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Abstract

Zinc is an essential micronutrient involved in many cellular mechanisms
in biologycal systems and its deficiency causes severe reductions in crop yield
and human health.

In this study, our goal is to identify and characterize the genes expressed
in three Agrostis species; Creeping (Agrostis stolonifera), Colonial (Agrostis
capillaris) and Velvet (Agrostis canina) bentgrass upon exposure to zinc
deficiency using mRNA differential display method. Differentially expressed
fragments were sequenced and analyzed further. Nine differentially expressed
genes whose expression levels either increased or decreased in response to zinc
deficiency were identified. Transcripts identified have partial similarities to
the previously identified metal binding proteins. A full sequence of differen-
tially expressed gene was obtained by using rapid amplification of cDNA ends
(RACE) method. The expression level of this gene was quantified by Real-
Time PCR and a down-regulation was observed under zinc deficiency. The
identified protein was characterized based on its similarity to the ZIP family
transporters. This is the first report to identify and characterize homologous
of the ZIP family transporters in Agrostis species.
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CINKO NOKSANLIGINDA AGROSTIS TURLERINDEKI GEN
ESPRESYONUNUN SEVIYESININ BELIRLENMESI

Ozge CANLI
BIO, Yiiksek Lisans Tezi, 2007
Tez Danigmani: Dog. Dr. Hikmet BUDAK
Anahtar Kelimeler: mRNADD, Agrostis, ZIP gen ailesi, ¢inko noksanligi

Ozet

(inko, biyolojik sistemlerde, bir¢cok hiicresel mekanizmada rol alan temel
bir mikrobesindir ve ¢inkonun, eksikliginde, bitkisel verim ve insan sagliginda
problemler ortaya cikar .

Bu ¢alismadaki amacimiz, ti¢ farkli Agrostis tiiriinde; Creeping (Agrostis
stolonifera), Colonial (Agrostis capillaris) ve Velvet (Agrostis canina) bent-
grass, mRNADD metodu kullanarak, ¢inko noksanligindaki gen ekspresyon
profilini goriintiilemekti. Farkli ekspresyon seviyesine sahip genler, sekans-
land1 ve analiz edildi. Ekspresyonu, ¢inko noksanliginda azalan veya artan
dokuz gen tespit edildi. Elde edilen diziler, bilinen metal baglayan protein-
lerle kismi benzerlikler gosterdi. RACE metodu kullanilarak, bu genlerden
birinin tiim mRNA sekansi elde edildi. Bu genin ekspresyon seviyesindeki
farklilik, gercek zamanli PCR metoduyla belirlendi ve ¢inko noksanliginda,
ekspresyon seviyesinde belirgin bir diiglis gozlemlendi. Genin kodladig:1 pro-
tein, ZIP tasiyici gen ailesiyle gosterdigi benzerliklere dayanarak karakterize
edildi. Bu caligma sonucunda, Agrostis tiirlerinde ilk defa bir ZIP ailesi ho-
mologu belirlenmis oldu.
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Chapter 1

Introduction

1.1 Agrostis species

Grass family has a particular importance as rice, wheat and maize consti-
tutes the major portion of dietary not only for humans but also for domestic
animals. Moreover, grasses form a significant part of the urban and subur-
ban landscape all over the world cover approximately 20% of the earth’s land
surface [1, 2].

Agrostis genus of the Poaceae family, consists of more than 200 species.
Three bentgrasses, namely Creeping bentgrass (Agrostis stolonifera), Colo-
nial bentgrass (Agrostis capillaris) and Velvet bentgrass (Agrostis canina),
are the most commonly used in earth’s landscape especially in athletic fields
and golf courses [3, 4]. Among those three, creeping bentgrass is the most
commercially important bentgrass used especially in golf course due its fine
leaves and tolerance to low cutting heights [5].

Agrostis species are used in many research to study herbicide resistance,
heavy metal tolerance and other various aspects. One of the earliest research
about Agrostis species and their interaction with metals published in Nature,
states that Agrostis tenuis is resistant to lead and zinc toxicity [6]. A recent

study on Agrostis species with various metals such as lead, zinc and cadmium



have verified this hypothesis and demonstrated that the interaction of two of
these heavy metals on plants can be formulated in two different ways; inter-
action may either lead to the enhancement of toxic action resulting from the
summation of toxicity or may alter the absorption or transport of toxicants
in different ways depending on the metals [7].

Two recent study on creeping bentgrass, colonial bentgrass and velvet
bentgrass species have provided valuable information about the transcribed
genes in grass species that might be useful in comparative genome analysis [4].
There is lack of knowledge on the identification and characterization of zinc

responsive genes in Agrostis species.

1.2 Importance of zinc for mammalians

Zinc is needed by humans in small but critical amounts however, inade-
quate amounts may cause disfunction of many enzymes and other metabolic
functions in which zinc takes part. In developing countries, it is of great im-
portance to increase the amount of dietary zinc. There is a global effort for
micronutrient enrichment through plant breeding [8]. Succeeding in this may
contribute to improving the health of many micronutrient deficient people

not only in developing countries but worldwide.

1.2.1 Biochemistry of zinc

Zinc is one of the essential trace elements for humans. Due to its ability
of strong but exchangeable ligand binding zinc was proved to be useful in
biological systems [9]. Zinc has many specific structural roles in enzymes,
other proteins and biomembranes. It is ubiquitous in subcellular metabolism
and an essential component of the catalytic site of at least one member of

any enzyme classification. [10]. So far, many zinc metalloenzymes have been



characterized in animal and plant kingdoms. A specific example for the role of
zinc is the zinc finger motif which is one of most common DNA binding motifs.
A single zinc atom regulates the binding of zinc fingers to the DNA. This
motif exists in many transcription factors and recently similar motifs were
identified in nuclear hormonal receptors [11, 12, 13]. These important roles
of zinc in metabolism suggest that zinc deficiency may result in metabolic

abnormalities for biosystems.

1.2.2 Zinc deficiency

Fundamental importance of zinc in cellular growth and differentiation was
demonstrated in animal model systems especially for rapidly growing tissues
and organs such as embryo [14]. In addition to this, it was found that zinc
deficiency also affects tissues that are not rapidly growing or differentiating
such as central nervous system [15]. It is known that zinc deficiency results in
loss of appetite, inability to gain weight, skeletal abnormalities, skin lesions
and hair abnormalities in growing animals [16].

The first major hypothesis about the effects of zinc deficiency on mam-
mals, was discovered in the mid-Eastern countries for the syndrome of ado-
lescent nutritional dwarfism [17]. Since then, many clinical research have
identified divergent effects of zinc deficiency on human health. Epidermal,
gastrointestinal, central nervous, immune, skeletal and reproductive systems
are reported as the organ systems that are affected by zinc deficiency [13].
Growth abnormalities due to zinc deficiency is one of the most studied health
problems among others and was shown to be reduced by zinc supplementa-
tion. Many other health problems such as diarrhea, pneumonia, neurological
defects, childhood mortality,malaria were also overcome by increasing the

amount of zinc in dietary [18].



1.3 Zinc in plant nutrition

Zinc is one of the eight trace elements which are essential for the normal
growth and reproduction of crop plants. Zinc deficiency in soils causes severe
reductions in both crop production and grain quality, as shown in different
countries like in India, Turkey, China and Australia [19]. Figure 1.1 provides
a list of countries that zinc deficiency was reported.

Studies with various plant species have clarified many aspects on the
importance of metals and the mechanisms of metal accumulation and home-
osteasis in plants. For instance, the recent study on Medicago truncatula
predicted six new metal binding proteins with a high level of similarity to
the ZIP protein family [20]. In another study on Arabidopsis thaliana, it was

reported that cation efflux family is involved in Zn homeostasis [21].

1.3.1 Physiological role of zinc in plants

Zinc is an essential mineral nutrient and a cofactor of enzymes and proteins
involved in many cellular mechanisms. It has a strong tendency to form
tetrahedral complexes with nitrogen, oxygen and sulfur ligands and plays
both a catalytic and a structural role in enzymatic reactions [22]. The pre-
dominant forms of zinc in plants are low molecular weight complexes, storage
metalloproteins, free ions, and insoluble forms associated with the cell wall
breaks.

Zinc can be inactivated by the formation of complexes with organic lig-
ands or phosphorus. The water soluble fraction of zinc that is mostly found
in the low molecular weight complexes is the most physiologically active form
of total zinc in plants [23].

Zinc deficiency has effects on carbohydrate and protein metabolisms,

membrane integrity, auxin metabolism and reproduction in plants [19]. Zinc
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Figure 1.1: Countries with reported zinc deficiency [19].



has an effect on carbohydrate metabolism through its role in photosynthesis
and sugar transformations [22, 24]. It has also an indirect role in protein
metabolism due its necessity for the activity of enzyme RNA polymerase.
Zinc deficiency triggers ribonuclease activity and causes a decrease in RNA
level as a result [23]. In plants, zinc plays a critical role for the integrity of
biomembranes that may involve the orientation of macromolecules and the
maintenance of ion transport systems and protection of membrane proteins
from the destructive effects of superoxide radicals and their derivatives pro-
duced by redox reactions within the cell [25, 26, 19]. Zinc has a regulatory
effect on synthesis of auxin, a growth regulation compound. The evidence
shows that zinc is required for the biosynthesis of tryptophan which is the
most likely precursor of auxin [23]. In zinc deficient plants, a reduction in
the seed production was observed probably due to the increased formation of
abscisic acid causing premature loss of leaves and flower buds and disruption

of the development and physiology of anthers and pollen grains [23, 19].

Low molecular weight complexes of zinc

In plants, soluble zinc occurs mainly as anionic compound and thought to
be associated with amino acids whereas free zinc ions constitute only a small
proportion of the soluble zinc content [23, 19]. The low molecular weight
complexes of zinc such as phytochelatins that are synthesized in response
to excess cadmium, zinc and mercury exposure are thought to be the most

physiologically active forms of zinc [19].
Zinc in proteins

In plants, zinc plays a role as functional, structural and regulatory cofactor
of many enzymes [19]. So far, more than 70 metalloenzymes containing zinc

have been identified and found to be the members of either oxidoreductase,



transferase, hydrolase, lyase, isomerase and ligase enzyme classes [27]. The
zinc atom usually binds to the apoenzyme and forms strong complexes with
radicals of polar groups containing oxygen, nitrogen and sulphur [23].

X-ray analysis shows that the zinc binding pattern the enzymes is changed
depending on its role. Zinc is mostly bound through imadazole or cysteine if
it has a functional role. Catalytic zinc is bound with three protein ligands and
a water molecule whereas in enzymes that zinc has a structural or regulatory
role it is bound with four protein ligands. Depending on this fact the water
molecule is considered essential for the catalytic activity of zinc [23, 19].

A very recent study suggested that the activity of CA (carbonic anhy-
drase), an enzyme that catalyses the the hydration of COs,, is highly corre-

lated to Zn tissue concentrations [28].

1.3.2 Mechanisms of zinc uptake by plants

Zinc is mostly absorbed as an ion from the soil by the roots with a protein
that has a high affinity for zinc and the efficiency of zinc uptake decreases
in dry soils when compared to wet soils [19, 29]. Zinc uptake was found to
be pH dependent and uptake of micronutrients mutually inhibit each other
possibly because the same mechanism is used for several micronutrients [30].
Zinc is accumulated in the root and translocated to the shoot as an ion or
complex with organic acids when needed [19]. It was also reported that
alkaline earth conditions inhibit zinc uptake at a certain level depending on
the conditions [31].

Zinc is taken up from soils by root membrane transport mechanisms. The
selectivity of these transporters determines whether other divalent cations are
imported at the same time with zinc. Recent advances have revealed that

plant genomes contain several gene families involved in the transport of di-



valent micronutrients [32]. Some of these transporters have broad substrate
specificity, but the range of specificities in plant zinc transporters is unknown
because their functional characterization is lagging behind the gene discov-
ery [33]. There appears to be at least one family of transporters in plants
that should be relatively specific for iron and zinc uptake; however, the pre-
cise metal ions that these transporters take up may vary according to the
composition of metal ions in the environment [34, 35, 36, 37]. Although the
molecular identity of specific zinc transporters has become evident in plants,
we know little about how the structures of these proteins interact to create
differences in functional characteristics, such as ionic selectivity. Ionic selec-
tivity is particularly important for plant zinc transporters in root cells. In
soils that contain contaminants such as cadmium, zinc transport mechanisms
may allow for cadmium entry into whole plants [38, 39].

In recent years, scientist have identified various genes that encode pro-
teins involved in membrane transport of metals and Grusak provided ex-
tensive information on the topic and how this might be used in transgenic
strategies [40]. Grusak has modeled the potential control points in the reg-
ulation of metal homeostasis in crop plants (Figure 1.2). According to his
model, soil particles are transported to different compartments via variable

pathways through xylem, pholoem and vegatative tissues [41].

1.3.3 Causes of zinc deficiency

In 1972, Lindsay categorized the most important factors effecting zinc avail-
ability in soils under nine major groups; soils with low zinc content, soils
with restricted root zones, calcareous soils, soils of low organic matter con-
tent, microbially inactivated zinc, low temperature soils, plant species and

varieties, high levels of available phosphorous and effect of nitrogen [42]. Fig-
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of photoassimilates from a given source region; (8) communication of shoot

N\
4

Phloem

Seed

@

Root Cortical
or Epidermal
Cell

Soil
Particle

micronutrient status via phloem-mobile signal molecules. [41]
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Figure 1.3: Schematic diagram of the causes of zinc deficiency in crops [19].

ure 1.3 shows Alloway’s schematic description of the causes of zinc deficiency

in crops.

1.4 The ZIP family of metal transporters

The ZIP gene family is a metal transporter family first identified in plants.
Its members are transporters of a variety of cations, including cadmium, iron,
manganese and zinc.

The name ZIP comes from the first members identified (ZRT, IRT-like
protein) in Arabidopsis [43]. IRT1 is a cation transporter expressed in the
roots of iron deficient plants and ZRT1 and ZRT2 are zinc transporters identi-
fied in yeast [34, 39]. Many ZIP proteins have been identified in plants, yeast,
bacteria, archea, human and many other mammalians indicating that specific
ZIP transporters may play different roles in metal transport [44, 45, 46].

The ZIP family can be split into several subfamilies based on a their

10
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Figure 1.4: Predicted topology of ZIP family members. ZIP proteins cross
the membrane eight times. There is a variable region between transmem-
brane domains 3 and 4 that is histidine-rich and predicted to reside in the
cytoplasm [47].

sequence conservation within these groups. Most ZIP proteins have eight
transmembrane domains whereas some have fewer. These domains have a
similar membrane topology in which the amino- and carboxy-terminal ends
of the protein are located on the outside surface of the plasma membrane and
the transmembrane region is the most conserved portion of the ZIP family
proteins (Figure 1.4). ZIP family proteins mostly range from 309 to 476
amino acids in length, this difference is largely due to the length between
transmembrane domains [43]. Figure 1.5 shows the structure of Irt1 protein

of ZIP family.

11
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within domains V and VI are indicated as is the variable region, the ubiq-
uitinated K195 in Zrtl, and the extracellular loop region that affects Irtl
substrate specificity [48].
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1.5 mRNA differential display

Differential display (DD) technology is one of the major tools that was de-
veloped by Liang and Pardee to speed up the identification of differentially
expressed genes [49]. The method is based on simple molecular biology tools.
First, mRNAs from cells are converted to first strand cDNAs using oligo-dT
primers that enable the initiation of cDNA synthesis at the beginning of
poly(A) tail of any given mRNA. The ¢cDNAs are further amplified using
a set of primers that are short and arbitrary in sequence and recognizing
50-100 mRNAs [49]. The cDNAs can be visualized using gel electrophoresis
and comparisons of such cDNA patterns between relevant mRNA samples
reveal the differences in gene expression profiles. Figure 1.6 illustrates the
basic mechanism of differential display. Differentially expressed cDNA bands
can be cloned and sequenced for further analysis. Mathematical models have
been proposed to predict the relationship between the number of arbitrary
primers and the coverage of expressed genes in any given eukaryotic cells [50].
According to this model, a primer would recognize one twelfth of the total
mRNA population because there are twelve different combinations of the last
three bases.

Differential display method is used in many recent studies as a tool to
obtain gene expression profiles not only of plants but also animals. In a
recent study, differentially expressed genes in Festuca rubra upon Puccinia
infection was identifed using mRNA differential display method [51]. In
another study, 10 zinc responsive genes in fall webworm, Hyphantria cunea
were identified using differential display method [52]. This method was also

applied to durum wheat to identify cadmium responsive genes [53].
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Figure 1.6: Schematic illustrations of fluorescent differential display [54].
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1.6 Aim of the study

Because zinc is an essential micronutrient for both plants and humans, it
is important to characterize zinc dependent pathways in plants. In plants,
metal deficiencies cause an altered expression or function of proteins at the
metabolic level and may lead to some physiological symptoms such as reduced
growth [20, 55].

In this study, the gene expression profiles of three bentgrass species, Colo-
nial, Creeping and Velvet bentgrass, were identified using mRNA differential
display method in response to zinc deficiency. The plants grown under differ-
ent zinc concentrations were subjected to mRNA differential display method.
Differentially expressed fragments were sequenced and analyzed further. Nine
differentially expressed genes were found for the three bentgrass types whose
expression levels either increased or decreased in response to zinc deficiency.
Majority of the identified transcripts have partial high similarities to the
previously identified metal binding proteins.

The expression level of one of the novel genes that had a decreased expres-
sion pattern under zinc deficiency in Creeping bentgrass was quantified by
Real-Time PCR and a dramatic decrease in the expression level of the tran-
script was observed under zinc deficiency. The full mRNA sequence of the
transcript was obtained for the first time in Creeping bentgrass, using RACE
method and this led to the identification of a ZIP family zinc transporter.

The full length AsZIP was submitted to GenBank database.
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Chapter 2

Materials and Methods

2.1 Materials
2.1.1 Chemicals and equipment

For the detailed list of chemicals and equipment that has been used during

this project, please refer to Appendix A.1 and A.2.

2.2 Methods

2.2.1 Plant growth

Green house trial

Three parallels of Creeping bentgrass (Agrostis stoloniferal.-93 Mb5-4-872-
1), Colonial bentgrass (Agrostis capillarisSR7100 B28-6-7100-4) and Velvet
bentgrass (Agrostis caninal-464-309) species were grown under different zinc
concentrations in green house under controlled environmental conditions in
1500g soil in plastic pots. The Zn deficient soil was obtained from Central
Anatolia (pH:8.04, CaCO3 14.9%, organic matter 0.69%, salt 0.08% and
clay 60.6%). The basal treatment was 200 mg/kg N as Ca(NOj3)s and 100
mg/kg P as KHyPOy, 125 mg K kg-1 soil as KHyPOy, 20 mg S keg-1 soil
as CaS04.2H,0, 2.5 mg/kg F as FeEDTA (C;0H;2FeN, NaOg) and 0,0.1
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and 5 mg/kg Zn as ZnSO,.7TH,O applied for all species. The plants were
grown for 30 days by daily water supply as deionized water. After 30 days of
growth in the greenhouse, the shoots were harvested and dried at 70°C for
determination of shoot dry matter production and elementary decomposition
of the shoot. Also for the molecular analysis, another trial with the same
basal treatment and 0 and 5mg/kg Zn as ZnSO,.7H,0 was set and the shoots
were harvested after 30 days of growth and were frozen in liquid nitrogen and

kept at -80°C before use.

Tissue culture trial

Ten seeds, after surface sterilization with 5% sodium hypochlorite for ten
minutes, were planted in 20ml plant tissue culture medium containing 0 or
S5ppm zinc. Plants were grown for 21 days in the growth room at 26°C and

with 16:8 hours of light and dark photoperiodicity.

2.2.2 Shoot dry matter production and zinc analysis

Dry Matter Production

After four weeks of growth only shoots were harvested. Plant materials were
dried at 70°C were weighed for determination of dry matter production and
the dry matter per plant was calculated by dividing the total weight with

the number of plants per pot.

Element concentration and content

The dried shoot samples were grounded and varying amount of grounded
samples (0.05-0.2 g) were ashed at 500°C for 12 hours for determination of
elementary concentration.

The ashed samples were dissolved in 3.3% HNOj (v/v). The concentra-
tion of zinc as well as other elements (Ca, K, P, S, Mg, Fe, Mn, Cu, Al, Na)
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was measured by inductively coupled plasma optical emission spectroscopy

(ICP-OES, Varian, Australia) at 214.439 nm emission wavelength.

2.2.3 c¢cDNA material
RNA isolation

0.2 g of shoot samples was grounded with 2 mLL TRIzol using mortars and
pestles. The homogenized samples were incubated 5 minutes at room tem-
perature in microtubes. 0.4 mL chloroform was added, shaken and incubated
for 5 minutes in room temperature. After centrifugation at 11.000 g for 15
minutes at 4°C upper aqueous phase was transferred to clean tube. 2mL
2-propanol was added and the samples were incubated for 10 minutes on ice.
RNA was precipitated by the centrifugation at 11.000 g for 10 minutes at
4°C. The pellet was washed by 2mL 75% ethanol and centrifuged at 7.500 g
for 5 minutes at 4°C. RNA pellet was air-dried for 10 minutes and dissolved
in 40ul formamide by incubation at 55°C for 40 minutes. The total amount
of RNA was measured by a nanodrop spectrophotometer and the samples

were stored at -20°C.

DNase treatment

RNase free DNasel (Fermentas) was used to treat RNA samples. The reac-
tion mix containing 1u of DNase for 2ug RNA, 1X reaction buffer and DEPC
treated water was incubated at 37°C for 30 minutes. RNA was precipitated
by ethanol precipitation. 0.1 volumes of 3M NaOAc ph 5.2 and 2 volumes
of 100% chilled ethanol was added to the samples and incubated at -80°C
for 1 hour. The supernatant was discarded after centrifugation at 4°C and
the pellet was washed with 70% ethanol. After 10 minutes of air-drying the

pellet was dissolved in formamide and RNA was quantified using nanodrop
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spectrophotometer.

Reverse transcription

cDNA synthesis from the samples were performed by Omniscript Reverse
Transcription kit(Qiagen). The reaction mix contained 4 units of reverse
transcriptase for 1ug RNA, 0.5mM dNTP, 1X reaction buffer, 1uM oligo-
dT primers, 10 units RNase inhibitor and RNase free water up to 201 final

volume.

2.2.4 mRNA differential display

The cDNAs were subjected to mRNA differential display method by using 72
combinations of forward (P) and reverse(T) primers (Table 2.1) [49]. The
PCR mix contained 500ng of cDNA template, 10uM of each primer, 0.2mM
dANTP mix, 2,5mM MgCly, 1X reaction buffer and 0,2 unit Taq DNA poly-
merase for 25ul. Reactions were carried out in DNA thermocycler GeneAmp
PCR System 9700 (PE Applied Biosystems) using the conditions in Table
2.2.

The PCR products were visualized by ethidium bromide staining after
seperation by 2% agarose gel electrophoresis with TBE buffer.

2.2.5 Sequencing

Gel extraction

For gel extraction, 50ul PCR products of mRNADD were run on 2% agarose
gel. The bands of interests were extracted from the gel using QIAquick Gel

Extraction kit according to manufacturer’s instructions.
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Table 2.1: Primers used in mRNA differential display

Primer designation | Sequence (5’ - 37)

P1 ATT AAC CCT CAC TAA ATG CTG GGG A

P2 ATT AAC CCT CAC TAA ATC GGT CAT AG

P3 ATT AAC CCT CAC TAA ATG CTG GTG G

P4 ATT AAC CCT CAC TAA ATG CTG GTA G

P5 ATT AAC CCT CAC TAA AGA TCT GAC TG

P6 ATT AAC CCT CAC TAA ATG CTG GGT G

pP7 ATT AAC CCT CAC TAA ATG CTG TAT G

P9 ATT AAC CCT CAC TAA ATG TGG CAG G

T1 CAT TAT GCT GAG TGA TAT CTT TTT TTT TAA
T2 CAT TAT GCT GAG TGA TAT CTT TTT TTT TAC
T3 CAT TAT GCT GAG TGA TAT CTT TTT TTT TAG
T4 CAT TAT GCT GAG TGA TAT CTT TTT TTT TCA
TS CAT TAT GCT GAG TGA TAT CTT TTT TTT TCC
T6 CAT TAT GCT GAG TGA TAT CTT TTT TTT TCG
T7 CAT TAT GCT GAG TGA TAT CTT TTT TTT TGA
T8 CAT TAT GCT GAG TGA TAT CTT TTT TTT TGC
T9 CAT TAT GCT GAG TGA TAT CTT TTT TTT TGG
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Table 2.2: mRNA differential display PCR

Temperature (°C) | Time

Heating Lid 105 hold
Denaturation 94 4 min
Non-specific annealing | 40 5 min
Extension 72 5 min
% | Denaturation 94 1 min
% Non-specific annealing | 40 1 min
' | Extension 72 5 min
& | Denaturation 94 30 sec
%‘ Annealing 58 30 sec
3 | Extension 72 2 min
Final elongation 72 7 min

Ligation and Transformation

The extracted fragments were ligated into PGEM-T easy vector (Promega,
Madison, Wisconsin, USA) by TA cloning as described in the manufacturer’s
protocol using 3 to 1 vector insert ratios in 12ul ligation mix. The ligation mix
was used to transform the JM109 high efficiency competent cells provided
with the kit as described in PGEM-T vector manual. The transformants

were grown overnight on ampicillin/IPTG/X-Gal containing media.

Colony PCR

White colonies from transformation plates were sampled and replicated.
These colonies were subjected to colony PCR for positive screening. The
colonies were inoculated on a replica plate using a sterile tip and the re-

maining cells were put in 8ul sterile water in a PCR tube. The cells were
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incubated at 95°C for 8 minutes in a thermocycler. 12ul reaction mix con-
taining Fermentas Taq DNA polymerase kit 1x buffer, 2,5mM MgCl,, 0,2mM
dNTP mix, 0,5u Tag DNA polymerase and 80ng of each P-T primers was
added on each tube and the PCR reaction was performed as in Table 2.3.
The PCR products were visualized by ethidium bromide staining after

separation by 2% agarose gel electrophoresis using TBE buffer.

Table 2.3: Colony PCR conditions for sequencing

Temperature (°C) | Time

Denaturation: 94 5 min

& | Denaturation: 94 30 sec
% Annealing: 58 30 sec
S Extension: 72 2 min
Final elongation | 72 7 min

Plasmid isolation

Positive colonies detected by colony PCR were subjected to plasmid isolation
for sequencing analysis. bml liquid cultures were grown 12-16 hours and 2ml
of the cultures of OD 0.6 was used for Qiagen Miniprep plasmid isolation
kit(Qiagen, Inc., Valencia, CA). The protocol described in the manufacturer’s
manualwass performed and the isolated plasmids were eluted in 40ul EB

buffer.

Ethanol precipitation

The purified plasmids were cleaned up using ethanol precipitation to avoid
any interference with sequencing reaction. 0.1 volume of 3M NaOAc (pH

5.2) was added onto the 40ul plasmid samples and mixed by inverting. 2
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volumes of 100% cold ethanol was added and mixed gently. The samples were
incubated for 1 hour at -80°C. Plasmids were precipitated by centrifuging for
15 minutes at 13.000rpm at 4°C. The pellets were washed with 70% cold
ethanol and air-dried for 10 minutes. The pellets were dissolved in sterile

water.

Sequencing reaction

For sequencing reaction, 300ng of vector was used as template. 10ul reaction
mix contained 5pmol of each M13 primers and 4ul of Premix. The PCR
reaction was carried out using PTC-100 thermal cycler as shown in Table 2.4.

The PCR products were cleaned up by Ethanol precipitation. 1ul of 7.5M
ammonium acetate and 27.5ul of 100% cold ethanol was added and mixed.
The PCR products were precipitated for 30 minutes by a microcentrifuge
at 13.000rpm at 4°C. The pellet was washed with 70% cold ethanol and air

dried. The samples were dissolved in 10ul loading buffer and sequenced.

Table 2.4: Colony PCR conditions for sequencing

Temperature (°C) | Time

Denaturation: 94 5 min

& | Denaturation: 94 30 sec
% Annealing: 58 30 sec
o Extension: 72 2 min
Final elongation | 72 7 min

2.2.6 Sequence analysis

The sequences obtained were subjected to VecScreen (NCBI) algorithm in

order to elininate the vector sequences. The sequences were compared with
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nucleotide and protein sequence databases using BLASTN (EST database)
and BLASTX (GenPept database) algorithms (NCBI).

Using ORF finder tool of NCBI, open reading frames of the sequences
were detected and the aminoacid sequence of the corresponding protein was
obtained.

The protein sequences were searched for known protein motifs using Mo-
tif Scan algorithm of SIB - Swiss Institute of Bioinformatics by searching
against PROSITE patterns, PROSITE patterns (frequent match produc-
ers), PROSITE profiles, Prefile (more profiles), Pfam HMMs (local mod-
els), Pfam HMMs (global models) databases (http://myhits.isb-sib.ch/cgi-
bin/motif_scan).

For pairwise and multiple alignments, CLUSTALW and CLUSTALX (EBI)

algorithms were used.

2.2.7 Expression analysis

Primer design and PCR amplification

The primers to amplify B1 from the PGEM-T vector and clone to PGFPuv
ad PGEX-4T-2 expression vectors were designed with a restriction enzyme
site at the 5’ end of the forward and reverse primers and additional two
arbitrary bases at the 5’ ends to increase the restriction efficiency.

The primers to amplify Bl for cloning into PGEX-4T-2 vector has a
BAMHTI site (GGATCC) on the forward primer and a XHOI site (CTCGAG)
on the reverse and the ones for PGFPuv has a SACI site (GAGCTC) on the
forward primer and a SPEI site (ACTAGT) on the reverse (Table 2.5).

Amplified PCR product (205bp) was shown in Table 2.6. 50 PCR mix
contains 30ng template vector PGEMT/B1, 0.5uM of each primers, 1X re-
action buffer, 2.5mM MgCl,, 0.25mM of each dNTPs, and 1 unit Taq DNA
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Table 2.5: Primers for B1 to expression vectors

Primer designation | Sequence (5’ -3) TM(°C) | Size
PGEXB162aaF GCGGATCCATGGATGCGCA 62 205bp
PGEXB162aaR CGCTCGAGTTAAGATGGCCG | 64
PGFPuvB173aaF | GCGGATCCATGGACATTCTG | 62 205bp
PGFPuvB173aaR | CGCTCGAGTTAAGGATACTCC | 60

polymerase. 250bp fragment was extracted from the gel using QiaQuick Gel
Extraction kit according to the manufacturer’s instructions and eluted from

the column with 40ul EB buffer.

Table 2.6: PCR conditions for amplification of B1 with expression vector
primers

Temperature (°C) | Time

Denaturation: 94 3 min

& | Denaturation: 94 1 min
%‘ Annealing: 56 1 min
= Extension: 72 1 min
Final elongation | 72 7 min

Application of Restriction Enzymes

PGEX-4T-2 vector and extracted fragment were double digested using BamHI
and Xhol restriction enzymes. PGFPuv vector and the corresponding ex-
tracted fragment were double digested with Spel and Sacl restriction en-
zymes. 170ng B1-PGEX-4T-2 fragment, 130ng B1-PGFPuv fragment, 700ng
PGEX-4T-2 vector, 500ng PGFPuv vector were double digested with a 20ul
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reaction mix that contains 10 units of each enzymes 1X Multicore Buffer(Promega)

and 2ug BSA. The reaction was performed at 37°C for 4 hours.

Ligation and transformation

B1 inserts were ligated to the PGEX-4T-2 and PGFPuv vectors in a 15ul
ligation mix that contains 1 unit ligase (Fermentas), 1X reaction buffer (Fer-
mentas), and three different vector insert ratios; 680ng:5600ng, 340ng:2800ng
and 170ng:2800ng insert vector amount for PGEX-4T-2 and 520ng:4000ng,
260ng:2000ng and 130ng:2000ng insert vector amounts for PGFPuv. Samples
incubated for 2 hours at 22°C and immediately used for transformation.

For transformation, the total 15ul of ligation mix was put into a sterile
micro tube and 50ul previously prepared and frozen CaCly; competent Bl121
cells were added onto the ligation mix. The samples were mixed gently and
incubated on ice for 20 min. Heat shock step was performed at 42°C for 50
seconds and the samples were put immediately on ice for 2 minutes. 0.5ml
prewarmed SOC medium was added and the cells were incubated at 37°C for
1 hour for recovery. 2004l of the samples were plated on ampicillin/IPTG/X-
gal containing LB agar plates and the cells were grown overnight.

White colonies were selected and positive colonies were screened by colony
PCR using the primers shown in Table 2.5 as described earlier in Section 2.2.5

with a reaction shown in Table 2.7.

Total Protein Extract from FE.col:i

5ml liquid cultures of FE.coli were grown overnight in an ampicillin contain-
ing LB broth medium and 10ml starter cultures with ODg00 0.06 was pre-
pared. The expression was induced with 0.75mM IPTG when the ODg00
was 0.6. 1 ml aliquotes were taken in every hour, centrifuged at 10.000 rpm

for 10 minutes and the pellet was kept at -20°C until use. For the total

26



Table 2.7: Colony PCR conditions expression vector transformations

Temperature (°C) | Time

Denaturation: 94 3 min

& | Denaturation: 94 1 min
%‘ Annealing: 56 1 min
> Extension: 72 1 min
Final elongation | 72 7 min

extraction the pellets were dissolved in 300ul lysis buffer containing 50mM
Tris-HCI pH:7.5,100mM NaCl, 2.5mM MgCl,, 1m/ml lysozyme and protease
inhibitors. The samples were incubated on ice for 40 minutes and centrifuged
at 13.000 rpm for 15 minutes at 4°C. The supernatant was containing the sol-
uble protein fraction. The pellet, containing the insoluable protein fraction

was dissolved in 300ul lysis buffer and both kept at -20°C until its use.
SDS-PAGE

5ml of 12% SDS resolving gel was prepared with 62541 3M Tris-HCI pH:8.9,
2ml 30% Acrylamide, 25ul 20% SDS, 37.5ul 10% APS and 2.5ul TEMED.
2.5ml of 5% SDS stacking gel was prepared with 125u1 1M Tris-HCI pH:6.8,
425l 30% Acrylamide, 12.5u1 20% SDS, 10% APS and 2.5u] TEMED. The
gels were polymerized overnight at 4°C and run with 20mA for about an

hour.

Native-PAGE

5ml of 8% native resolving gel was prepared with 62511 3M Tris-HCI1 pH:8.9,
1.333ml 30% Acrylamide, 37.5ul 10% APS and 2.5u1 TEMED. 2.5ml 5%na-
tive stacking gel was prepared with 125ul 1M Tris-HCI pH:6.8, 425ul 30%
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Acrylamide, 10% APS and 2.5ul TEMED. The gels were polymerized overnight

at 4°C and run with 20mA for about an hour.

2.2.8 Real-time PCR

For Real-Time PCR analysis, 18S ribosomal RNA was used as an housekeep-
ing gene and the primers were designed as in Table 2.8. The concentration
and annealing temperatures of all primers were optimized prior to the reac-
tion. For a 25 ul PCR, 500ng first strand cDNA of Zn— and MS plants were
used as template. 0.5 uM final concentration of each primer and 1X of SYBR
Green were used. The amplifications were performed in Biorad iCyclerQ as

shown in Table 2.9.

Table 2.8: Primers used for Realtime PCR

Primer designation Sequence (5 - 37) Amplicon
18SribosomalRNA For | ATG ATA ACT CGA CGG ATC GC 200 bp
18SribosomalRNA Rev | CTT GGA TGT GGT AGC CGT TT

B1 For GGG ATG GTC TGA TCT GGG G 300 bp
B1 Rev GAC ACC GCC TGA AGC ATC G

2.2.9 RACE:Rapid amplification of cDNA ends

The full length mRNA of the first identified fragment (415bp) amlified with
P3-T1 primers in Creeping bentgrass in the tissue culture trial was obtained

using The GeneRacer Kit of Invitrogen.
Primer design

Two nested gene specific primers for both 3’ and 5° RACE were designed to
use together with the two nested primers supplied with the kit.(Table 2.10)
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Table 2.9: Real Time PCR conditions

Temperature (°C) | Time
Cycles | Denaturation: 94 15 min
Denaturation: 94 30 sec
40 Annealing: 56 30 sec
Extension: 72 1 min
Final elongation | 72 10 min
80 Melting: 53+(0.5/cycle) 10 sec

Table 2.10: Primers designed for RACE and the primers supplied with Gen-

eRacer Kit

Primer designation | Sequence (5’ -37) TM(°C)
GeneRacerd’ CGACTGGAGCACGAGGACACTGA 74
GeneRacerb'nested | GGACACTGACATGGACTGAAGGAGTA | 74
GeneRacer3’ GCTGTCAACGATACGCTACGTAACG 74
GeneRacer3'nested | CGCTACGTAACGGCATGACAGTG 72
Genespecifich’ ATTCGCACCATCGCTGTCAA 65
Genespecifich'nested | ATTCGCACCATCGCTGTCAA 65
Genespecificd’ CGACTCGGAAAGCTGCTTGA 66
Genespecificd'nested | CATGGTGTCGGTGGTGCTTG 66
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RACE PCR

1ug of total RNA was subjected to dephosphorylation and mRNA cap struc-
ture removal steps and the product was ligated with the RNA oligo provided

and subjected to reverse transcription according to the manufacturer’s in-

structions.

The ¢cDNA ends applified with PCR using the combinations of inner and
outer primers and negative controls for each primer according to the program
was shown in Table 2.11 using a hot start by the addition of enzyme later.
For 50 ul PCR, 0.5ul of the obtained cDNA was used as template. The PCR
mix contained 3ul of 10uM race primers and 2pul of 10uM of gene specific
primers, 1X reaction bufer, 0.2mM dNTPs, 0.5 unit Taq polymerase and

2.5mM MgCls,.
Table 2.11: Race PCR
Temperature (°C) | Time
Heating Lid 95 hold
% | Denaturation 94 30 sec
% Extension 72 1 min
‘2 | Denaturation 94 30 sec
% Extension 70 1 min
'€ | Denaturation 94 30 sec
% Annealing 60 30 sec
X | Extension 72 1 min
Final elongation | 72 10 min
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Chapter 3

Results

3.1 Green house trial: Shoot growth and zinc
concentrations

3.1.1 Zinc concentration of seeds

The concentration and content of zinc in the seeds were measured before
starting the green house trial (Table 3.1). The results indicated that Colonial
and Creeping bentgrass almost had the same zinc content per seed whereas
Velvet bentgrass had a higher zinc content per seed. Due to its higher amount
of zinc in the seed, Velvet bentgrass was expected to have a higher tolerance

to zinc deficiency than the other two genotypes.

Table 3.1: Seed ICP results

Grass Seed Zn content | Seed Zn concentration
Colonial bentgrass | 2.74(ug/seed) 47(mg/kg)
Creeping bentgrass | 2.78(ug/seed) 36(mg/kg)
Velvet bentgrass 3.85(ug/seed) 66(mg/kg)
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3.1.2 Dry weight

The shoot dry weight of plants per pot for three parallels were measured for
Creeping, Colonial and Velvet bentgrass after four weeks of growth under
three different zinc concentrations and from the data the total dry weight
per plant was calculated (Figure 3.1). The dry weight per plant increased in
response to zinc supply in all genotypes tested.

The growth of Creeping bentgrass decreased by 67% when there was no
zinc supply and by 35% when 0.1ppm zinc was supplied compared to 5ppm
of zinc supply. The growth of Colonial bentgrass decreased by 87% when
there was no zinc supply and by 74% when 0.1ppm zinc was supplied when
compared to 5ppm of zinc supply. The growth of Velvet bentgrass decreased
by 88% when there was no zinc supply and by 87% when 0.1ppm zinc was
supplied compared to S5ppm of zinc supply. These results indicated that the
most tolerant species to zinc deficiency in terms of dry weight was Creeping
bentgrass as growing significantly more than the other species under the
same conditions. The growth of Velvet bentgrass was affected slightly more
than Colonial bentgrass; however, it was quite unresponsive to 0.1ppm zinc
application whereas Colonial bentgrass was responsive.

It can be concluded that, in terms of dry weight, the most zinc deficiency
tolerant species was Creeping bentgrass whereas the most susceptible one

was Velvet bentgrass.

3.1.3 Zinc concentration and content

The results for concentration of zinc from the element analysis of Creeping,
Colonial and Velvet bentgrass after four weeks of growth under three different
zinc concentration were shown in Figure 3.2. The data for zinc and other

elements (Ca, Al, Cu, K, Mg, Mn, P, S, Zn, Fe) can be found in Appendix
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Figure 3.1: Dry weight per plant in response to different zinc concentra-
tions after four weeks of growth for Creeping, Colonial and Velvet bentgrass
obtained from three parallels
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A.3.

The data verified that the zinc concentration in the shoots increased as
the applied zinc level was increased during the growth . The unexpected
amount of zinc concentration in Colonial bentgrass grown without Zn was
probably due to soil contamination during harvesting. The small variations

in the graph can be explained with the total dry weight of plants and the

content of zinc per plant can be seen in the Figure 3.3.

Figure 3.2: Zinc concentration in plants in response to different zinc con-
centrations after four weeks of growth for Creeping, Colonial and Velvet
bentgrass obtained from three parallels
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Figure 3.3: Zinc contents of plants in response to different zinc concentra-
tions after four weeks of growth for Creeping, Colonial and Velvet bentgrass
obtained from three parallels
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3.2 mRNA differential display of Creeping bent-
grass grown in sterile tissue culture

Total RNAs from the plants grown in 0 and 5ppm zinc concentrations were
subjected to DNAs treatment and used as a template for differential dis-
play analysis to identify differentially expressed genes in response to the zinc
concentration. Total cDNAs were amplified with 72 primer combinations
(Table 2.1).

Several fragments in varying sizes ranged from 100bp to 2000bp were ob-
tained for each primer combination. Four differentially amplified fragments
that showed a significant difference between zinc deficient plants and the
plants grown under 5ppm zinc concentration were selected and extracted
from the gel. The electrophoresis result of the differential display PCR re-
sults amplified with P1-T7(a), P3-T1(b), P4-T2(c) and P6-T5(d) primers was
shown in Figure 3.4. The extracted fragments of 200bp, 500bp, 200bp and
200bp respectively were shown with the arrows . The fragments of interests
were extracted from the gel, cloned to PGEM-T easy sequencing vector. The
vector was amplified in F.coli host cells, isolated and sequenced for futher
analysis. The sequences of the four fragments obtained from the mRNADD
application were depicted in Table 3.2.

3.2.1 BLASTX algorithm was used to identify the sim-
ilarity of the obtained sequences with the known
proteins

The sequences were analyzed for their similarity to the known proteins using
BLASTX algorithm. The BLASTX results indicated similarity to many dif-
ferent proteins identified in various organisms such as the proteins that were

shown in Table 3.3.
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Figure 3.4: mRNADD results of 50ul PCR products of creeping bentgrass
tissue culture trial prior to gel extraction for sequencing. Zn— in all gel pic-
tures refers to the plants grown under zinc deficiency and MS refers to the
ones grown under 5ppm Zn. GeneRulerl00bp DNA marker was used in all
gels. (a)PCR products of P1T7 primers. The 156bp band shown with an
arrow was extracted from the gel. (b)PCR products of P3T1 primers. The
415bp band shown with an arrow was extracted from the gel. (¢)PCR prod-
ucts of P4T2 primers. The 199bp band shown with an arrow was extracted
from the gel. (d)PCR products of P6T5 primers. The 175bp band shown
with an arrow was extracted from the gel.
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Table 3.2: Sequences of the isolated four fragments from Creeping bentgrass

of tissue culture trial

Primers

Size(bp)

Sequence

P1-T7

156

GCT CTG AGT AAG AGA CTG AGA TAA AGA TAT
CAA AAG ATT CAA GCA TCA CAG TTA TAC CAA
AAT TAA TCT TAT TCC AGG ACA AGC ATG TTA
CAC TAA GAA TGA CAG CGG TGC TTT CAA GAG
GGT GCT CAA AAA AAA AGA TAT CAC TCA GCA
TAA TGA

P3-T1

415

AAA GAC CGC CGC CTC CCC GGC GCA CGA CAT
GGA CAT TCT GAT CTA TGG TCG GTG GCT CAC
GAG GAG GGT GCA CAA CAC ATA CAC ATG GAT
GCG CAC ACA ACT GGA GGA CAA CTA TAC TCA
CAT GGT GCT ATA CTG GTC TGT GCA GGC TCA
CAG TTG GAG GCA GTA CCT ACA ATC AAT TCG
CAT ACG TCA GTA CTA TCG GTT CTT ACG CTG
TTG GAA TCG GTG CAT TCA GTT ATC ATT GGA
GTA TCC TTA AGT GCA TCT GTA CGG CCA TCT
TAA GCC AAT CAG GTG CCC TAC TTG CTC AAC
CAG CTT CCG TCA GGT CTT TAT GTG TGG ACG
TTT GGT TTG CAT TGT CAG TTA CGC TAC TTG
GAA CCT ACG GGC GTC ATT GTT TCC TTA AAA
AAA AAG ATA TCA CTC AGC ATA ATG A

P4-T2

199

AAT AAG GAT AGA GAG GTT GCT GTT AGA TGT
AGT AAT AGA AGA CAT ATT TAT CAA TGT ACT
GAA ACA AAA AAATCT AAA TAT AAT ACC CTT
GAG GGG TTC CTC CTT GAA GTG TTG CAT TGT
TAT TTA ATG GTT TCT AGG AGT ATG GAG AAA
ATG TTT GCC CTC TAA TTG GTA AAA AAA AAG
ATA TCA CTC AGC ATA ATG A

P6-T5

175

GGC GAG GGA AGA ACT GCT GAA GAT ATA AGT
ANA AGC CCA CCC CAA GAT GAG TGC TTT CTC
CTC CGA CTT CCC TAG AGC CTA CGG TGT CAC
AGC CGA AAC AGC GAC GGG TTC TCC ACC CAT
ATG GGG ATG GAG CGA CAG AAG TAT GGA AAA
AAA AAG ATA TCA CTC AGC ATA ATG A
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According to these results, the fragment that was amplified with P4-
T2 primers did not show any significant similarity to known proteins in
GeneBank database. On the other hand, the band amplified with P1-T7
primers showed 44% similarity to a protein identified in Chlorobium fer-
rooxidans DSM 13031 strain which was a phototrophic bacterium that was
enriched with feroous iron (Table 3.3). The protein was identified upon the
enrichement of iron and that might be important in metal related mecha-
nisms besides it was found to be conserved for bacterial and plant plasmids.

The fragment amplified with P3-T1 showed similarity to many known
proteins some of which were more interesting (Table 3.3). It showed 52%
identity to a zinc transporter of Oryza sativa from the ZIP3 zinc transporter
family. In the same frame, it also showed 47% identity to an hypthetical
protein in Oryza sativa thatwass found to be in ZIP zinc transporter family.
Also, it had a 47% identity with another zinc transporter ZIP isolated from
Triticum aestivum. Due to these significant similarities, the fragment was
thought to be a candidate ZIP transporter identified in Creeping bentgrass.

The fragment amplified with P4-T2 primers showed 100% similarity with
a putative casein kinase I of Dendrobium grex Madame Thong-In that was
characterized as a differentially expressed gene during orchid floral transiton
(Table 3.3).

The fragment amplified with P6-T5 primers showed 100% similarity with
a putative polyprotein in Oryza sativa (Table 3.3). It also showed similar-
ity to HtaA-like surface protein of Propionibacterium acnes. HtaA domain
is found in secreted proteins implicated in iron acquisition and transport
(pfam04213). The fragment had 46% similarity to a hypothetical protein
of Aspergillus niger that is similar to metal homeostasis protein Bsd2 in

Saccharomyces cerevisiae. It also showed 48% similarity to the large sub-
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unit of F420-nonreducing hydrogenase II of Methanosarcina barkeri which is
a Ni,Fe-hydrogenase involved in energy production and conversion. It was
50% similar to CG5591-PA protein of Drosophila melanogaster which has a
PHD-finger region that folds into an interleaved type of Zn-finger chelating
two Zn ions. Moreover, it showed 57% similarity to a ferrochelatase identi-
fied in Polaromonas naphthalenivorans that catalyzes the insertion of ferrous
iron into the protoporphyrin IX ring yielding protoheme.

BLASTX results indicated that the fragments identified in this study were
important transcripts due their similarity to different proteins that were re-
lated to metal ion involving pathways. This result clearly indicated that mR-
NADD tool worked perfectly to identify Zn responsive genes. The obtained
transcripts can readily be located on molecular linkage maps to identify chro-

mosomal location of Zn responsive genes in grass genome.

3.2.2 ORF regions of the obtained sequences

The open reading frames of the four sequences were detected using ORF
Finder algorithm of NCBI. The first fragment amplified with P1-T7 primers
and the third fragment amplified with P4-T2 primers did not have a ORF
region where as the second fragment that was amplified with P3-T1 primers,
had three ORFs of 73,62 and 59 amino acids long in the frames 2,1 and -3,
respectively (Table 3.4). The last fragment amplified with P6-T5 primers
had two ORF regions which are length 41 and 27 amino acids long in the
frames 2 and -3, respectively (Table 3.4).

3.2.3 Real-time PCR for the fragment amplified with
P3-T1 primers in Creeping bentgrass

Real time PCR was performed using SYBR Green to compare the expression

level of the fragment obtained with P3-T1 primers from Creeping bentgrass
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Table 3.3: BLASTX results of the isolated four fragments in tissue culture
trial using NCBI BLASTX algorithm with Blossom80 and PAM30 matrices

Primers | BLASTX hit Identity | Frame

P1-T7 | gi:110598354 conserved hypothetical protein | 44% +3
[Chlorobium ferrooxidans DSM 13031]

P3-T1 | gh:AAP85537.1 zinc transporter ZIP3 [Oryza | 52% +1
sativa (japonica cultivar-group)]
gb:EAY95519.1 hypothetical protein OsI016752 | 47% +1
[Oryza sativa (indica cultivar-group)]
gh:AAWG68439.1 zinc transporter ZIP [Triticum | 47% +1
aestivum]

P4-T2 | gh:AAD20819.1 putative casein kinase I [Dendro- | 100% -3
bium grex Madame Thong-In]

P6-T5 | gh:AAU43927.1 putative polyprotein [Oryza | 43% +2
sativa (japonica cultivar-group)]
gb:ABF13594.1 HtaA-like surface protein [Propi- | 40% +3
onibacterium acnes]
ref: XP001390958.1 hypothetical protein | 46% +3
An06g01360 [Aspergillus niger]
ref:YP305367.1 F420-nonreducing hydrogenase II, | 48% +3
large subunit [Methanosarcina barkeri str. fusaro]
ref:NP611847.2 CGH591-PA [Drosophila | 50% -1
melanogaster]|
ref:YP983193.1  Ferrochelatase  [Polaromonas | 57% -2

naphthalenivorans CJ2]
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Table 3.4: ORFs in the isolated four sequences

Primers

Frame

Sequence

Length(aa)

P1-T7

1

Met L H Stop

3

2

Met L V L E Stop

5

P3-T1

1

Met DAHTTGGQLYSHGAILVCA
GSQLEAVPTINSHTSVLSVLTL
LESVHSVIIGVSLSASVRPS Stop

62

Met DILIYGRWLTRRVHNTYTW
Met RTQLEDNYTHMet VLY WSVAQ
AHSWRQYLQSIRIRQYYRFLR
CWNRCIQLSLEY P Stop

73

Mt I TECTDSNSVRTDSTDVCE
LIVGTASNCEPAQTSIAPCEYS
CPPVVCASMet CMet CCAPSS Stop

29

Met QQHLQKGP QD K Stop

12

Met LSDIFFFKETCVLVY Stop

16

P4-T2

Met VSR S Met E K Met F A LL Stop

12

Met Y Stop

Met LSDIFFF TN Stop

10

P6-TbH

Met SAFSSDFPRAYGVTAETAT
GSPPIWGWSDRSMet EKKRYHS
A Stop

41

Met GGEPVAVSAVTP Stop

13

Met LSDIFFFPYFCRSIPIWVEN
PSLFRL Stop

27
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grown in tissue culture in response to different zinc supply (Figure 3.1). 18S
ribosomal RNA was used as a reference gene and the CT value of the reference
gene was equalized for both plants that were grown with (5ppm)and without
zinc treatment. The PCR conditions were optimized for the primers and
initial template.

The CT value for the fragment (named B1) was then measured 24.7 for
Zn 5 ppm and 29.8 for without Zn indicating that there was 2° fold of dif-
ference between the initial amount of the transcript of interest for 5ppm and
without zinc growth conditions when normalized according to the reference
gene (Figure 3.5A).

To evaluate whether specific PCR products were the source of the flores-
cence, the melt curve of each sample was measured at the end of the program.
The samples gave a pick at the specific melting temperatures of the double
stranded amplicons (Figure 3.5B).

The standart curve of the CT values of the serial dilutions of initial tem-
plate amount was shown in Figure 3.6, indicating that there was a linear
correlation between the CT values and the base logarithm of initial template
amount. This means that the florescence was significant in the range of the
serial dilutions from 500ng to 31.25ng.

To compare the expression levels, the real-time PCR was also done with
the cDNAs obtained from the plants grown in green house with 5ppm zinc
and without zinc. The results indicated that there was a high correlation
between the tissue culture and green house trial results with a slight increase
in the difference. The CT value for the fragment (named Bl) was then
measured 23.7 for 5ppm Zn and 29.6 for without Zn indicating that there was
26 fold of difference between the initial amount of the transcript of interest for

S5ppm and without zinc treatment when normalized according to the reference
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gene(Figure 3.7A). The melting curve graph supports that the florescence was
specific to amplicons of interest (Figure 3.7B) and the standard curve of the
dilutions of the template proved that the amount of template was in the
significance range of florescence (Figure 3.8).

The real-time PCR results indicated the the expression level of the tran-

script is down-regulated 2°-2° fold in response to zinc deficiency.

3.2.4 Expression of the ORF regions of the fragment
amplified with P3-T1 primers

The fragment that was amplified with P3-T1 primers in Creeping bentgrass
had very significant similarity with the known ZIP zinc transporters and
had two ORF regions. The two ORF regions were cloned to PGEX-4T-2
expression vector and expressed as a GST fused protein in E. coli. However,
the results indicated that both of the ORF products were being degraded
either in the cell or during the isolation process. In (Figure 3.9A,B) although
the control vector expressing only GST was clearly visible in the expected size
(26kDa), the GST fused protein (expected to be 32kDA) was seen only 27-
28kDa. In the native gel picture, although the control vector expressing GST
only showed an intact band, the GST fused protein did not give an intact
band (Figure 3.9C). Therefore, it is assumed that the the protein products
of the ORF regions were not stable.

3.2.5 RACE for the fragment amplified with P3-T1
primers

The differentially expressed fragment, amplified with P3-T1 primers, was
found to be candidate ZIP zinc transporter of Creeping bentgrass (Table 3.3).
5" and 3’ RACE was performed to obtain the full length mRNA sequence of
the fragment. The fragments amplified in the RACE PCR that were different
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Figure 3.5: Real-time amplification plots of the fragment amplified with
P3-T1 primers in Creeping bentgrass grown in tissue culture. 18S ribosomal
RNA was used as a reference gene. (A)The PCR Base Line Subtracted Curve
Fit Data with calculated threshold using the maximum curvature approach is
266.9,per-well baseline cycles have been determined automatically, data anal-
ysis window is set at 95.00% of a cycle, centered at end of the cycle, weighted
mean digital filtering being applied and global filtering is off. (B)The melt
curve with weighted mean digital filtering applied, global filtering is off and
threshold for automatic peak detection is set at 1.00.
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Figure 3.6: Real Time PCR standard curve for tissue culture trial: Ampli-
fication standard curve with linear correlation between the cycle threshold
(CT) and the base two logarithm of initial amount of cDNA template ranging
from 500ng to 31.25ng of cDNA.
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Figure 3.7: Real-time amplification plots of the fragment amplified with P3-
T1 primers in Creeping bentgrass grown in green house. 18S ribosomal RNA
was used as a reference gene. (A)The PCR Base Line Subtracted Curve Fit
Data with calculated threshold using the maximum curvature approach is
266.9,per-well baseline cycles have been determined automatically, data anal-
ysis window is set at 95.00% of a cycle, centered at end of the cycle, weighted
mean digital filtering being applied and global filtering is off. (B)The melt
curve with weighted mean digital filtering applied, global filtering is off and
threshold for automatic peak detection is set at 1.00.
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Figure 3.8: Real Time PCR standard curve for green house trial: Amplifica-
tion standard curve with linear correlation between the cycle threshold (CT)

and the base two logarithm of initial amount of cDNA template ranging from
500ng to 31.25ng of cDNA.
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Figure 3.9: SDS and native PAGE results of the 62 and 73 aminoecid ORF
regions. (A) SDS PAGE of 73aa ORF from one to three hours after induction
(B) SDS PAGE of 62aa ORF from one to three hours after induction (C)
NATIVE PAGE of 62 and 73aa ORF regions at three hours after induction

from the negative controls were extracted from the gel and sequenced. The
full mRNA sequence was found to be 1009bp in length, having 495bp in the
5" end and 99bp in the 3’ end of the fragment previously obtained (Table 3.5).

Previously obtained fragment was analyzed for its similarity with the
known protein sequences using BLASTX algorithm with BLOSSOMG62. The
results indicated that the sequence obtained was ZIP family zinc transporter
because it showed high level of similarities with many ZIP zinc transporters
from various organisms (Table 3.6). The protein product was highly simi-
lar Oryza sativa ZIP proteins (gh:AAP85537.1). BLASTN and tBLASTX
algorithms also gave similar results with ZIP transporter coding ESTs.

The open reading frame of the full length mRNA sequence was detected
using ORF Finder algorithm of NCBI. According to the results, the mRNA
had 238 amino acid ORF in frame 1(Table 3.7). According to the PFAM data,

the average length of the known ZIP family proteins is about 270 amino acids
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which was not significantly different from the size of the detected ORF.

This is the first isolated ZIP zinc transporter in Creeping bentgrass.

3.2.6 Phylogenetic analysis of ZIP family proteins

The ORF region detected in the full length mRNA sequence was subjected to
multiple alignment with the known plant ZIP family proteins using CLUSTALX
algorithm. Figure 3.10 clearly indicated that the protein product obtained
was higly conserved with the known plant ZIP family proteins. Cladogram
analysis indicated that the protein was mostly similar to ZIP zinc trans-
porters of Oryza sativa(GI47169687) and Triticum aestivum (GI58221593)
as it was also found in BLASTX searches (Figure 3.11).

Figure 3.12 showed the pairwise alignmet results of the protein product
of the full mRNA sequence with its highest BLASTX hit Oryza sativa zinc
transporter ZIP3(gh:AAP85537.1). According to the alignment results, al-
though the ZIP3 was longer than the product, they were highly conserved in

the overlapping regions.

3.3 Application of mRNA differential display
to Agrostis species grown in green house

The total cDNAs obtained from Colonial,Creeping and Velvet bentgrass
species were subjected to mRNA differential display method with 72 dif-
ferent primer combinations (Section 2.2.4,Table 2.1).

The gel electrophoresis results of the fragments isolated from Colonial
bentgrass were shown in Figure 3.13. The differentially expressed fragments
were extracted from the gel and sequenced. The sequences of the the frag-
ments obtained by cloning the fragments to PGEM-T easy vector were shown

in Table 3.8. P6T3 primer pair amplified a fragment size of 128bp that was
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Table 3.5: The full mRNA sequence of the fragment amplified with P3-T1
primers obtained by RACE

Primers

Size(bp)

Sequence

P3-T1

1009

CCG CGC GAC CGT CAG CGA ATT ACG GGC AAT
CAA TCC ACA TAC TCA ACA ATT ATG GGA GCC
AAG AAG CAT ACCTTG CAA GTG CTT CCA TGG
CTA CTG CTC TTT GCG CAG CAC ACT GCA GCC
AGT GCC TGC GAC TGT GCT AAC ACC ACA GAC
GGG GCA GAC AGA CAG GGT GCA ATG AAG CTA
AAG CTC ATT GCC ATT GCA TCC ATC CTT GCA
GCT GGG GCG GCT GGT GTC TTG GTG CCA
GTG ATT GGC CGC TCC ATG GCT GCG CTG CGC
CCT GAT GGT GAC ATC TTC TTT GCT GTC AAG
GCA TTT GCA GCC GGC GTC ATC CTT GCC ACT
GGC ATG GTG CAC ATT CTT CCA GCG GCG TTT
GAT GCG CTC ACA TCT CCA TGC CTC AAA AGG
GGT GGT GGG GAT AGG AAT CCCTTC CCCTTT
GCG GGC CTC AGA CTC GCT GGC TGC TGG GTA
CTA CCG CCG GTC TCA CTT GTG GTG GGG ATA
GGA ATC CCT TCC CCT TTG AAA GAC CGC CGC
CTC CCC GGC GCA CGA CAT GGA CAT TCT GAT
CTA TGG TCG GTG GCT CAC GAG GAG GGT GCA
CAA CAC ATA CAC ATG GAT GCG CAC ACA ACT
GGA GGA CAA CTA TAC TCA CAT GGT GCT ATA
CTG GTC TGT GCA GGC TCA CAG TTG GAG GCA
GTA CCT ACA ATC AAT TCG CAT ACG TCA GTA
CTA TCG GTT CTT ACG CTG TTG GAA TCG GTG
CAT TCA GTT ATC ATT GGA GTA TCC TTA AGT
GCA TCT GTA CGG CCA TCT TAA GCC AAT CAG
GTG CCC TAC TTG CTC AAC CAG CTT CCG TCA
GGT CTT TAT GTG TGG ACG TTT GGT TTG CAT
TGT CAG TTA CGC TAC TTG GAA CCT ACG GGC
GTC ATT GTT TCC TTA AAA AAA AAG ATA TCA
CTC AGC ATA ATG ACT AGA TTT TCT AAA ACC
AAA GCT TAT CTC AGG TGA TCT CTT TGT ACT
TTA TGA TAT GAT AAT ACA TGA TGA CTT AAC
TTG TTC TTA AAA AAA AAA AAA A
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Table 3.6: BlastX results of the full mRNA sequence using NCBI BLASTX
algorithm with Blossom62 matrix

BLASTX hit Identity | Frame

gh:AAP85537.1 zinc transporter ZIP3 [Oryza | 70% +1
sativa (japonica cultivar-group)]

gb:EAY95519.1 hypothetical protein OsI016752 | 69% +1
[Oryza sativa (indica cultivar-group)]

gh:AAWG68439.1 zinc transporter ZIP [Triticum | 56% +1

aestivum]

dbj:BAD18967.1 zinc transporter [Oryza sativa | 49% +1
(japonica cultivar-group)]

dbj:BAD18965.1 zinc transporter [Oryza sativa | 55% +1
(japonica cultivar-group)]

gb:AAX28838.1 zinc transporter protein ZIP2 | 42% +1
[Fragaria x ananassal

gb:AAP92123.1 iron transporter Fe2 [Oryza sativa | 43% +1

(japonica cultivar-group)]
dbj:BAC21508.1 zinc transporter protein ZIP1 | 43% +1
[Oryza sativa (japonica cultivar-group)]

gh:AAC24197.1 putative zinc transporter [Ara- | 38% +1
bidopsis thalianal

ref:NP973762.1 ZIP5 (ZINC TRANSPORTER 5 | 36% +1
PRECURSOR) cation transporter [Arabidopsis
thaliana

emb:CAI77925.2 putative Zn transporter [Thlaspi | 45% +1
caerulescens]
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Figure 3.10: The multiple alignment of the protein product of the full mRNA
sequence and the known ZIP family proteins of various plants using ClustalX

algorithm
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Figure 3.11: The cladogram tree of the ClustalX multiple alignments of
the protein product of the full mRNA sequence and the known ZIP family
proteins of plants
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Table 3.7: ORF of full length mRNA sequence

Frame | Sequence Length(aa)

+1 Met GAKKHTLQVLPWLLLFAQH | 238
TAASACDCANTTDGADRQGA
Met KLKLIAIASILAAGAAGVLV
PVIGRSMct AALRPDGDIFFAV
KAFAAGVILATGMet VEILP A A
FDALTSPCLKRGGGDRNPFPF
AGLRLAGCWVLPPVSLVVGIG
IPSPLKDRRLPGARHGHSDLW
SVAHEEGAQHIHMetDAHTTG G
QLYSHGAILVCAGSQLEAVPTI
NSHTSVLSVLTLLESVHSVIIG
VSLSASVRPS Stop

20
073299289490 |AAPSE537. 114-364 1 MG A VLPWLLLFA AASACDCA GA GAM L IAIA 1 LAAGAAGVLVPVIG MAAL | FFAV AF AR 26
PETFull Sequence/1-238 1 ME A WLPWLLLFA AABACDCA GA &AM LIATABILAAGAAGYLVPYIG MAAL I FFAVIRAF AA 26
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Figure 3.12: The pairwise alignment results of the protein product of the full
mRNA sequence and Oryza sativa zinc transporter ZIP3(gh:AAP85537.1)
using ClustalW algorithm
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expressed in the plants without zinc supply and not expressed in the plants

grown in S5ppm zinc concentration.

Col 070 PGT3 Col 5Zn PGT3

Figure 3.13: Gel electrophoresis results of the band obtained from mRNA
differential display of Colonial bentgrass. 50ulPCR product of P3-T6 primers
of the plants grown without zinc on the left and with 5ppm zinc on the right.

The gel electrophoresis results of the fragments isolated from Creeping
bentgrass was depicted in Figure 3.14. The fragments indicated with an
arrow were extracted from the gel and sequenced (Table 3.9).

The gel electrophoresis results of the two fragments isolated from Velvet
bentgrass were shown in Figure 3.14. The fragments indicated with an ar-
row that were amplified with P2T5 and P3T8 primers were extracted and
sequenced (Table 3.10).

96



P
Cre 0Zn P3T2 Cre 5Zn P3T2 Cre 0Zn P6T3  Cre 5Zn P6T3

W

Figure 3.14: Gel electrophoresis results of the bands obtained from mRNA
differential display of Creeping bentgrass. (A)50ul PCR product of P3-T2
primers , (B)50ulPCR product of P6-T3 primers of the plants grown without
zinc on the left and with 5ppm zinc on the right.

Table 3.8: Sequences of the isolated fragments of Colonial bentgrass from
greenhouse trial

Primers| Size(bp) | Sequence

P6-T3 | 128 TAT TAA CCC TCA CTA AAT GCT GGG TGA TGC
ACT GGC GCT CTA ATA TGC CTA TGC AAT CAG
CTT CAT ATT TCT CTT TCT TAA CTT CTA CAT
TCG GAC ACT AAA AAA AAA GAT ATC ACT CAG
CAT AAT GA
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Vel 0Zn P2T5 Vel SZn PATS Vel 07n PITE Vel 5%n PITE

Figure 3.15: Gel electrophoresis results of the bands obtained from mRNA
differential display of Velvet bentgrass.(A) 50ul PCR product of P2-T5
primers, (B)50ul PCR product of P3-T8 primers of the plants grown without
zinc on the left and with 5ppm zinc on the right.

3.3.1 BLASTX results

The sequenced fragments isolated from Colonial, Creeping and Velvet bent-
grass species were analyzed for their similarity with the sequences in the
known protein sequence database using BLASTX algorithm and the results

were presented below.

BLASTX results of Colonial bentgrass

The fragment amplified with P6-T3 primers in Colonial bentgrass was found
to have 85% identity to a protein described as elongation of very long chain

fatty acids (FEN1/Elo2, SUR4/Elo3,yeast)-like 4 isolated from Homo sapiens
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Table 3.9: Sequences of the isolated fragments of Creeping bentgrass from
greenhouse trial

Primers

Size(bp)

Sequence

P3-T2

145

TCA TTA CTG CTG AGT GAT ATC TTT TTT TTT
ACA CAT ACT GAT CAC AGG TCC CAC CTA TGA
AGT TGA TCC GGG GCA CAA CGC TCA GTG TGA
TCA GAC GGG ATT CGA CTA TCA TGG ACT TCC
CAC CAG CAT TTA GTG AGG GTT AAT A

P6-T3

221

TAT TCG ATA TCA CTA GTG AAT TCG CGG CCC
GCC TGC AGG TCG ACC ATA CTG GGA GAG CTC
CCA ACG CGT TGG ATG CAT AGC TTG AGT ATT
CTA TAG TGT CAC CTA AAT AGC TTG AGC GTA
ATC ATG GTC ATA GCT GTT CCT GTG TGA AAT
TGT ATC CGC TCA CAA TTC CAC ACA ACA TAC
GAG CCG GAA GCA TAA AGT GTA AAG CCT GGG
GTG CCT AAT GA

but highly conserved in various organisms (Table 3.11). It also showed 100%
identity to a region of putative myosin heavy chain identified in Dendrobium
grex Madame Thong-In. Another protein that the fragment showed 87%
similarity was CRK6 (CYSTEINE-RICH RLK 6) of Arabidopsis thaliana
that is known as member of phosphotransferases of the serine or threonine-

specific kinase subfamily.

BLASTX results of Creeping bentgrass

For the two fragments isolated from Creeping bentgrass, BLASTX results
were shown in Table 3.12. The fragment amplified with P3-T2 primers
showed 83% identity to the hypothetical protein 0sJ029202 and an un-
known protein of Oryza sativa which both have R3H domain of encore-

like proteins. It interestingly showed 90% similarity to the Zn-dependent
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Table 3.10: Sequences of the isolated fragments of Velvet bentgrass from
greenhouse trial

Primers

Size(bp)

Sequence

P2-T5

327

TAT TAA CCC TCA CTA AAT CGG TTC ATA GTT
GAG AGG GGA ATA GTA TAA CAT AGG AAG ACC
CTT TAT CGA TAC TAA GAA CAA AAT GGT TTT
TTT TGA TTG GAT TAG GAA TTC CCT CTT TTC
TTT TTT TAA TCC TTT TCT CCT TTT TCT TTT
CTA TAC CTC TAA CCC ACG AAT CTT TCT TAA
TCT TAT CCA ATT TCC CTT ACT TTT TCT TAT
AGT TAT ACA TAC AAT TAT GTA TGT ATT ATA
TGA CCA ACT TTC TAT GGG TCA CAT AGA CAT
CCA AAT AAG CAG TAG AAC TGA CAC GGG GAA
AAA AAA AGA TAT CAC TCA GCA TAA TGA

P3-T8

146

TAT TAA CCC TCA CTA AAT GCT GGG TGG TTT
TGG GCT ACA ATA GAT GAC GAG GGA ACT AGT
TAT TAA GTG TGC TTG AAA CCT ATC CAT GGT
ACA TTC ACA GAATTG AGC GAC GGT GGC AAA
AAA AAA GAT ATC ACT CAG CAT AAT GA

Table 3.11: BlastX results of Colonial bentgrass greenhouse trial using NCBI
BLASTX algorithm with Blossom80 and PAM30 matrices

Primers

BLASTX hit Identity | Frame

P6-T3

gb:AAH38506.1 Elongation of very long chain | 85% +2

fatty acids (FEN1/Elo2, SUR4/Elo3,yeast)-like 4
[Homo sapiens]

gb:AAD20814.1 putative myosin heavy chain | 100% +3

[Dendrobium grex Madame Thong-In]

ref:NP849426.1 CRK6 (CYSTEINE-RICH RLK | 87% +3

6) [Arabidopsis thalianal
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proteases region (SpolVFB) of a peptidase isolated from Crocosphaera wat-
songi(cyanobacteria). It has 84% similarity to putative iron compound ABC
transporter, permease protein from Clostridium difficile and the same re-
gion also showed similarity to a hypothetical protein from the same bacteria
which also has a ABC-type enterochelin transport system, permease compo-
nent. The same region was found in a ferric anguibactin transport system
permease protein FatC of Vibrio fischeri (Table 3.12).

The fragment amplified with P6-T3 primers had 90% identity to a man-
ganese superoxide dismutase isolated from Taiwanofungus camphoratus. It
also showed 78% similarity to a putative transcriptional regulator, Crp/Fnr

family of Burkholderia cepacia (Table 3.12).
BLASTX results of Velvet bentgrass

For the two fragments isolated from Velvet bentgrass, BLASTX results were
shown in Table 3.13. The fragment amplified with P2-T5 primers found to
have 60% idendity to cytochrome ¢ oxidase subunit III of Aleurodicus dugesii
and 100% identity to the same putative casein kinase I of Dendrobium grex
Madame Thong-In as the fragments from creeping and colonial bentgrass.
The fragment amplified with P3-T8 primers showed 61% identity to pu-
tative copper/zinc superoxide dismutase copper chaperone of Dendrobium
grex Madame Thong-In and also very interstingly it showed 71% identity
to glutathione-independent formaldehyde dehydrogenase of Methanosarcina

mazei which has a zinc-binding dehydrogenase domain(Table 3.13).

3.3.2 ORF regions of the obtained sequences

The open reading frames of the obtained sequences from Colonial, Creping

and Velvet bentgrass were detected using ORF Finder algorithm of NCBI.
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Table 3.12: BlastX results of Creeping bentgrass greenhouse trial using NCBI
BLASTX algorithm with Blossom80 and PAM30 matrices

Primers | BLASTX hit Identity | Frame
P3-T2 | gb:EAZ45719.1 hypothetical protein 0sJ029202 | 83% +2
[Oryza sativa (japonica cultivar-group)]
dbj:BAD46211.1 unknown protein [Oryza sativa | 83% +2
(japonica cultivar-group)]
ref:ZP00518540.1  CBS:Peptidase M50 [Cro- | 90% +1
cosphaera watsonii WH 8501]
ref:YP001088149.1 putative iron compound ABC | 84% -1
transporter, permease protein [Clostridium diffi-
cile 630]
ref:ZP01803509.1  hypothetical —protein Cd- | 84% -1
ifQ04001892 [Clostridium difficile QCD-32g58]
ref:YP206783.1 ferric anguibactin transport sys- | 84% -1
tem permease protein FatC [Vibrio fischeri ES114]
P6-T3 | emb:CAD42938.2 manganese superoxide dismu- | 90% -3
tase [Taiwanofungus camphoratus]
ref: YP775527.1 putative transcriptional regulator, | 78% -2

Crp/Fnr family [Burkholderia cepacia AMMD)]
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Table 3.13: BlastX results of Velvet bentgrass greenhouse trial using NCBI
BLASTX algorithm with Blossom80 and PAM30 matrices

Primers | BLASTX hit Identity | Frame

P2-T5 | ref:YP026057.1 cytochrome ¢ oxidase subunit III | 60% +3
[Aleurodicus dugesii]

gb:AAD20819.1 putative casein kinase I [Dendro- | 100% -3
bium grex Madame Thong-In]

P3-T8 | gh:AACT9870.1 putative copper/zinc superoxide | 61% +1
dismutase copper chaperone [Dendrobium grex
Madame Thong-In]

ref:NP632773.1 Glutathione-independent | 71% -3
formaldehyde dehydrogenase [Methanosarcina
mazei Gol]

ORF regions of the obtained sequences from Colonial bentgrass

ORF finder analysis shoed that the fragment amplified with the same primers
had an eight amino acids long ORF in the frame 2, a twenty four amino acids
long ORF in the frame 3 and a twelve and five amino acids long ORF in the
frame -3 (Table 3.14). The fragment amplified with P2-T4 primers had one
ORF that had a length of 19 amino acids in the frame 3 (Table 3.14).

All the open reading frames found for Colonial bentgrass were too short
except the twenty four amino acids long ORF for the fragment amplified with
P6-T3 primers. This protein sequence had two histidines that was known to

be reach in metal binding proteins.

ORF regions of the obtained sequences from Creeping bentgrass

The ORFs found for the fragments isolated from Creeping bentgrass were
shown in Table 3.15. The fragment amplified with P3-T2 primers had a

twenty eight amino acids long ORF in the frame two, a twenty seven amino
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Table 3.14: ORFs of the sequences of Colonial bentgrass

Primers | Frame | Sequence Length(aa)
P6-T3 |2 Met LG D AL A L Stop 8
3 Met HW RSN Met PMet QSASY F | 24
SFLTSTFGH Stop
-3 Met LSDIFFF SV R Met Stop 12
-3 Met K L T A Stop 5

acids long ORF in the frame -1 and a ten amino acids long ORF in the frame
-2. The fragment that was amplified with P6-T3 primers had four ORFs in
the frames 1,-1,-2 and -3 that were 7, 10,21 and 21 amino acids in length,
respectively.

The longest amino acid sequence found for Creeping bentgrass had 28
amino acids (Table 3.15). The sequence was searched for conserved motifs
using Motif Scan algorithm and was found to have a cAMP- and ¢cGMP-
dependent protein kinase phosphorylation site in the region 13-16 (R R D
S), Casein kinase II phosphorylation site in the region 17-20 (T I M D). The
21 amino acids long ORF of the fragment (P6-T3) interestingly showed a
Zinc finger DPH-type profile for the whole sequence (Figure 3.16).

ORF regions of the obtained sequences from Velvet bentgrass

The ORFs found for the fragments isolated from Velvet bentgrass were listed
in Table 3.16. The fragment amplified with P2-T5 primers had five ORF's
in the frames 3,-1,-2,-3 and -3 of 11,12,7,28 and 7 amino acids in length,
respectively. The fragment amplified with P3-T8 primers had three short
ORFs in the frame 2 and a fourty two amino acids long ORF in the frame

-3. The 28 amino acids lond ORF of P2-T5 fragment showed a similarity to
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Table 3.15: ORF's of the sequences of Creeping bentgrass

Primers | Frame | Sequence Length(aa)
P3-T2 |3 Met KLIRGTTLSVIRRDSTI]| 28
Met DFPPAFSEG Stop

-1 Met IVESRLITLSVVPRINFI|27
GGTCDQY YV Stop

2 Met CKKKDIT Q Q Stop 10

P6-T3 |1 Met HS L STL Stop 7

-1 Met T Met I T L KL F R Stop 10

-2 Met LPARMet LCGIVSGYNFEF |21
T QEQLStop

-3 Met HPTRWELSQYGRPAGG |21
P R1H Stop

E_ C FHY
m - Il ul__--l_-
| i

MLPARMLCGIYSGYNF TOEQL—=-—=—==m=====mm ==~

Figure 3.16: The motif predicted for the twenty one amino acids long ORF
sequence of the fragment amplified with P6-T3 primers in the Creeping bent-
grass found by Motif Scan algorithm
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the NERD domain profile (Figure 3.17). The longest ORF found for Velvet

bentrgrass (42 amino acids) had three cysteines and one histidine however

did not have a significant hit in the Motif Scan.

Table 3.16: ORFs of the sequences of Velvet bentgrass

Primers | Frame | Sequence Length(aa)

P2-T5 |3 Met YY Met TNFL W VT Stop 11
-1 Met LYYSPLNYEPIStop 12
-2 Met NRF S E G Stop 7
-3 Met LSDIFFFPRVSSTAYLD |28

VYVTHRKLYVIStop

-3 Met Y NY K K K Stop

P3-T8 |2 Met L G G F G L Q Stop
2 Met TRELVIK C A Stop 10
2 Met VH S Q N Stop 6
-3 Met LSDIFFFATVAQFCEC |42

TMet DRFQAHLITSSLVIYC
SPKPPSIStop

3.3.3 Pairwise alignment of the fragments that were

amplified with the same primer sets

There were two primer sets that amplified a fragment both for Colonial and

Creeping bentgrass and these fragments were aligned using ClustalW algo-

rithm of EBI. The pairwise alignment of the fragments were shown in Fig-

ure 3.18. The results indicated that the fragments are similar in sequence.

66




Figure 3.17: The motif predicted for the twenty eight amino acids long ORF

sequence of the fragment amplified with P2-T5 primers in the Velvet bent-
grass found by Motif Scan algorithm

10 » ® ® @
ColomialPBT3128 A - - - - - ooo oo s s e e . 87T AAT - G ER 2
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Consensus

100 110 120 ! 1

ColonialPeT¥1-128 34 GG cBCT - -6 TATEE ATG-E;_—A; 7',"‘ 8 c 121
CreepingPBT3/1-221 95 ABTGTCACCRARATAGET TA. éc 188

Form I I_. ILI l.llj I Il IUJ_LI Illl Il

T -CTAA---6C TGC:-AATCA- - ~TCATA- =T-T--CT-T-T-AA-TT-TA----C-+
190

ColonialPETX1-128 122 m';\ VVVVVVVVVVVVVVVVVVVVVVVV 128
CreepingPET31-221 189 AGCA ﬂﬂﬁﬁTﬁ'TAAA#ECTGG\‘,ﬁTG‘;EC TAATEA

221
ATCATLA

Figure 3.18: Pairwise alignment of the fragments amplified with P6-T3
primers both in Colonial and Creeping bentgrass
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Chapter 4

Discussion

4.1 Physiological analysis

The concentration and content of zinc in the seeds of Creeping, Colonial
and Velvet bentgrass was presented in Section 3.1.1. Since zinc concentra-
tion of the seeds has huge effect on growth of seedlings after germination,
it was important to know the zinc concentration of seeds for all genotypes
tested [56]. Velvet bentgrass seeds had the highest amount of zinc among the
three species where as the other two had almost the same zinc concentration,
indicating that high susceptibility of Velvet to zinc deficiency was not related
to the low seed zinc concentration.

According to the dry weights of plants after four weeks of growth under
zinc deficiency presented in Section 3.1.2, Velvet bentgrass was almost unre-
sponsive to 0.1ppm zinc application probably due to its high amount of zinc
in the seeds or poor genetic capacity of zinc acquisition from soil. Creep-
ing bentgrass was found to be the most tolerant species to zinc deficiency
when compared to the others used in this study. . In addition to the earliest
research on Agrostis tenuis , this data suggested that Creeping bentgrass
is also tolerant to zinc deficiency among Agrostis species. The experiment

also showed that the most susceptible species among the three was Velvet
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bentgrass.

Zn concentration of Colonial bentgrass grown without zinc was much
higher than it was expected (Figure 3.3). This is probably due to soil con-
tamination before the ICP measurements rather than zinc contamination in
the soil because the same deviance was not observed for the dry weights of
the plants. Soil contamination to the samples was also supported by the high

level of Al amount.

4.2 lIdentification of Zn responsive genes by
using mRNADD in Creeping, Colonial
and Velvet bentgrass

By using mRNADD method, nine zinc responsive transcripts, six in Creep-
ing, one in Colonial and two in Velvet bentgrass, that were differentially
expressed in response to zinc deficiency, have been identified. The experi-
ments were repeated for several times and only the absolutely reproducible
fragments have been considered to be specific and analyzed further. The non-
reproducible fragments were omitted. Majority of the identified transcripts
have partial similarities with the previously identified metal binding proteins.
These results clearly indicated that mRNADD tool worked perfectly to iden-
tify Zn responsive genes those can readily be located on molecular linkage
maps to identify the chromosomal location of Zn responsive genes on grass
genome.

The differentially expressed genes that were identified were thought to
be partial mRNA sequences although most of them have ORF regions. To
obtain the full sequences, RACE method should be used by designing gene
specific primers for each of the fragments. Obtaining the full sequences of the

transcripts will provide more information about the homology and orthology
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with the previously identified proteins. ORF regions of the full mRNAs can
be used to translate the product in a model organism for structural and

biochemical characterizations.

4.3 Identification and characterization of ZIP
family transporter in Creeping bentgrass

The fragment isolated from Creeping bentgrass that was amplified by P3-T1
primers was found to be one of the most interesting fragment due its bigger
size in comparison and its similarity with three ZIP transporters with around
50% identity. Hence, the differentially expressed gene was further analysed.
The real-time PCR results for the expression analysis of the fragment clearly
indicated that its expression level was highly affected by the Zn concentration
in the growth medium. The real-time PCR was performed for total cDNAs
isolated from both tissue culture trial and green house trial and the data
indicated that the difference in the expression levels are almost the same for
both. It has been known that the expression of genes encoding the plant ZIP
transporters appears to be affected by zinc or iron deficiency which was also
observed in this experiment ( [34, 35]). The full length mRNA sequence was
found to be homologous to ZIP zinc transporter family proteins which are
mostly membrane proteins involved in transportation of the zinc. Decrease
in the expression level of this gene can be explained by its role, so if there is
more zinc to transport in the plant the expression level of the gene increases.

The fragment that was obtained by P3-T1 primers had two specific ORF's
and these were cloned to an expression vector and expressed in E. coli. How-
ever, both protein products were not obtained probably because they could
not complete their proper folding and become targets of protease activity.

As a result of this assumption, the full mRNA sequence of the fragment was
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obtained by RACE.

The full length mRNA sequence (AsZIP) obtained by RACE was found
to be a good candidate to be Creeping bentgrass homologous of ZIP fam-
ily metal transporters detected in many organisms including plants, human
and bacteria. This result was supported with BLASTX results and the
CLUSTALX alignments with the known proteins of the ZIP family (Ta-
ble 3.6, Figure 3.10).

BLASTX results indicated that the protein product was highly similar to
zinc transporter ZIP3 identified in Oryza sativa(OsZIP3,gbAAP85537.1)( [57,
58]). According to Ramesh et al., the cDNAs was partially complemented
to a yeast mutant, deficient in zinc uptake at low Zn concentrations. They
claimed that OsZIP3 was expressed under control conditions, but gene ex-
pression was slightly up-regulated when zinc was removed from the medium
and concluded that and that OsZIP3 is constitutively active and involved in
overall cell zinc homeostasis, particularly in leaves. Their findings in Oryza
sativa are totally consistent with this experiment and makes OsZIP3 of Oryza
sativa the best reference for the novel gene identified for the first time in
Agrostis. To compare the functional similarity between the two proteins,
functional complementary studies will be performed as for OsZIP3.

The physiological analysis indicated that Creeping bentgrass was the most
tolerant species to zinc deficiency when compared to Colonial and Velvet
bentgrass. Due to its similarity with OsZIP3, AsZIP is predicted to in-
crease zinc uptake and translocation. Hence, the expression of AsZIP gene

in Creeping bentgrass may contribute to its tolerance level to zinc deficiency.
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Chapter 5

Conclusion

This study demonstrated that Creeping bentgrass was the most tolerant grass
species to zinc deficiency when compared to Colonial and Velvet bentgrass
used in this study. On the other hand the most susceptible species was Velvet
bentgrass although its growth was slightly less than Colonial bentgrass under
zinc deficiency.

Nine transcripts in total were detected using mRNA differential display
technique whose expression levels either increased or decreased under zinc
deficiency. The identified transcripts are found to be a portion of corre-
sponding mRNAs of zinc responsive genes. The full length mRNA sequence
in Creeping bentgrass , whose expression level decreased by 2° and 2°¢ fold,
in tissue culture and green house trials, respectively, was obtained by 3’ and
5 RACE.

The full length mRNA sequence is found to be homologous to ZIP zinc
transporter family proteins which are mostly membrane proteins involved in
transportation of the zinc after the uptake. This is the first study that a ZIP
family zinc transporter is identified in Agrostis species. Functional analysis

of the protein product of the novel gene will be performed.
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Appendix A

Appendix

A.1 Chemicals and Kits

Chemical Company Catalog No.
2-Mercaptaethanol Aldrich, Germany M370-1
2-Propanol MerckKGaA, Germany 1.00995
6X Loading dye Fermentas, Canada RO611
Acetic acid Riedel-de Haen, Germany 27225
Acetone MerckKGaA, Germany 100013
Acrylamide 30%-0.8% Bi- Sigma, Germany A3699
acrylamide
Acetic acid Riedel-de Haen, Germany 27225
Agarose low EEO AppliChem GmbH, Ger- A2114
many
Ampicillin sodium salt AppliChem GmbH, Ger- A0839
many
Bromophenol blue Applichem, Germany A3640
aTaq DNA polymerase Promega, USA M1245
Chloroform Amresco Inc., USA 0757
Coomassie brilliant blue Fluka, Switzerland 27816
DNasel Fermentas, Canada EN0521
dNTP mix Promega, USA U1515
Ethanol MerckKGaA, Germany 1.00986
Ethidium bromide MerckKGaA, Germany 1.11608
GeneRacer Kit Invitrogen, USA L1502-02
GeneRuler 100bp DNA lad- Fermentas, Canada SM0321
der plus
Glycerol 87% Riedel-de Haen, Germany 15523
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Hybond PVDF membrane
Hydrochloric acid 37%
IPTG

LB broth

Magnesium chloride
Magnesium sulfate
Methanol

Oligo(dT) Primer
Omniscript RT Kit
Pageruler protein ladder
PGEM-T Vector System II
Qiaprep Spin Miniprep Kit
Qiaquick Gel
Kit

RNaseOUT
Sodium chloride

Tetramethylethylenediamine

Tris
Trizol Reagent
X-Gal

A.2 Equipment

Extraction

Amersham, Sweeden
MerckKGaA, Germany
Fermentas, Canada
Sigma-Aldrich Co., USA
Riedel-de Haen, Germany
Riedel-de Haen, Germany
Riedel-de Haen, Germany
Invitrogen, USA

Qiagen, USA

Fermentas, Germany
Promega, USA

Qiagen, USA

Qiagen, USA

Invitrogen, USA
Riedel-de Haen, Germany
Sigma, Germany

Fluka, Switzerland
Invitrogen, USA
Promega, USA

Autoclave Hirayama, Hiclave HV-110, Japan.

Balance Sartorius, BP610, BP221S, BP221D, Germany.

Blot Module Novex, X Cell IT Blot Module, USA.

RPN2020F
100314
RO393
L3022
13152
13246
24229
L3147
20511
SM0661
A3610
27106
28706

10777-019
13423
T-7029
93349
15596
V3941

Centrifuge Eppendorf, 5415R, Germany; Hitachi, Sorvall RC5C Plus, USA.

Cuvette Hellma, QH, QS, Germany.

Deep Freeze Bosch, -20°C, Turkey.

ddH,O Millipore, MilliQQ Academie, Elix-S, France.

Digital Camera Canon, PowerShot SD 400, USA; Olympus, C-7070, USA.

Electrophoresis BioRad Inc., USA; Novex, X Cell SureLock Electrophore-

sis Cell, USA.

Element Analysis Varian, Vista-Pro CCD Simultaneous ICP-OES, Aus-
tralia; LECO, TruSpec CN, USA.
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Gel Documentation BioRad, Universal Hood II, USA; BioRad, Quantity
One, USA; BioRad, GelDoc XR, USA.

Ice Machine Scotsman Inc., AF20, USA.

Imaging Software GIMP 2.2.12.

Incubator Memmert D06059 Model 300, Germany.

Incubator shaker New Brunswick Scientific Innova 4330, USA.
Laminar Flow Cabinets Heraeus Instruments HS12, Germany.
Lighting Olympus, LG-PS2, USA.

Magnetic Stir VELP Scientifica, ARE Heating Magnetic Stirrer, Italy.
Microliter Pipette Gilson, Pipetman, France.

Microplate Reader BioRad, Model 680 Microplate Reader, USA.
Microscope Olympus, SZ61, USA.

Microwave Oven CEM Corp., Mars Xpress, USA; Bosch, Turkey.
pH Meter WTW, pH540GLP MultiCal, Germany.

Power Supply BioRad, PowerPac 300, USA; Wealtec, Elite 300, USA.
Refrigirator Bosch, +4°C, Turkey.

Sonicator Bioblock Scientific, Vibracell 75043, France; Bandelin, Sonorex,
Germany.

Spectrophotometer Schimadzu, UV-3150, Japan; Nanodrop, ND-1000,
USA.

Thermomixer Eppendorf, Thermomixer Comfort, Germany.

Vortex VELP Scientifica, 2x3, Italy.

A.3 Additional data

A.3.1 Element analysis

81



Table A.2: Creeping bentgrass ICP results

Element Concentration (ppm)
0 ppm Zn | 0.1 ppm Zn | 5 ppm Zn

P Mean | 7325.49 6352.23 4056.95
StD 699.17 680.44 222.61

K Mean | 22560.21 | 19846.16 18072.31
StD | 2095.58 1535.09 214.43

Ca Mean | 8155.27 7857.68 7420.45
StD | 1199.93 1029.88 635.08

Mg Mean | 3582.05 3539.73 2806.93
StD | 643.51 170.22 208.03

S Mean | 4224.07 4204.01 3096.18
StD 246.50 244.48 292.03

Fe Mean | 131.04 119.76 57.49
StD | 29.18 14.53 5.95

Mn Mean | 212.94 200.51 120.29
StD | 52.01 27.00 9.74

Cu Mean | 20.29 18.20 12.69
StD 4.05 2.03 1.21
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Table A.3: Colonial bentgrass ICP results

Element Concentration (ppm)
0 ppm Zn | 0.1 ppm Zn | 5 ppm Zn
p Mean | 6683.78 5161.54 3632.08
StD | 1343.51 594.67 423.19
K Mean | 2354.81 6231.11 26349.49
StD | 495.88 2800.20 1259.15
Ca Mean | 25602.88 | 15570.96 9580.72
StD | 5928.64 3026.88 2733.86
Mg Mean | 9573.96 6025.23 3669.41
StD | 572.73 574.55 394.93
S Mean | 4277.73 3324.93 3298.34
StD | 133.83 272.15 313.66
Fe Mean | 232.36 134.29 67.91
StD | 44.45 0.02 12.71
Mn Mean | 391.03 320.17 170.04
StD | 73.17 35.52 26.22
Cu Mean | 45.17 26.65 13.15
StD | 5.05 0.89 0.84
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Table A.4: Velvet bentgrass ICP results

Element Concentration (ppm)
0 ppm Zn | 0.1 ppm Zn | 5 ppm Zn
P Mean | 8169.83 6981.37 0888.90
StD | 2247.10 551.01 1767.72
K Mean | 16834.48 | 15077.71 24381.39
StD | 4465.75 1409.57 3369.47
Ca Mean | 16121.81 | 14594.06 8717.98
StD | 1129.79 3209.02 1993.81
Mg Mean | 5745.35 5717.59 3832.98
StD | 193.75 1602.83 738.37
S Mean | 3600.35 3393.60 3778.13
StD | 209.53 592.68 875.46
Fe Mean | 47.75 49.31 85.43
StD | 2.21 6.93 13.73
Mn Mean | 244.12 386.81 323.66
StD | 91.88 53.21 52.96
Cu Mean | 18.24 17.74 12.90
StD | 2.51 5.32 2.18
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