ω6 are the joint velocities. Figs. 5.7-5.8 depict the initial and the

desired images, and the feature trajectories on the image plane. Alignment errors

and the control signals are plotted in Figs. 5.9-5.10, respectively. The norm of the

resulting alignment error is found to be less than 1.5 pixel.
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Figure 5.5: Alignment errors

C. Discussion

In both visual servoing approaches it is observed that alignment task errors are less

than 1.5 pixels, which corresponds to 5 mm in robot workspace. It can be seen that

calibrated approach draws more smoother trajectories while the uncalibrated one

shows ambiguous behaviour until the Jacobian converges and the end-effector moves

towards the desired pose. Computation times of region tracking, curve detection and

bitangent extraction modules are approximately 13 ms, 5 ms and 4 ms, respectively.

5.1.2 Trajectory Following

In this section, the model free visual servoing approach for trajectory following

tasks was accomplished with dynamic Gauss-Newton controller and tested in square,
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Figure 5.6: Control signals Vx, Vz and Ωy

Figure 5.7: Initial and desired images

circular and sinusoidal paths.

All experimental results were evaluated in terms of accuracy and precision. Ac-

curacy and precision values were determined as the mean and the standard deviation

of the error-norms. A linear interpolator was used to generate midway targets to

make the end-effector track them along these reference trajectories. The tracking

performances for these three trajectories are depicted in Table 5.1. The tracking er-

ror was computed as the distance between the end-effector and the current midway

target at each frame. Figs. 5.11, 5.12 and 5.13 show results of trajectory following

experiments and the error-norms versus time graphs.
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Figure 5.8: Feature trajectories on the image plane
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Figure 5.9: Alignment errors
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Figure 5.10: Control signals Ω2, Ω4 and Ω6
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Figure 5.11: Square trajectory and tracking error for dynamic Gauss-Newton con-

troller with RLS Jacobian estimation
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Figure 5.12: Circle trajectory and tracking error for dynamic Gauss-Newton con-

troller with RLS Jacobian estimation
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Figure 5.13: Sine trajectory and tracking error for dynamic Gauss-Newton controller

with RLS Jacobian estimation

Table 5.1: Results for trajectory tracking on PA10

Square Circle Sine

Acc. Prec. Acc. Prec. Acc. Prec.

pixels 11.23 6.22 7.65 2.48 8.11 3.55

cm 3.7 2 2.6 0.8 2.7 1.2

A. Discussion

It can be seen from the presented results and graphs that model free visual servoing

has performed the trajectory following tasks with centimeter accuracies. On the
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average, the tasks were achieved with 10 pixels accuracy which corresponds to 3.5

cm in robot workspace.

5.2 Experiments On A Microassembly Workstation

Our microassembly workstation consists of a Nikon SMZ1500 optical stereomicro-

scope that has a CCD camera module adapter onto which a Basler A602fc camera

with 9.9µm × 9.9µm cell sizes is mounted. The microscope has 1.6X objective and

additional zoom. Zoom levels can be varied between 0.75X-11.25X, implying 15 : 1

zoom ratio. Fig. 5.14 shows the complete microassembly system. The gripper that

was used in the experiments is a Zyvex microgripper with an opening gap of 100 µm

and it is rigidly fastened to a PI M-111.1 high-resolution micro-translation stage with

50 nm incremental motion in x, y and z positioning axes (see Fig. 5.15). The con-

trollers for linear stages were implemented on dSpace ds1005 motion control board

which steers the microgripper. The visual tracking algorithm (ESM) accomplished

to track a 50 × 50 window up to 250 pixels/sec velocity at 33 Hz.

5.2.1 Tasks

Micro tasks were conducted on our microassembly station and visual feedback has

been provided through coarse visual path of the microscope. In experiments, visual

servoing was accomplished with dynamic Gauss-Newton and Optimal controllers for

micropositioning and trajectory following tasks at 1X and 4X zoom levels. Fig. 5.16

depicts the microgripper for two different zoom levels.

Last two columns of Table 5.2 show the area in mm2 of the microscopic view

and the effective pixel size (resolution) for the zoom levels indicated in the first

column. All experimental outcomes were assessed in terms of accuracy and preci-

sion. Accuracy and precision values were determined as the mean and the standard

deviation of the error-norms. To estimate initial microscopic system Jacobian, each

linear stage is successively moved by a small amount and the change of microgripper

position in image is used to build its components. The microgripper is then servoed

in workspace for a while to ensure convergence of the Jacobian to its true values.
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Figure 5.14: Microassembly workstation and attached visual sensors

Table 5.2: System Parameters

Z Area ∆P

(mm2) (µm)

1X 4 × 3 6.18

4X 1 × 0.75 1.55

5.2.2 Micropositioning

In this task the microgripper was sent to a desired position from an arbitrary initial

position by giving step inputs of 50 pixels both in x and y directions as references.
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Figure 5.15: Microgripper mounted on linear stages in assembly workspace

Figure 5.16: Views of microgripper at 1X and 4X

This corresponds to 70.8 pixels from the initial position. Results of these experi-

ments for the Dynamic Gauss-Newton and the Optimal control, are tabulated in

Tables 5.3 and 5.4 where Z, {Kp, Q, L}, Step, ts, Acc. and Prec. represent zoom

level, control gains, step input, settling time, accuracy and precision, respectively.

The positioning errors were calculated after the response was settled and remained

in 3% of its final value. Figs. 5.17 and 5.18 demonstrate the step responses and the

corresponding Optimal control signals for a trial under 1X and 4X zoom levels .
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Table 5.3: Dynamic Gauss-Newton control results for micropositioning

Z Kp Step ts Acc. Prec.

(pix) (sec) (µm) (µm)

1X 4 50 1.6 4.37 1.32

4X 2 50 3 2.81 1.44

Table 5.4: Optimal control results for micropositioning

Z Q L Step ts Acc. Prec.

(pix) (sec) (µm) (µm)

1X 0.9 0.05 50 1.6 8.60 3.65

4X 0.6 0.4 50 1.6 4.74 1.92

5.2.3 Trajectory Following

Apart from micropositioning, the same model free visual servoing was tested in tra-

jectory following tasks with square, circle and sine trajectories. A linear interpolator

was used to generate midway targets to make the microgripper pursue them along

these reference trajectories. The upshots for these trials are depicted in Tables 5.5

and 5.6. The tracking error was computed as the distance between the microgripper

and the current midway target at each frame. Figs. 5.19, 5.20 and 5.21 depict

results of trajectory following experiments and the error-norms versus time graphs.

Performance versus microassembly tasks for two controllers are also depicted in Figs.

5.22 and 5.23 where each ellipse defines the accuracy (center of the ellipse) and the

precision (half length of the major axis of the ellipse) of the performed task.

Table 5.5: Dynamic gauss-newton control results for trajectory following

Z (µm) Square Circle Sine

Acc. 3.78 24.87 11.36

1X Prec. 3.43 4.62 5.87

Acc. 1.45 6.08 2.86

4X Prec. 1.45 2.95 1.85
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Figure 5.17: Step responses and optimal control signals at 1X

Table 5.6: Optimal control results for trajectory following

Z (µm) Square Circle Sine

Acc. 8.65 21.05 6.14

1X Prec. 2.70 2.90 2.74

Acc. 1.64 3.30 1.17

4X Prec. 1.12 1.17 0.57

5.2.4 Discussions

It can be seen from the presented tables and graphs that model free visual servoing

has performed the micropositioning and trajectory following task with micron accu-
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Figure 5.18: Step responses and optimal control signals at 4X
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Figure 5.19: Square trajectory and the tracking error using optimal control at 1X
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Figure 5.20: Circle trajectory and the tracking error using optimal control at 1X
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Figure 5.21: Sine trajectory and the tracking error using optimal control at 1X

racies. On the average, the tasks were achieved with 5 µm and 3 µm accuracies for

positioning and with 12 µm and 3 µm accuracies for trajectory following at 1X and

4X zoom levels, respectively. Upon inspection of controllers, we see that the perfor-

mance of Dynamic Gauss-Newton is better than Optimal control in linear motions

(positioning and square trajectory following) while Optimal controller performs bet-

ter than the previous one in nonlinear motions (circle and sine trajectory following).

Also the precision results in both zoom levels for Dynamic Gauss-Newton control

are worse than those of Optimal control. If time considerations are important for

the tasks, uncalibrated visual servoing approach is more sluggish than the calibrated

one.
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Chapter 6

Conclusion

In this thesis, performance of model free visual servoing algorithms are experimen-

tally evaluated for various tasks performed both in macro and micro domains.

Particularly, in Chapter 2 the fundamentals of visual servoing such as camera

model, system configurations, control architectures etc. are summarized. In Chapter

3 the theory of both model based and model free visual servoing approaches are

presented. In model based approach, which needs camera parameters, kinematic

model of robot, and the model of the observed scene, the analytical model of image

Jacobian for a specific feature is derived and visual control law is designed. In

model free approach, which does not necessitate system parameters, the dynamic

composite Jacobian estimation methods are presented and their usage in dynamic

Gauss-Newton and Optimal controllers are shown. A novel approach for planar

shape alignment using bitangents is developed in Chapter 4. Bitangent points,

which are acquired using convex-hull of a curve, are used to design image based

visual servoing schemes, both calibrated and uncalibrated, for a fixed camera system.

The assumption is that the curve has at least one concavity on its boundary shape.

How bitangent points can be used for object recognition and comparison before

initiating visual servoing is also discussed in the same chapter. Chapter 5 was on

the experimental results performed both on a robotic arm and on a microassembly

workstation.

In macro domain, shape alignment and trajectory following experiments are

performed on 7 DOF Mitsubishi PA10 robotic arm, respectively. Alignment tasks

are performed with milimeter accuracies. In trajectory following tasks, the average

accuracy is around a few centimeters.
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In micro domain, the use of model free visual servoing approach is also inves-

tigated and experimentally validated in micropositioning and trajectory following

tasks. Model free visual servoing has the advantages of carrying out a task with-

out requiring a model of the system and adapting itself to different operating modes

through a dynamic estimation of the composite Jacobian. Experimental results show

that positioning and trajectory following tasks can be performed in a robust manner

with micron accuracies. The performance of model free visual servoing approach

has been evaluated with two different controllers. It has been observed that for

linear motion Dynamic Gauss-Newton controller shows slightly better performance,

while Optimal controller does better job for the rest of the trajectories.

As a future work, 3D alignment tasks can be tackled using the idea of convex-hull

in 3D and the use of a hybrid visual feature vector which includes both 2D and 3D

features in the design of the model free visual servoing methods.
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