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Abstract 

 

 In this thesis, a 5 GHz radio frequency power amplifier for IEEE 802.11a 
WLAN applications is designed, the ideas of on-chip power combining and using 
transmission lines as an RF on-chip choke are tested and layouts are drawn. The power 
amplifier employs SiGe HBT’s in AMS 0.35 μm BiCMOS process and it is designed to 
operate in Class A mode with a supply voltage of 3 Volts. Since the power amplifier is 
the final block and the final amplification stage of the transmitter chain in a wireless 
system, it must produce enough RF power to overcome the channel losses. At the same 
time, the power produced by the power amplifier should obey the power levels dictated 
by the operating standard. Therefore, in this work much consideration is given to design 
a power amplifier which provides enough output power for IEEE 802.11a WLAN 
standard. The power amplifier is designed to operate in Class A, and the bias points are 
chosen accordingly in order to preserve linearity. After the design of a single stage 
power amplifier, different versions of the circuit are designed and layouts are drawn. To 
decrease the dye area and the parasitic losses, the inductor which is used as the RF 
choke is replaced with capacitively loaded transmission lines. Moreover, in order to 
improve the linearity and obtain higher output power levels, two single stage power 
amplifiers are combined via on-chip Wilkinson power combiner made of lumped 
elements. Simulations are performed in ADS and Cadence environments in a parallel 
fashion.  
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Özet 

 

  Bu tezde, 802.11a WLAN uygulamaları için yüksek frekans bir güç 
kuvvetlendiricisi AMS’in 0.35 μm SiGe BiCMOS teknolojisiyle 5 GHz frekansinda 
tasarlanmış ve serimi yapılmıştır. Bunun yaninda, tümleşik güç birleştirici yöntemi ve 
iletim hattını tümleşik endüktans olarak kullanma fikri test edilmiştir. Bu güç 
kuvvetlendiricisi tasarımında AMS’in 0.35 μm BiCMOS prosesinde bulunan SiGe 
HBT’ler yer alıp, kuvvetlendirici 3 Volt kaynak voltajı ile Sınıf A’da çalışacak şekilde 
tasarlanmıştır. Güç kuvvetlendiricisi, gönderici hattındaki son yükseltici blok olduğu 
için, kanal kayıplarını aşabilmek için yeterli miktarda yüksek frekans çıkış gücü 
oluşturabilmelidir. Aynı zamanda, üretilen çıkış gücü, çalıştırma standardının 
öngördüğü çıkış gücü seviyelerini aşmamalıdır. Bu sebepten dolayı, bu çalışmada IEEE 
802.11a standardı için yeterli seviyelerde güç üretebilen bir kuvvetlendirici tasarlamaya 
özen gösterilmiştir. Sınıf A’da çalıştırılmak üzere tasarlanan güç kuvvetlendiricisinin 
kutuplama noktalari bu doğrultuda seçilmiş ve doğrusallık korunmuştur. Tek sıralı güç 
kuvvetlendiricisi tasarlandıktan sonra, aynı devrenin değişik versiyonları tasarlanıp test 
edilmiştir. Kırmık boyutunu küçültmek ve parazitik kayıpları azaltmak için, RF choke 
görevi gören endüktans devreden çıkartılıp yerine kapasitif yüklenmiş iletim hattı 
yerleştirilmiştir. Doğrusallığı ve çıkış gücünü arttırmak içinse, iki tek sıralı güç 
kuvvetlendiricisi tümleşik Wilkinson güç birleştiricisi ile birleştirilmiştir. Simülasyonlar 
ADS ve Cadence ortamlarında eş zamanlı olarak yapılmıştır.            
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Chapter 1 
 
 

1 INTRODUCTION 
 
 
 

 
 The wireless local area network market has been growing rapidly for the past 

several years. The IEEE 802.11 WLAN standards have extended the frequency band 

from 2.4 GHz to 5 GHz bands in order to increase the data transmission rate.  The new 

generation of 802.11a WLAN and HiperLAN/2 standards operating in the 5 GHz 

spectrum using OFDM are becoming popular due to high speed, greater system capacity 

and low interference [1]. Each of these standards requires a power amplifier as the final 

amplification block of the transmitter and each of them allow a specific maximum 

output power generated by the power amplifier.  

 IEEE 802.11a has different maximum output power levels depending on whether 

the transmission occurs in the lower (5.15 GHz-5.35 GHz) or the upper band (5.725 

GHz-5.825 GHz). Typically, the required output power level for the IEEE 802.11a 

standard in 5.15-5.25 GHz, 5.25-5.35 GHz and 5.725-5.825 GHz bands is 40 mW, 

200mW and 800 mW respectively [2].   

 Traditionally, power amplifier circuits at high frequencies have been 

implemented in III-V compound semiconductor technologies such as GaAs and InP [3]. 

However, RF Si ICs have recently demonstrated their competitive advantages for 

WLAN applications. SiGe BiCMOS technology is a silicon based technology that takes 

advantage of the maturity of silicon processing techniques and results into low cost 

elements. Recently, SiGe HBT power amplifiers are emerging as a contender for RF 

power amplifier applications at higher frequencies. However, SiGe devices capable of 

operating at 5 GHz have a low collector-emitter breakdown voltage, making it difficult 

to extract high output power from a single transistor [3]. Therefore, the solution to the 

difficulty of extracting high output power from a SiGe device operating at 5 GHz could 

be to use power combining techniques and to decrease losses such as conductor and 
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dielectric substrate losses. In this thesis, two new ideas are tested and implemented to 

obtain higher output power. First idea is on-chip power combining using Wilkinson 

power combiner and the second idea is to decrease substrate losses of low Q-inductors 

by replacing them with transmission line inductor elements.      

 This thesis describes the design of a key RF block in the transmitter chain - the 

Power Amplifier and this work is based on SiGe BiCMOS process of AMS. We address 

the design of a 5 GHz PA for WLAN 802.11a applications. Our aim is to design a PA 

which produces enough output power for operating at the lowest frequency band of the 

IEEE 802.11a standard. This corresponds to 40 mW (16 dBm) output power for the 5.15 

GHz-5.25 GHz frequency band. We start from the basic device I-V characteristics and 

designed the PA input/output matching and bias networks, accordingly. After the design 

of a single stage Class A PA suitable for IEEE 802.11a applications, the simulation 

results of the two different topologies deducted from the main PA topology are also 

performed. First topology to be simulated is the on-chip power combined PA circuit 

which utilizes a powerful technique to increase the output power and to improve the 

linearity. This method is tested in order to obtain higher output powers for the upper 

frequency bands of the IEEE 802.11a standard. Other than the power combined PA 

circuit, the idea of replacing the low Q inductors with capacitive loaded transmission 

lines is also simulated and implemented. Layouts for the single stage PA and its new 

version with RF choke replaced with the transmission lines are also drawn in a die size 

of 977*981 μm2 including RF and DC bias pads.     

 The material in this thesis is organized as follows: In Chapter 2, the general 

principles and specifications of the IEEE 802.11a WLAN standard are presented. Also 

in this chapter, transmitter and receiver chains of a 802.11a system are investigated and 

basic principles of power amplifiers are presented. Role of power amplifier in a 

transmitter chain, power amplifier design parameters and different classes of power 

amplifiers are all given in detail in Chapter 2. In Chapter 3, basic design procedure of a 

5GHz Class A single stage power amplifier is given in detail. The device I-V 

characteristics, load pull simulations and input/output matching network design are all 

presented as part of the PA design roadmap. Chapter 3 also introduces the theoretical 

background of the two ideas implemented in this thesis; namely on-chip Wilkinson 

power combining technique and capacitively loaded transmission line equivalent model 

of low Q inductors. This chapter also includes some ADS simulation results of the 

implementation of these ideas. In Chapter 4, preliminary numerical results of a more 
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realistic simulation of three different PA circuits will be presented. First, the simulation 

results of the single stage power amplifier with AMS components and layout of this 

topology are presented. Then, the same simulations are performed for the on-chip power 

combined PA topology which is also implemented with AMS components. Finally the 

simulation results of the single stage PA design with the transmission line structure used 

as the RF choke are given along with the layout. At the end of Chapter 4, an analysis of 

how the technology used in the design affects the characteristics of the capacitively 

loaded transmission line structure is done. Finally, in Chapter 5 a brief conclusion of 

this thesis and future work are given.     
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Chapter 2 
 
 

2 BACKGROUND 
 
 
 
 

In this chapter, brief background information about the power amplifier basics is 

given. Chapter 2 starts with the IEEE WLAN 802.11a standard specifications which 

cover the frequency allocation, output power levels, error vector magnitude values and 

transmit spectrum masks. Afterwards the architecture of an IEEE WLAN 802.11a 

transceiver is presented. Both the receiver and the transmitter parts are investigated in 

detail. Finally different power amplifier classes (linear and nonlinear) are mentioned in 

the last subsection.   

 
 
 

2.1 IEEE WLAN 802.11a Standard Specifications 
 
 
  
 IEEE 802.11 or Wireless Fidelity (Wi-Fi) denotes a set of Wireless LAN 

standards developed by working group 11 of IEEE 802. These specifications define an 

over-the-air interface between a wireless client and a base station; or between two or 

more wireless clients. The 802.11 family currently includes three separate protocols that 

focus on encoding (a, b, g); other standards in the family are service enhancement and 

extensions, or corrections to previous specifications.  

 IEEE Std. 802.11a is a high speed Wireless Local Area Network (WLAN) 

standard designated in 1999. This standard operates at radio frequencies between 5 GHz 

and 6 GHz. As seen in Table 1, there are three frequency bands allocating the 5-6 GHz 

band for this standard; lower band: 5.15-5.25 GHz, middle band: 5.25-5.35 GHz and the 

upper band: 5.725-5.825 GHz. Each band has its own maximum output power limit 

dictated by the IEEE 802.11a standard. As also given in Table 1, three transmit power 

levels are specified: 40 mW, 200mW and 800mW. The upper band defines transmit 
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power levels suitable for bridging applications and the lower band specifies transmit 

power levels suitable for short range indoor home and small office environments. Using 

the 5 GHz band gives 802.11a the advantage of less interference, since 2.4 GHz band is 

heavily used. However, this high carrier frequency restricts the use of 802.11a to almost 

line of sight.  

 

Frequency Band (GHz) 
Maximum output power with up to 6 

dBi antenna gain (dBm) 

5.15-5.25 40 (2.5 mW/MHz) 

5.25-5.35 200 (12.5 mW/MHz) 

5.725-5.825 800 (50 mW/MHz) 

Table 2.1: Transmit power levels for the United States 
 

 IEEE 802.11a standard has 12 non-overlapping channels, with a channel spacing 

of 20 MHz, as shown in Figure 2.1. Each channel is an OFDM modulated signal with 

consisting of 52 subcarriers. The basic principle of OFDM is to split a high data rate 

data stream into a number of lower rate streams that are transmitted simultaneously over 

a number of subcarriers. Because the symbol duration increases for the lower rate 

parallel subcarriers, the relative amount of dispersion in time caused by multipath delay 

spread is decreased. Intersymbol interference (ISI) is eliminated almost completely 

because the OFDM allows us to insert adequate guard interval between successive 

OFDM symbols. 

 As shown in Figure 2.1, the lower band contains four channels with channel 

numbers; 36, 40, 44, and 48 with center frequencies; 5180, 5200, 5220, and 5240 MHz 

respectively. Likewise, the middle band contains channels 52, 56, 60, and 64 with 

center frequencies; 5260, 5280, 5300, and 5320 MHz respectively. Finally, the upper 

band contains channels 149, 153, 157, and 161 with center frequencies; 5745, 5765, 

5785, and 5805 MHz respectively. 
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Figure 2.1: OFDM PHY frequency channel plan for the United States  

 
 The IEEE 802.11a standard specifies an OFDM physical layer (PHY) that splits 

an information signal across 52 separate subcarriers to provide transmission of data at a 

rate of 6, 9, 12, 18, 24, 36, 48, or 54 Mbps. The 6, 12, and 24 Mbps data rates are 

mandatory in the IEEE 802.11a standard. From the 52 subcarriers, four are the pilot 

subcarriers that the system uses as a reference to disregard frequency or phase shifts of 

the signal during transmission. The remaining 48 subcarriers provide separate wireless 

pathways for sending the information in a parallel fashion. Since there are 64 possible 

subcarrier frequency slots in a 20 MHz channel in the IEEE 802.11a standard, the 

resulting subcarrier frequency spacing is 312.5 kHz. 

 The IEEE 802.11a standard system uses 52 subcarriers that are modulated using 

BPSK, QPSK, 16 QAM, or 64 QAM, as shown in Table 2. Depending on the data rate 

chosen, the binary serial signal is divided into groups (symbols) of one, two, four, or six 

bits and converted into complex numbers representing applicable constellation points. 

For example, if a data rate of 18 Mbps is chosen, the data bits are mapped to a QPSK 

constellation.  
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Data Rate 

(Mbits/sec) 
Modulation 

6 BPSK 

9 BPSK 

12 QPSK 

18 QPSK 

24 16-QAM 

36 16-QAM 

48 64-QAM 

54 64-QAM 

 
Table 2.2: Modulation types for different data rates 

 

 The IEEE 802.11a standard requires receivers to have a minimum sensitivity 

ranging between -82 dBm (at 6 Mbps data rate) and -65 dBm (at 54 Mbps data rate). 

The IEEE 802.11a standard also specifies maximum allowable Error Vector Magnitude 

(EVM) values for each data transmission rate, as shown in Table 3 [2]. 

 

Data Transmission Speed (Mbps) Allowable EVM (dB) 

6 -5 

9 -8 

12 -10 

18 -13 

24 -16 

36 -19 

48 -22 

54 -25 

 
Table 2.3: Allowed relative constellation error versus data rate 

    

 The transmitted spectral density of the transmitted signal should fall within the 

spectral mask, as shown in Figure 2.2.  
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Figure 2.2: Transmit spectrum mask 

 

 According to this transmit mask, the transmitted spectrum should have a 0 dBr 

bandwidth not exceeding 18 MHz, –20 dBr at 11 MHz frequency offset, –28 dBr at 20 

MHz frequency offset and –40 dBr at 30 MHz frequency offset and above. The dBr unit 

is defined as the dB relative to the maximum spectral density of the signal. 

 

 

2.2 Architecture of an IEEE 802.11a WLAN Transceiver 
 
 
 
 The spectral efficiency of the 802.11a standard comes at the expense of a more 

complicated transceiver with strict requirements on the radio performance. For example, 

the use of 64-QAM modulation requires a signal-to-noise ratio (SNR) of 30 dB, which 

is substantially greater than that required by the FSK modulation in Bluetooth and the 

QPSK modulation in 802.11b. This high SNR translates to stringent phase noise 

requirements for the frequency synthesizer and tight matching constraints for both the 

transmitter and receiver. OFDM, which is highly desirable because of its resilience to 

multipath interference, can substantially complicate the transceiver design [4]. Figure 

2.3 indicates the block diagram of an IEEE 802.11a transmitter.  

 As shown in the Figure 2.3, data is first encoded using Forward Error Correction 

(FEC) encoder and then interleaved and mapped. After that, Inverse Fast Fourier 

Transform (IFFT) is applied and Guard Interval (GI) is added. After the symbol shaping 

is done, data is Inphase and Quadrature (I&Q) modulated and the then mixer is used to 

upconvert the signal to a specific frequency value with the help of the local oscillator 
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(LO). Finally the power amplifier is the last stage in the transmitter chain just before the 

antenna and it is used to increase the power level of the signal to be transmitted.  

FEC 
Encoder

Interleaving 
and 

mapping

Guard 
Interval 
Addition

IFFT Symbol 
Shaping

I&Q 
ModulatorData

LOLO

Mixer

Power 
Amplifier

Antenna

 
Figure 2.3: Block diagram of an IEEE 802.11a transmitter 

 

 Figure 2.4 indicates the block diagram of an IEEE 802.11a receiver. The 

receiver topology looks like the reverse of the transmitter. First block is the Low Noise 

Amplifier (LNA) after the signal is captured with an antenna.  The mixer follows the 

LNA to downconvert the signal. The mixer output is fed into an Automatic Gain 

Control Amplifier. Then I&Q demodulation takes place. Automatic Frequency Control 

Recovery is utilized after this block in order to achieve a flawless demodulation and 

after that GI is removed and Fast Fourier Transform (FFT) is applied. After demapping 

and deinterleaving stage, FEC decoder decodes the original data. 

I&Q 
Demodulator

Automatic 
Frequency Control 

Clock Recovery

Guard 
Interval 

Removal
FFT

Demapping 
and 

Deinterleaving

FEC 
Decoder

Low Noise 
Amplifier

Automatic Gain 
Contol Amplifier

LO

Mixer

LO

Data

Antenna

 
Figure 2.4: Block diagram of an IEEE 802.11a receiver 
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2.3 Power Amplifier Background 
   
 
 
2.3.1  Introduction 

 
 

 In any wireless communication system there is a transmitter part and in any 

transmitter one of the most challenging components is the Power Amplifier. Power 

Amplifier is the last amplification stage in the transmitter chain and it is a key part of 

the RF front end in any transmitter, as shown in Figure 2.5. 

 

 
Figure 2.5: Block diagram of an RF transceiver 

 

  Power amplifier (PA) takes the signal to be transmitted and amplifies it to a 

proper level such that the transmitted signal overcomes the channel losses and receiver 

senses adequate power to recover the desired signal. That specific power level is 

determined by the communication system and for different applications the order of 

magnitude of the transmitted power varies. For example, while the transmitted power 

level is on the order of thousands of watts for satellite communications, this level drops 

to tens to hundreds of milliwatts for portable wireless communication devices. Even the 

generated output power levels differ greatly; the underlying principles of the power 

amplifier design are much the same. 

 Because the power that should be sent to the transmitting antenna is often quite 

high, PA is the largest power consumer in most wireless communication systems. A 

major design requirement of a PA is how efficiently the PA converts the DC power into 

RF output power.   
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 A power amplifier usually consists of an active device, which is a transistor, 

input and output matching networks and some extra circuitry, like the bias network. 

Figure 2.6 shows the basic topology of a basic power amplifier.  

 
Figure 2.6:  Basic topology of a power amplifier 

 

 According to the target application of the PA; transistor type, class of operation 

and the matching circuit topologies are determined. 

 
 
 

2.3.2 Power Amplifier Performance Parameters 
 
 

 Some of the important terms and specifications of a PA are as follows: 

 Frequency of Operation 

 The PA should be designed for a specific range of frequency in a narrowband 

application. Each communication standard specifies its own frequency range of 

operation and for this thesis the PA is designed at 5 GHz frequency and all of its 

parameters are simulated at 5 GHz. That is compatible with IEEE 802.11a WLAN 

standard which occupies the 5 GHz frequency band.   

 Output Power 

 Output power is the amount of power that needs to be delivered to the 

transmitting antenna. As mentioned earlier, the output power levels of 802.11a 

transmitters are specified by the IEEE 802.11a standard. With upto 6 dBi antenna gain, 
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for the lower frequency band (5.15 GHz-5.25 GHz) the output power level should not 

exceed 40 mW; for the middle frequency band (5.25 GHz-5.35 GHz) the maximum 

output power level is 200 mW and for the upper frequency band (5.725 GHz- 5.825 

GHz) this level is specified as 800 mW.  

 When considering power output, a common unit used is dBm, which is the 

output power in dB referenced to 1 mW. The output power in dB is given by  

                                                   
W

PPdBm 001.0
log10=                                                 (2.1) 

where P is defined in Watts. In dB scale, the specified maximum output power levels 

for IEEE 802.11a standard are 16 dBm, 23 dBm and 29 dBm for the lower, middle and 

upper frequency bands respectively.   

 Power Gain 

 PAs provide a certain level of power gain in order to boost the incoming signal 

to required levels. Power gain is defined as the ratio of the output power delivered to the 

load to the input power available from the source. It is desired that the power gain be 

flat over the frequency band, with a tolerance of ± 0.5 dB. 

 Efficiency 

 The measure of how much power a PA consumes while converting the DC 

power into RF power delivered to the load is a key performance parameter of a PA. This 

parameter is known as the PA’s efficiency. Efficiency is most basically defined as the 

ratio of the “power delivered to the load” to the “power drawn from the source”. The 

maximum efficiency is 1, or 100% since the PA is converting the DC supply power into 

RF power delivered to the load. This happens if there is no power consumed in the PA, 

which is only ideally possible.   

  There are variations of this metric that give more information about the PA. The 

most common efficiency metric used is the Power Added Efficiency (PAE). PAE is 

defined as 

                                                    
DC

RFRF

P
PP

PAE INOUT
−

=                                                (2.2) 

 It is important to note that there is a tradeoff between efficiency and linearity. 

That is why nonlinear power amplifiers offer much higher efficiencies compared to 

their linear counterparts. 
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 Linearity 

 Input output relation of a PA must be linear in order to preserve signal integrity. 

It is desired that the PA operates with high linearity, meaning that the output power be 

linear with the input power. As the input power level increases, device gets closer to 

saturation point and eventually reaches the saturation point. This introduces harmonics 

in the output power spectrum. In order to measure linearity of a PA, 1 dB compression 

point and third order intercept points are used.  

 1 dB compression point can be defined both as input referred and output 

referred. For example, input referred 1 dB compression point is defined as the input 

power at which the linear gain of the amplifier is compressed by 1 dB [7]. The output 

referred 1 dB compression point is the sum of the input referred 1 dB compression point 

and the gain of the amplifier. Figure 2.7 shows a plot of the 1 dB compression point 

characteristics.  

 

1 dB

Pi,1 dB

Pin (dBm)

Pout (dBm) 
Actual
Ideal

P0,1 dB

 
Figure 2.7: 1 dB compression characteristics 

 

 Third order intercept point is another useful metric for measuring linearity. 

When there are interferers very close to the fundamental frequency, the nonlinear 

behavior of the PA generates inter-modulation products. Third order intermodulation 

(IM3) product is the most important of the products, because it falls directly into the 

frequency band of interest as indicated in Figure 2.8.  
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Figure 2.8: Corruption of the desired signal due to nearby interferers 

 

 The amplitude of the IM3 product term increases in the order of cube of the 

fundamental amplitude. The third order intercept point is the extrapolated intersection 

of this IM3 product term and the fundamental power, as shown in Figure 2.9. 

1

3

Pin (dBm)

Pout (dBm)

POIP3

PIIP3

Fundamental 
power

IM3 Product 
power

 
          Figure 2.9:  Third Order Intercept Point 

 

 In general, modulation schemes can be separated into two basic categories: 

constant envelope and non-constant envelope. In the constant envelope modulation 

schemes, there is no symbol information contained in the transmitted signal amplitude, 

therefore a linear relationship between the input and the output is not required. In the 

non-constant envelope case, there is symbol information contained in the transmitted 

signal amplitude. As a result, extremely linear power amplifiers are required for non-

constant envelope modulation techniques, while the linearity can be traded for 

efficiency in constant envelope modulation schemes. There are a variety of well 

established linearization techniques, such as feedback techniques, predistortion 
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technique, feedforward technique, etc. The linearization methods will not be covered in 

this thesis.    

 Error Vector Magnitude (EVM) 

 EVM represents the distance between the measured and expected carrier 

magnitude and phase at some point in time after it has been compensated in timing, 

amplitude, frequency, phase and DC offset. Figure 2.10 shows the error vector 

magnitude representation as the phase and magnitude difference between the actual and 

ideal carriers. For IEEE 802.11a, the error vector between the vector representing the 

transmitted signal and the vector representing the error-free modulated signal defines 

modulation accuracy. The magnitude of the error vector is called error vector magnitude 

(EVM). 

Phase Error(t)

Carrier Leakage

Ideal(t)

Actu
al(

t)

Error(t)

Magnitude Error(t)

I

Q
Error Vector Magnitude (t)

 
Figure 2.10: Error Vector Magnitude representation 
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2.3.3 Power Amplifier Classes 
 
 

 Although there are many different classes, in general PAs can be categorized 

into two groups; linear and non-linear (switching mode) amplifiers. In the former 

category of PAs, the active device (transistor) acts as a current source, while in the latter 

category device acts as a switch. Class A, B, AB and C amplifiers fall into linear 

amplifier category where the output amplitude of the signal is a linear function of the 

input signal amplitude. For this type of amplifiers the voltage and current waveforms 

through and across the transistor are full or partial sinusoids. On the other hand, class D, 

E and F are some of the switching mode PA types. These types of amplifiers can 

achieve high efficiency levels, but very nonlinear performances. 

 Brief background information about different classes of PAs will be presented in 

the next subsections. However, Class A will be emphasized more than other classes. 

 Linear Power Amplifiers 

 Linear PA generally refers to a PA which operates at a constant gain and needs 

to preserve amplitude information. For this type of amplifiers, the active device operates 

in its amplifying region. The amplifying region is the saturation region for FET devices, 

while it is the forward active region for bipolar devices.  

 There are four types of PAs, distinguished primarily by bias conditions that may 

be termed “linear”; Class A, AB, B, and C. All may be understood by studying the 

single model given in Figure 2.11. In this figure, RL is the load into which the output 

power is delivered. The inductor named, RFC is used as an RF choke to feed DC power 

to the collector. Likewise, Cb is a DC blocking capacitance, which is used to prevent 

any DC dissipation in the load. The LC network is used as an output matching network 

[5].     

 
Figure 2.11: General linear power amplifier model 



17 
 
 

 

 The design of linear PAs depends on the load line theory. This theory states that 

the maximum power that can be supplied by a transistor to a load is determined by the 

supply voltage and the maximum current passing through the transistor. As shown in 

Figure 2.12, load line is defined as the line drawn between the two specific points on the 

transistor I-V curve. These points are the knee point where the maximum collector 

current (Imax) during AC operation is obtained and the Ic=0, VCE,max point, where the 

maximum allowed VCE value is located. Load line technique is used to find the optimal 

bias point for different classes of linear PAs, i.e. for each class, a different optimal bias 

point should be chosen on the load line.   

 
Figure 2.12: I-V characteristics of a transistor 

  

 To utilize the maximum current and voltage swing of the transistor, an optimum 

load resistance value, Ropt, would need to be selected, and simply this resistance is the 

ratio: 

maxmax

2

2
I
V

I
V

R DCDC
opt =

⎟
⎠
⎞

⎜
⎝
⎛

=                                             (2.3) 

  This equation is derived from the fact that the current swings over its maximum 

linear range (zero to Imax), that is with an amplitude of Imax/2 and the voltage swings 

over its maximum linear range of zero to 2VDC [6]. 

 This means that power amplifiers can deliver maximum power to a load given 

by Ropt. Since the transmitting antenna is acting as a 50 Ω load, this Ropt resistance is 

then transformed to 50 Ω by a matching network. 

 The most linear PAs are those in which the active device is always conducting 

current. This type is known as Class A power amplifiers. To design a Class A PA, it is 

Load Line
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important to make sure that the active device conducts current for the entire input 

sinusoid cycle. The input bias voltage is set such that the device remains in its 

amplification region all the time. As mentioned earlier, the class of operation is 

determined by the operating point on the load line which is obtained from the I-V 

characteristics of the transistor. For a Class A operation, the transistor should be biased 

at the center of the load line to maximize the output voltage and current swings as 

shown in Figure 2.13. This shows that the transistor is in the active region at all times. 

 
Figure 2.13: Class A Optimal Bias Point 

 

 Conduction angle, α, is defined as the time for which the transistor is 

conducting. For Class A operation, since the transistor is conducting all the time, the 

conduction angle is 2π.  

 The linearity of Class A PAs is perfect as the input and output waveforms are 

preserved without any distortion but the maximum efficiency of a Class A PA is only 

50%. However, an efficiency of about only 30% can be attained from a fully Class A 

PA implementation. This is mainly because, in real life, it is usually not possible to get a 

peak voltage swing as the active device leaves its amplification region and enters the 

resistive (this corresponds to saturation region for bipolar devices and linear region for 

FET devices) region. 

 For Class B operation, amplifier is biased at the threshold voltage of the 

transistor, such that the device is shut off half of every cycle. Because the transistor is 

conducting only half of every cycle, the conduction angle is π. The most practical of 

Class B amplifiers are push-pull configurations of two transistors. The peak current and 

maximum output voltage for Class B amplifier are same as for the Class A amplifier, 
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but the theoretical efficiency is about 78% for Class B amplifies. In practice, efficiency 

drops to 50% or less. However, linearity is worsened in these types of amplifiers. In 

conclusion, distortion is accepted in exchange for a significant improvement in linearity 

with the Class B amplifier.      

 Class AB amplifier, as its name suggests conducts somewhere between 50% (as 

Class B amplifiers) and 100% (as Class A amplifiers) of a cycle, depending on the bias 

level chosen. Accordingly, its efficiency and linearity are intermediate between those of 

a Class A and Class B amplifier. The conduction angle for Class AB amplifiers is 

π<α<2π. 

 Class C amplifiers are biased in such a way that the transistor conducts less than 

half the time. Consequently, the conduction angle is α< π. Class C amplifiers offer 

efficiencies approaching 100%, but both power-handling capability and power gain 

approach zero at the same time. This class of amplifiers sacrifices linear operation to 

improve the efficiency. Also, it is actually difficult to design and construct Class C 

amplifiers with bipolar devices. 

 
Figure 2.14: Q point of Class A, AB, B and C PAs  

 

 In sum, Class A, AB, B and C PAs fall into the linear PA category. Each class is 

biased at a different quiescent point as shown in Figure 2.15. For the Class A operation, 

the transistor should be biased at the center of the load line, while for the Class B 

operation transistor is biased at the threshold voltage, Vth. As the name suggested, for 

the Class AB operation, transistor should be biased between the Class A and Class B 

bias points. The corresponding conduction angles for each linear type PA is given in 

Figure 2.15.   
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Figure 2.15: Summary of Class A, AB, B and C conduction angles  

 

 Figure 2.16 summarizes the maximum theoretical efficiency as a function of 

conduction angle for different kinds of linear power amplifiers. As seen from this 

figure, maximum theoretical efficiency (100%) can be achieved with the Class C 

operation where the conduction angle varies between zero to π. Class B operation can 

reach theoretical efficiencies up to 78.5%, where the conduction angle is between π. 

Class A operation is the least efficient of all, where the maximum theoretical efficiency 

that can be reached is only 50% with a conduction angle of 2π. Class AB mode has 

efficiency and conduction angle values between those of Class A and Class B modes. 

Theoretically, any efficiency value can be reached between 78.5% and 100% for Class 

AB operation.    
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Figure 2.16: Maximum theoretical efficiency of an ideal amplifier as a function of 

conduction angle 
 

 Non-Linear (Switching mode) Power Amplifiers 

 Switching mode amplifiers are used in applications where efficiency is the 

primary concern. They are driven with a large amplitude signal which turns the device 

ON or OFF, as a switch. There are various kinds of switching mode amplifiers, but 

Class D, E and F are the most common configurations. For high efficiency RF 

applications, Class D and Class E configurations have received the most attention.  

 Among several classes of switching mode PAs, the Class E configuration is the 

most suitable for RF operation. Figure 2.17 shows a Class E PA topology. The RFC 

provides a DC path to the supply and approximates an open circuit at RF. Under ideal 

conditions, the voltage of the switch transistor drops to zero and has zero slope just as 

the transistor turns on and conducts current. This ensures that neither voltage nor 

current exists simultaneously in the circuit [7]. Therefore, the theoretical peak efficiency 

of the Class E PA is 100%.  
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Figure 2.17: Class E amplifier 

 

 Class-F amplifiers employ harmonic resonators at the output to shape the drain 

waveforms. Figure 2.18 shows the Class F topology.  
 

 
Figure 2.18: Class F amplifier 

 

The harmonic traps are designed in such a way that the voltage waveform 

resembles a square wave and the current wave resembles a half sine wave. Both the 

voltage and current waveforms do not exist simultaneously, thus achieving good 

efficiency. With higher harmonics, the efficiency can be improved up to 100%, but 

linearity is severely worsened. 
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Chapter 3 
 
 

3 PA DESIGN METHODOLOGY 
 

 
 
 
 In this chapter, basic design procedure of a 5GHz Class A power amplifier is 

given in detail. This chapter starts with a basic design roadmap to be followed during a 

PA design. Then in the consequent subsections; the device I-V characteristics, load pull 

simulations and input/output matching network design are presented. Our main 

contribution in this thesis is to increase the output power and improve the linearity 

performance by using on-chip power combining technique and also to decrease 

conductor/substrate losses by replacing the low Q inductors by their transmission line 

equivalents. Therefore, the theory of Wilkinson Power Combiner and Transmission line 

equivalent model of low Q inductors, along with their simulation results in ADS 

environment are also presented in the last two subsections of this chapter.   

 
 
 

3.1 Design Roadmap 
 
 

  
 The design starts with determining the requirements and device selection. As a 

rough approximation, device I-V curves are plotted and to support the current; number 

and size of the transistors are decided. In this PA design our main requirement is to 

obtain 40 mW output power to obey the 802.11a standard power specifications for the 

lowest frequency band. Power amplification in RF frequencies can be accomplished by 

using any one of many different devices; BJT, MOSFET, GaAs MESFET, HBT, etc. In 

this thesis, the PA is designed in AMS 0.35μm SiGe BiCMOS HBT technology and 

high voltage npn Bipolar transistors available in this process are used as the active 

device.  The transistors are symbolized as npn <2><5><4>h5 HBT and the numbers 

refer to the number of collector, base and emitter contacts, respectively. Active 
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components are usually limited to 2 or 3 transistors in signal path, therefore in order to 

obtain enough output power (40 mW), 3 of these high voltage transistors are paralleled. 

Moreover, in order to maximize the output power, transistor sizes are also set to the 

maximum limit specified by the process, which corresponds to an emitter length of 

96μm.  

 Figure 3.1 presents the design steps to be followed after the technology is 

chosen.  

DC/Operating Point
(Load Line )

Load Pull

Matching Networks

Performance Testing
(Simulation)

Layout 
(Build)

Measure
(Model Validation )

 
Figure 3.1: PA design roadmap 

 

 As seen in Figure 3.1, the first step in the design roadmap is to obtain device I-V 

curves which are used to determine the optimum bias points for the certain class of 

operation.  After the DC operating points are determined from the device I-V curves, 

the next step will be to determine the optimum output impedance for maximum power. 

Load pull simulations are essential in terms of determining the optimum load 

impedance at the transistor array output, because load pull data gives a simple target 

area on the Smith Chart to base the strategy for suitable matching network design. 

Therefore, the optimum load impedance is determined from load pull simulations and 

then an output matching network is designed to transform 50 Ω load to the optimum 

load impedance at the transistor output. The following step is to design the input 
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matching network for gain (complex conjugate) match. Then the overall performance of 

the PA design is tested via simulation tools; ADS and Cadence. Finally, the circuit 

layout is drawn and post layout simulations are performed and performances are 

compared.  

 
 
 

3.2 Device I-V curves 
 
 
 
 After the technology is selected, the first step in designing a PA is to determine 

the I-V characteristics of the active device.  

 As mentioned earlier, AMS’s high voltage npn Bipolar transistors are used with 

their emitter length set to the allowed maximum level, which is 96 μm. Three transistors 

are connected in parallel in order to increase the total emitter length and transistor sizes 

are maximized in order to deliver required output power. The BJT curve tracer shown in 

Figure 3.2 generates transistor I-V curves by sweeping base current (IBB) and collector-

emitter voltage (VCE).   

 
Figure 3.2: This circuit generates I-V curves and computes optimal bias for Class A 

operation 
 

 I-V curves of three bipolar transistors are given in Figure 3.3, where VCE-IC 

curves are generated for different IBB values. The maximum collector current during 

AC operation is set by moving marker m2 to the knee of the I-V curve as shown in 

Figure 3.3. Then the maximum allowed VCE, VCEmax is specified as 5.1V. After that, 

load line is drawn between marker m2 and the (IC=0, VCE=VCEmax) points. The 
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optimal bias point values are determined from this load line. Load line method is a 

useful priori design method to use as a starting point for the design process. 

 
Figure 3.3: Transistor I-V curves 

 

 For Class A operation, the center of the load line should be chosen as the bias 

point. Therefore, marker 1 (m1) is set to the center of the load line. As seen in Figure 

3.3, the optimal VCE is 3V and IBB is 270 μA for the Class A operation. At this biasing 

point (m1), transistor’s DC current gain (beta) is about 167, as seen in Figure 3.4.  

 
Figure 3.4: Beta versus IBB at ICE which is specified by the marker m1 
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         ADS also generates the optimal Class A bias point values as a result of device I-V 

curves. As given in Table 3.1, optimal VCE is 3V and optimal ICE is 46.38 mA. Table 

3.2 shows the output power and efficiency levels that can be reached at the bias point, 

m1. In case the transistors are loaded with the Rload value given in Table 3.2, and other 

bias conditions are satisfied, an efficiency of 35% and an output power of 16.76 dBm 

can be obtained. These are preliminary results based on linear approximations.  

 

Output Power at Optimal Bias (dBm) 16.87 

Rload at Optimal Bias (ohm) 45.282 

DC to RF Efficiency (%) 35 

Optimal VCE (V) 3 

Optimal ICE (mA) 46.38 

DC Power Consumption (mW) 139.1 

Table 3.1: Optimal bias point values for Class A operation 
 
 

Output power (dBm) 16.76 

Rload (ohm) 44.082 

DC to RF Efficiency (%) 35 

DC Power Consumption (mW) 135.3 

Table 3.2: Marker m1 bias point values, assuming Class A operation and AC current 
limited to marker m2 value and AC voltage no higher than VCEmax = 5.1V 

 

 In the next subsection, transistors are biased at point m1 by applying a 3V DC 

bias voltage to the collector and by ensuring that the bias current is 270 μA.  

 

 

 

 

 

 

 

 

 



28 
 
 

 

3.3 Load Pull 
 
 
 
 Load pull is varying or pulling the load impedance seen by a device under test 

(DUT) and measuring the performance of the DUT. This technique is important for 

nonlinear devices where the operating point may change with power level. In our case, 

we performed load pull analyzes by varying the load impedance of a power amplifier in 

order to obtain the optimal load impedance for maximum output power. 

 After the bias conditions are satisfied, load pull simulations are performed in 

order to obtain more realistic load impedance values for maximum power transfer. The 

load pull setup shown in Figure 3.5 performs one tone load pull simulations. As a result, 

the output power and PAE are found at each fundamental frequency.  

 In the Figure 3.5, the capacitors connected to the base and the collector are for 

DC blocking and they have a capacitance of 30 pF. The inductor at the collector is an 

RF choke with an inductance of 5 nH, which is used to feed DC power to the collector. 

The resistor connected to the base is for biasing purposes and finally the output is 

terminated with variable load impedance. RF choke has a comparatively large 

inductance in order to act as an open circuit at high frequencies (by showing high 

impedance at RF), thus isolates RF signals from DC signals. The impedance of the RF 

choke used in this design can be calculated from a basic equation: 

wLZ L = , where fw **2 π=                                        (3.1) 

 Since the operating frequency is 5GHz, the impedance of the RF choke at 5 GHz 

is:  

Ω=== − 157)10*5(*)10*5**2( 99πwLZ L                               (3.2) 

 On the other hand, DC blocking capacitors act as short circuit at high 

frequencies and as open circuit at DC. This is possible by showing very low impedance 

at RF. At 5 GHz, the impedance of the DC blocking capacitors used in this design (30 

pF) is calculated as follows:   

wC
ZC

1
=                                                         (3.3) 

Ω=== − 1
)10*30(*)10*5**2(

11
129πwC

ZC                             (3.4) 
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Figure 3.5: Load Pull Setup in ADS  

 
 Load pull setup shown in Figure 3.5 generates power and efficiency circle at 

each load impedance and this results in concentric circles on the Smith Chart. Figure 3.6 

shows the maximum PAE (33.93%) and output power (17.51 dBm) that can be obtained 

from this circuit. The target area on the Smith Chart for obtaining maximum power 

added efficiency and maximum output power can also be determined from the same 

figure.  

 
Figure 3.6: Maximum PAE and Pout circles on the Smith Chart 
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 According to the target area on the Smith Chart indicated in Figure 3.6, the best 

point on the Smith Chart should be chosen as the optimum load impedance. As seen in 

Figure 3.7, each point on the Smith Chart represents different load impedance values 

and among these points, point m3 is chosen as the optimum load impedance. Impedance 

at marker m3 is 28.127 + j14.34 and with this load impedance, 32.06% PAE and 17.51 

dBm output power could be obtained.  

              

 
Figure 3.7: Simulated load impedances  

 
 
 

3.4 Matching Network Design 
  
 
 
 In an RF or microwave system, the terminal impedances are all designed to be 

50Ω by convention. Thus the antenna is modeled as a 50Ω resistor. Since PA drives the 

antenna, some conversion must take place between the PA output and the antenna, in 

order to ensure desired power levels to be obtained at the antenna. This conversion 

process is accomplished by designing a matching network which converts the optimum 

load impedance, found from load pull simulations, to 50Ω antenna. The matching 

network consists of passive, ideally lossless components such as capacitors and 

inductors.  The output and input matching network design will be mentioned in the 

following subsections. 
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3.4.1 Output Matching 
 
 
 After the optimum load impedance is determined from the load pull simulations, 

the next step is to design an output matching network. This network should transform 

the desired load impedance, which is 28.127 + j14.34 to 50Ω antenna impedance. The 

best way to design ideally lossless matching networks is to equip LC matching 

networks. The design of the matching network is done in ADS’s Smith Chart Utility as 

shown in Figure 3.8. During the matching network design; inductive and capacitive 

losses are taken into account.  

 
Figure 3.8: Output matching network design using ADS Smith Chart utility 

 

 The output matching network which transforms the optimum load impedance, 

28.127 + j14.34 to 50Ω is given in Figure 3.9. 

 



32 
 
 

 

 
Figure 3.9: Output matching network 

 
 
 

3.4.2 Input Matching 
 
 
 Bipolar devices show significant dependency between output power and input 

load. Therefore, input matching is a crucial part of the PA design. After the desired 

output load impedance is matched to 50 Ω, such that maximum power is transferred to 

the antenna, the next step is the design of the input matching network.  

 Basic design issue is to satisfy the conjugate match principle at the input for 

maximum power transfer. This principle is to show the conjugate match of s11 to the 

transistor input in order to obtain a gain match at the output. Accordingly, s11 is 4.4 - 

j2.8 at 5GHz when the optimum load impedance is shown to the output port. In order to 

obtain an input match, the complex conjugate of s11, which is 4.4 + j2.8, should be 

shown to the input. This is very low impedance since the transistors are connected in 

parallel. As such a large transistor array has very low input impedance, a matching 

network with a highest possible quality factor is necessary. Since we are using AMS’s 

SiGe process, from AMS’s library of thick metal inductors, we seek to use the inductor 

model with the highest Q at 5GHz. Therefore we choose the inductor model 

SP011S200T which has an inductance of 1.05 nH and a quality factor of 11.8 at 5GHz.  

 Again using ADS’s Smith Chart Utility, an LC network is designed which 

matches 50 Ω to 4.4 + j2.8, as shown in Figure 3.10. Figure 3.11 shows this matching 

circuit, which consists of two capacitors, one in parallel and one in series, and a single 

inductor connected in series.  
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Figure 3.10: Input matching network design using ADS Smith Chart utility 

   

 
Figure 3.11: Input matching network 

 
 
 

3.5 Overall Class A Single Stage PA Schematic 
 

 

 After output and input matching network design, the overall single stage PA 

circuit which is operated in Class A is shown in Figure 3.12. DC blocking capacitors are 

integrated into the matching circuitry and the bias conditions are satisfied via the 

resistor connected to the base and the RFC connected between the collector and the DC 
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voltage source. All of the components are ideal elements taken from the ADS library 

and the circuit is designed to operate at 5GHz.   

 
 

Figure 3.12: Class A PA schematic with ideal elements in ADS 
 

 This single stage Class A PA circuit provides 15.8 dBm output power at the 1 

dB compression point, as given in Figure 3.13. The input power at 1 dB compression 

point is -3.5 dBm and at this point PAE is about 23%, which is an expected result of 

Class A operation. Maximum PAE is about 40% as shown in Figure 3.14.  

     
Figure 3.13: Single stage Class A output power and 1 dB compression point 
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Figure 3.14: Single stage Class A PAE curve 

 

 As seen from the Figure 3.13, single stage PA provides an output power level 

very close to the IEEE 802.11a specified maximum output power level, which is 16 

dBm (40 mW). However, our main goal is to obtain higher output power levels at 5GHz 

and to achieve this goal, the on-chip power combining technique is used, where two 

single stage Class A PAs are combined. This technique is described in detail in the 

following section.  

 

                             
3.6 Wilkinson Power Combiner/Splitter Design 

 

 

 The first idea to be tested in this thesis is combining two single stage Class A 

PAs via power combining techniques in order to increase the output power and improve 

the linearity performance. Out of many power combining techniques, Wilkinson power 

combiner method is utilized. In Figure 3.15, two power amplifiers are combined via on-

chip Wilkinson power combiners. 
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Figure 3.15: In-phase power combining using Wilkinson power combiners  

 

 A classical microstrip Wilkinson power splitter consists of two quarter wave 

microstrip line segments with characteristic impedance 2*0Z  at the operating center 

frequency f0 and a 0*2 Z  lumped resistor connected between the two ports, as shown in 

Figure 3.16. Wilkinson power combiners can be interpreted as 2:1 impedance 

transformers, which transform each 50Ω input to 100Ω, where the two are paralleled. 

The function of the isolation resistance is to terminate any odd mode signals.  

 
Figure 3.16:  Microstrip Wilkinson combiner 

 

The S parameters for such a three port network are given by the matrix [8]: 
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jj
S                                             (3.5) 

 The figures of merit of a Wilkinson power combiner are the return loss at ports 1 

and 2 (RL1 and RL2), the coupling between ports 1 and 2 (CP12) and isolation between 

ports 2 and 3 (IL23). 

111 log20 SRL −=                                                 (3.6) 

222 log20 SRL −=                                                 (3.7) 

  2112 log20 SCP −=                                                 (3.8) 

2323 log20 SIL −=                                                 (3.9) 
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 Ideally, return loss and isolation should approach negative infinity at the center 

frequency and the coupling should be very close to 3dB. Therefore, Wilkinson power 

splitter provides low loss, equal split, matching at all ports and high isolation between 

output ports [9]. In fact, at RF frequencies the quarter wave transmission line sections 

can have unrealistic dimensions. Thus, at higher frequencies the classical microstrip 

realization can be replaced with its lumped element counterpart, as given in Figure 3.17. 

Lumped element Wilkinson power splitter is obtained by replacing both quarter wave 

transmission line sections with their equivalent lumped element “Pi” LC network model 

at the design center frequency f0.     

 
Figure 3.17: “Pi” LC network model of a quarter wavelength transmission line 

 

 The inductance and capacitance values associated with the “Pi” LC equivalent 

network can be found from the below equations: 

0

0

**2 f
ZLS π

=                                                    (3.10) 

00 ***2
1

Zf
CP π

=                                               (3.11) 

 At 5GHz center frequency, LS and CP values are found for two way equal 

Wilkinson power divider from the below equations. 

== 910*5**2
250

πSL 2.25 nH                                         (3.12) 

==
250*10*5**2

1
9πPC 450 fF                                  (3.13) 

 From the above equations, we obtain CP = 450 fF and LS = 2.25 nH at 5GHz. 

With these capacitance and inductance values, a lumped element equal 2-way 

Wilkinson power splitter at a center frequency of 5GHz is obtained as shown in the 

Figure 3.18.   
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Figure 3.18: Lumped element Equal split Wilkinson power divider at 5GHz center 

frequency 
 

 The lumped element Wilkinson power splitter exhibits perfect isolation at the 

input port and equal power division at the output ports. These can be seen from s11, s21 

and s31 plots in Figure 3.19, obtained via ADS tool. 

 At 5 GHz, s11 drops down to -65 dB, when simulated with ideal elements. 

Likewise, s21 and s31 values are -3 dB as expected, indicating that the power is equally 

divided into two at 5 GHz. However, it should be noted that a Wilkinson 

divider/combiner is not a broadband device. Typical frequency bandwidths do not 

exceed 20% of the center frequency. 
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  Figure 3.19: Simulated s11, s21 and s31 parameters of lumped element Wilkinson power 

splitter model 
   

 In the upcoming sections, this Wilkinson power splitter configuration will be 

used to combine two single stage Class A power amplifiers in order to obtain higher 

output power levels and better 1 dB compression values, therefore to improve the 

linearity.  
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3.7 Microstrip Line/Coplanar Waveguide Equivalent Model of RF Choke 
 
 
 
 In this section the idea of using capacitively loaded microstrip transmission lines 

instead of low Q inductors will be discussed. The purpose of doing such a replacement 

is to reduce conductor and substrate losses, while shrinking the die area.  

 First, the performance simulations of capacitively loaded microstrip lines are 

performed in ADS environment. Then, the same simulations are done, again in ADS, 

for capacitively loaded coplanar waveguide. But, before discussing the ADS 

simulations for two different configurations, brief background information about the 

transmission line theory will be given. 

 
 
 
3.7.1 Theoretical Foundation 
 
 
 Input impedance of any transmission line is given by the formula: 

ljZZ
ljZZZZ

Lc

cL
cin β

β
tan
tan

+
+

=                                        (3.14) 

where Zc is the characteristic impedance of the line, ZL is the load impedance, l is the 

length and β is the propagation constant.  

  
Figure 3.20: Short circuited transmission line 

 

 If the line is terminated with short circuit as in Figure 3.20, load impedance 

would be zero, i.e. ZL=0 and the input impedance expression takes the form: 

lβtancin jZZ =                                                    (3.15) 

where
λ
πβ 2

=  and lβ  defines the electrical length of the line.  

 As the length of the line is changed, it can either be used as an inductor or a 

capacitor, as shown in Figure 3.21. This is the idea behind using a microstrip line with a 
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certain length as an RF choke inductor. The length of the line is adjusted in such a way 

that it shows a big inductance.  

 
Figure 3.21: Input impedance versus length 

 

 At 5 GHz, the wavelength is: 

cm
f
c 6

10*5
10*3

9

8

===λ                                           (3.16) 

 This means that in order to obtain a big inductance, we need a lengthy 

microstripline model. One way to shorten the length of the microstripline/CPW is to 

load it with shunt capacitors. However, loading the microstripline/CPW with shunt 

capacitors has a drawback; it actually affects the quality factor (Q) of the model in a bad 

way. Before giving the theoretical proof of this drawback, brief definition of the quality 

factor will be given. 

 The efficiency (quality) of any oscillating system can be expressed as the ratio of 

energy stored by the system to the power the system dissipates per cycle. This ratio is 

called the quality factor. For a low loss line, where L0 and R0 are the inductance and 

resistance per unit length, and w0 is the fundamental resonant angular frequency; 

0

0

)Re(
)Im(

R
wL

Z
ZQ ==                                               (3.17) 

 However, the effect of adding a shunt capacitor to a line can be understood from 

the following calculations.  



42 
 
 

 

 First the new input impedance (Znew) of the line with the capacitor in parallel 

will be calculated. Then, the new quality factor (Qnew) can be found by dividing the real 

part of this new input impedance to its imaginary part. 
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                           (3.18) 
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==                                  (3.19) 

 Qnew expression shows that, when a shunt capacitor is added to a line with 

Zin=R+jX, quality factor decreases as a function of the capacitance added. Although 

capacitive loading a line decreases the line’s quality factor, it also substantially 

decreases the length of the line. Therefore, we still support the idea of replacing RF 

choke inductors with capacitive loaded microstripline model, because as will be 

discussed in the next chapter, processing this model is much easier compared to 

processing inductors. Moreover, layout size of this model is comparable with inductor 

sizes.   

 Two examples that support this idea are presented in sections 3.7.2 and 3.7.3.  

 
 
 
3.7.2 Capacitively Loaded Microstrip Line Example 
 
 
 The Figure 3.22 shows a microstrip line model constructed in ADS. Microstrip 

lines have a length of only 100μm and a width of 10μm. MSub defines the microstrip 

substrate. With this MSub model, substrate thickness is set to 6.5 μm, εr (relative 

dielectric constant) is set to 4.1, Mur (relative permeability) is set to 1, T (conductor 

thickness) is set to 3 μm and TanD (dielectric loss tangent) is set to 0.001. Conductor 

surface roughness (Rough) is set to its minimum and conductor conductivity (Cond) is 

set to a very high value.      
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Figure 3.22: Capacitively loaded microstrip line model 

 

 ADS simulation results show that the capacitively loaded microstrip line model 

given in Figure 3.22 has an inductance of 4.66 nH at 5 GHz, as shown in Figure 3.23. 

To find the impedance of a 4.66 nH inductance at 5 GHz, the following calculations are 

done. 

Ω=== − 146)10*66.4(*)10*5**2( 99πwLZ L                           (3.20) 

 This inductance value is suitable to be used as an RF choke. Therefore, we can 

replace the RF choke inductance with the transmission line model in the PA design. 

However, this model is very sensitive to frequency, meaning that it only acts as an 

inductance of 4.66 nH at 5 GHz and starts to act capacitively at higher frequencies, thus 

the design will be narrowbanded.  
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Figure 3.23: Inductance of capacitively loaded microstrip line model 

 
 
 
3.7.3 Capacitively Loaded CPW Example 
  
 
 After the performance simulations are done for microstripline model, for the 

next step the same simulations are performed for coplanar waveguide model as shown 

in Figure 3.24. The same substrate as MSub is defined for the coplanar waveguide 

substrate, CPWSub. Again, the length and the width of the coplanar waveguide sections 

are set to 100μm and 10μm, respectively. “G” is the spacing between center conductor 

and ground plane and it is set to 35 μm.  
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Figure 3.24: Capacitively loaded coplanar waveguide model 

 

 ADS simulations show that the capacitively loaded coplanar waveguide model is 

similar to its microstripline counterpart, in terms of inductance characteristics. Figure 

3.25 shows that CPW model acts as a 4.84nH inductor at 5GHz. This model is also very 

sensitive to frequency, thus it is very narrowbanded. This behavior can be seen from 

Figure 3.25. At 5 GHz, this structure shows the maximum inductance value and this 

value drops as the frequency is decreases. At 5.1 GHz, the structure reaches its 

minimum inductance value and after this point it acts as capacitance rather than 

inductance. However, in both ways, either as inductance or capacitance, this structure 

shows high impedance as desired.  
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Figure 3.25: Inductance of capacitively loaded coplanar waveguide model 

 

 These two examples give an insight about the idea of using capacitively loaded 

microstripline/CPW models as RF choke. In the next chapter, a more detailed analyzes 

of these models will be done with more realistic conductivity (Cond) values. Our main 

purpose is to compare these models with spiral inductors in terms of size, loss (Q) and 

ease of process.  
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Chapter 4 
 
 

4 NUMERICAL RESULTS 
 

 
 
 

4.1 Introduction 
 
 
 

 In this chapter, a more realistic simulation of the single stage PA will be 

provided together with preliminary numerical results. These simulations are performed 

in Cadence environment. The design is based on SiGe BiCMOS process of AMS and 

Cadence supports passive and active AMS models. Therefore such a transferring the 

design from ADS environment into Cadence was necessary. Concerning the passive 

elements, the technology features 4 aluminum metal levels, which makes possible the 

realization of a large range of capacitances and inductances.   Thus, the same circuit is 

simulated in Cadence environment with AMS models, such as thick metal (spiral) 

inductors, metal-metal capacitors (CMIM), bipolar transistors (npn 254H5) and Poly2 

resistors. These simulations will provide a better insight on the behavior of the PA with 

real AMS models.  

 In Cadence environment, different PA topologies are tested in order to realize 

the ideas presented in the previous chapters. One of the ideas was to use capacitively 

coupled microstrip lines instead of low Q inductors in order to decrease the conductor 

and substrate losses, and the second idea was to utilize Wilkinson power combining 

technique to obtain higher output power levels.  

 The organization of Chapter 4 will be as follows: 

 Three different circuits with different elements will be presented. First, a 4.58 

nH inductor from the AMS library is connected between the collector and the 3 V DC 

voltage source of a single stage Class A PA. The purpose of this inductor is to provide a 

DC path from the source to the collector. The rest of the components, such as 

capacitors, inductors, resistors and transistors are also from the AMS library, thus they 
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are non-ideal. The performance simulation results and the circuit layout are presented. 

Then, the designed single stage PA is inserted into a WLAN 802.11a transmitter chain 

constructed in ADS environment. This transmitter is simulated to test whether the 

transmitted signal spectrum falls into the 802.11a transmit spectrum mask.      

 After single stage power amplifier topology is simulated, two single stage power 

amplifiers are combined with an on-chip Wilkinson power combiner. The performance 

simulations of this topology are also given in detail. 

 The final topology to be tested is the single stage power amplifier circuit in 

which capacitive loaded microstrip line is used as the RF choke. The performance 

simulations of this topology are given at the end of this chapter.  

  
 
 

4.2 Single Stage PA Performance Analyzes 
 

 
 

4.2.1    Cadence Simulation Results 
 
 

 First of all, performance simulations of the basic PA topology, given in Figure 

4.1 are done in Cadence environment with all components taken from AMS library.  

 
Figure 4.1: Simulation setup of single stage PA circuit  

• Spiral inductor model, SP037S250T, which has an inductance of 4.58 nH and a 

quality factor of 6.2 is used as the RF choke to supply DC power to the 

transistors. 
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• AMS’s thick metal spiral inductor model SP011S200T, which has an inductance 

of 1.05 nH and a quality factor of 11.8 at 5GHz, is a part of the input matching 

network.    

• Spiral inductor model, SP021S200T, which has an inductance of 2.20 nH and a 

quality factor of 9.3 at 5GHz, is a part of the output matching network. 

• RPoly2 resistance, which has a resistance of 3600Ω, is used at the biasing 

network in order to provide current to the base of the transistor array.  

 The capacitors at the input and the output matching circuitry are all metal-metal 

capacitors (CMIM) taken from the AMS library. These capacitors are ranging from 

0.1pF - 1pF. Therefore, usually they are used in parallel form to obtain higher 

capacitances. Based on theoretical calculations the series resistance lies in the order of 

0.1 Ω resulting in quality factors significantly exceeding 100. AMS npn bipolar 

transistors are used as the active device. In order to obtain high output power levels, 

three transistors are paralleled and maximum possible emitter length, which is 96 μm is 

utilized. We simulated circuit in Figure 4.1 by applying a 3 Volt DC to the collector and 

17mA current flows through the collector of each transistor. 

 Input/output referred 1 dB compression points, power added efficiency (PAE), 

s11, s22 and s21 (power gain) are the main performance parameters which are obtained via 

Cadence simulations and the results are presented in this subsection.  

 As mentioned before, 1 dB compression point is an important metric to 

understand the power amplifier performance. Linearity is directly related to 1 dB 

compression point in such a way that, higher the 1 dB compression point, better the 

linearity. There are two ways to define 1 dB compression point. First definition, which 

is called input referred 1 dB compression point, is the input RF power where the linear 

gain is dropped by 1 dB. Other definition, which is called the output referred 1 dB 

compression point, is the output power where the linear gain is dropped by 1 dB.  

 Figure 4.2 shows the input referred 1 dB compression point of the circuit given 

in Figure 4.1. As shown in Figure 4.2, input referred 1 dB compression point of the 

single stage PA topology is -0.6 dBm. At 1 dB compression point, the output power is 

14.3 dBm. It can be interpreted from this metric that the PA operates linearly until the 

input power level reaches -0.6 dBm (and the output power level reaches 14.3 dBm). The 

gain of the amplifier at the linear region is 16 dB, therefore at 1 dB compression point, 

gain is about 15 dB. Also, maximum output power at saturation is about 18 dBm.   
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Figure 4.2: Input referred 1 dB compression point (Gain=14.95 dB at 1 dB compression 

point) 
 

 Another important metric is the power added efficiency, which gives an idea 

about the efficiency performance of the PA. Although the maximum efficiency is 50 % 

for a Class A operated PA, typical PAE values for the Class A operation is about 30%. 

Because, in real life, it is often not possible to get a peak voltage swing as the active 

device leaves its amplification region and enters the resistive region. 

 We are interested in the PAE value at 1 dB compression point, mainly because 

we intend to operate our PA in its linear region. PAE versus input RF power plot is 

given in Figure 4.3. As seen in this figure, PAE is about 17% at -0.6 dBm input power. 

This is an expected result, since the PA is operating in Class A mode.        
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Figure 4.3: Power Added Efficiency (PAE) 

 

 Figure 4.4 (a) shows the simulation results of s11 from 4GHz to 6GHz. 

Simulations indicate that s11 reaches a value of -19.3 dB at 5GHz. Concerning the 

frequency bandwidth, Figure 4.4 (b) shows a 1.12 GHz bandwidth between 4.48 GHz 

and 5.6 GHz where s11 drops below -10 dB. Figure 4.5 shows the s22 response, which is 

-5.7 dB at 5 GHz. This rather high s22 is an expectable result since the output is matched 

according to the results of the load pull in order to obtain the maximum output power. 

Additionally the power gain (s21) of the PA is shown in Figure 4.6. It shows that the 

power gain reaches 16.4 dB at 5 GHz.    
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(a) 

 
 

 
(b) 

Figure 4.4: (a) s11 response (b) frequency bandwidth in which s11 drops below -10 dB 
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Figure 4.5: s22 response 

 
 

  
Figure 4.6: Power gain  

 

 Finally, third order intercept point is obtained by plotting third products versus 

input power which predicts a 3:1 response intersecting the 1:1 response at the third 
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order intercept point. The 3:1 terminology means that for every dB increase in input 

power, third order products will increase by 3 dB.  Third Order Intercept will be 

approximately 10 to 20 dB higher than 1 dB compression point. Figure 4.7 shows the 

third order intercept point for the single stage PA case. As seen from Figure 4.7, first 

order and third order curves intersect at 30 dBm output power level, therefore output 

referred third order intercept point is 30 dBm.   

 
Figure 4.7: Third Order Intercept point 

 
 
 
4.2.2 Final Schematic and Layout 
 
 
 After performance simulations are done, the final circuit schematic of the 5 GHz 

Class A single stage PA is drawn, as shown in Figure 4.8. In this figure, decoupling 

capacitors are connected between the DC sources and the ground to improve the DC-RF 

isolation. The layout of the single stage PA is given in Figure 4.9. In this layout, three 

bipolar npn transistors with emitter length of 96 μm are connected in parallel to form a 

transistor array. Substrate contacts are places around the transistor array to minimize the 

substrate losses. Capacitances were realized as metal/insulator/metal (MIM) capacitors. 

Three inductors are employed in the layout; one in the input matching, one in the output 
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matching and the one as the RF choke. The die size is 977*981 μm2, including RF and 

DC bias pads.     

 
Figure 4.8: Final schematic of single stage PA 

 

 
Figure 4.9: Layout of the single stage PA  
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4.2.3 WLAN 802.11a Spectrum Measurements 
 
 
 After the performance simulations of the single stage PA circuit is done in 

Cadence and its layout is drawn, different ADS setups are presented which are used to 

perform key measurements such as output RF spectra and EVM. These measurements 

are very useful to test and verify the designed PA. First, designed PA is inserted into a 

transmitter chain to determine its behavior under WLAN 802.11a conditions. This 

means that the transmitter is fed with a WLAN 802.11a RF signal source and the output 

signal is analyzed via the spectrum analyzer. The purpose of this design is to verify that 

the output RF spectrum doesn’t exceed the spectrum mask requirements of IEEE 

802.11a standard.  

 In Figure 4.10, the ADS setup for obtaining WLAN 802.11a output spectrum is 

given. It is a simple setup where the WLAN 802.11a transmitter is fed with a WLAN 

RF source and the transmitter output is connected to a spectrum analyzer.    

 

 
 Figure 4.10: WLAN 802.11a spectrum measurement setup 

  
 Figure 4.11 shows the inside view of the WLAN 802.11a transmitter block given 

in Figure 4.10. The transmitter chain starts with the mixer which upconverts the input 

signal to the desired frequency. In this case the desired frequency is the frequency band 

specified by the IEEE 802.11a standard. The upconverted signal is fed into a 

Butterworth filter to get red of unwanted signals in the band. There are two filters in the 

transmitter and changing the filter parameter “N” will change the filter shape. The 
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filtered signal is first pre-amplified with the preamplifier. Then after the second 

filtering, the signal reaches the power amplifier block. We inserted our power amplifier 

into this transmitter chain by modifying the basic parameters of the PA model in Figure 

4.11.  

  

 
Figure 4.11: WLAN 802.11a transmitter 

 
 The PA parameters we have modified are the saturation power (Psat), output 

referred 1 dB compression power (dBc1out), output referred third order intercept power 

(TOIout), gain compression at saturation (GCSat) and gain. These parameters can be 

better understood from Figure 4.12.  

 

                               
Figure 4.12: Important PA metrics  

 

 Input and output resistances of the PA are set to 50 Ω. The saturation power is 

set to 18 dBm, third order intercept power is set to 30 dBm, 1 dB compression point is 

set to 14.33 dBm and the gain is set to 16 dB. These values are obtained via Cadence 

simulations, which were given in section 4.2.1. In figure 4.13, the required transmit 
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spectrum masks are drawn and it is tested whether the transmitted signal obeys these 

masks. As can be seen from this figure, with designed PA parameters inserted into the 

PA model in the transmitter chain, the transmitted spectrum totally obeys the transmit 

spectrum mask specified by the IEEE 802.11a standard. This indicates a successful test 

result.        

 

 
Figure 4.13: 802.11a transmit spectrum mask measurement results for three different 

frequency bands of 802.11a standard 
 

 This test can be improved by adding different channel models after the 

transmitter chain. By this way, under multipath channel environments, designed PA can 

be tested and verified in order to prove that this component can meet the WLAN 

standard. There are five WLAN channel models (A, B, C, D, E) defined in ADS. 

Channel models simulate a multi-path fading channel based on a taped-delay line 

model. The multipath delay profile determines the frequency selective nature of the 

channel. The WLAN channel models can be summarized as follows: 

• Channel model A corresponds to a typical office environment with non line of 

sight (NLOS) conditions and 50ns average rms delay spread. 
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• Channel model B corresponds to typical large open space environment with non 

line of sight conditions or an office environment with a large delay spread. 

Average rms delay spread of channel model B is 100ns.  

• Channel model C and E correspond to typical large open space indoor and 

outdoor environments, respectively with a large delay spread. Average rms 

delay spread of channel model C and channel model E are 150ns and 250ns, 

respectively.   

• Channel model D corresponds to line of sight conditions in a large open space 

indoor or outdoor environment. Average rms delay spread of this channel model 

is 150ns.   

     More detailed information about the ADS WLAN channel models can be found 

in Appendix. 

 Out of these WLAN channel models, Channel model A is chosen as the 

transmitting medium for the 802.11a signals since it corresponds to a typical office 

environment with NLOS conditions. First the setup in Figure 4.10 will be modified by 

adding Channel Model A between transmit and receive antenna base stations, as shown 

in Figure 4.14. The base stations are located at the same height and there is a distance of 

100 m between them. Again the designed PA parameters are inserted into the PA 

model, which is in the transmitter block. The transmit RF spectrum measurement results 

for the Channel model A case is given in Figure 4.15. As seen in this figure, the output 

RF spectrum doesn’t exceed the spectrum mask requirement of IEEE 802.11a.      

 

 
Figure 4.14: ADS setup for the IEEE 802.11a transmit RF spectrum measurements in 

the presence of WLAN channel model A 
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Figure 4.15: 802.11a transmit spectrum mask measurement results in the presence of 

WLAN channel model A 
 

 After measuring the output spectrum of the 802.11a transmitter with the 

designed PA parameters inserted, the next set of simulations is done in order to obtain 

the error vector magnitude (EVM) measurements. EVM measurements are essential 

because for IEEE 802.11a EVM defines the modulation accuracy. It is essential to obey 

the EVM requirements of the 802.11a standard. For EVM measurements, the ADS 

setup shown in Figure 4.16 is used.  

 
 

 
Figure 4.16: ADS setup for the IEEE 802.11a PA EVM measurements  
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Figure 4.17: PA EVM measurement results 

  

 Figure 4.17 shows the EVM test results. The EVM values are automatically 

compared to the required EVM values by the IEEE 802.11a standard and the final result 

is shown. The EVM values are bounded by 11.2 % which is the requirement by IEEE 

802.11a for Channel 36 with a center frequency of 5180 MHz. As seen in Figure 4.17, 

under 802.11a excitation, EVM test results are given for different carrier offset 

frequencies. As seen in this figure, EVM results are satisfactory for all the three 

channels. EVM is 0.2% for the channel 36, 0.07% for channel 56 and 0.037 for channel 

161. It should be noted that Channel 36 has 5180 GHz, Channel 56 has 5280 GHz and 

Channel 161 has 5805 GHz center frequencies. Therefore, for Channel 36, Channel 56 

and Channel 161, EVM test is passed.   
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4.3 Wilkinson Power Combined PA Topology 
 

 

 The idea of combining two single stage Class A power amplifiers via on-chip 

Wilkinson power combiner is simulated in Cadence environment. Two of the previously 

designed PA are combined via lumped element on-chip equal split Wilkinson combiner, 

as shown in Figure 4.18. In this architecture, the RF signal (at 5GHz) is first equally 

splitted into two and feed two identical single stage power amplifiers. The output stages 

of the two amplifiers are then combined with an on-chip lumped element Wilkinson 

power combiner. Actually, the same circuit topology is used both as the Wilkinson 

divider and the combiner.   

 
Figure 4.18: Combined power amplifier 

 

 The same performance simulations as the single stage PA circuit are performed 

for the power combined architecture. First, input and output referred 1 dB compression 

points are obtained. As given in Figure 4.19, input referred 1 dB compression point is 

3.18 dBm which is much higher than the single stage PA case where the input referred 1 

dB compression point was -0.6 dBm. For the power combined topology, output referred 

1 dB compression point is 16.27 dBm, which is higher than the output referred 1 dB 

compression point of the single stage PA circuit. The difference between the input and 

Splitter 

PA1 

PA2 IM2 

IM1 

Combiner 
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output referred compression points gives the gain at 1 dB compression, i.e. Gain is 13 

dB. This means that the linear gain of the power combined topology is 14 dB.   

   

 

Figure 4.19: Input referred 1 dB compression point (Gain=13 dB at 1 dB compression 
point) 

 

 In figures 4.20 (a) and 4.20 (b) s11 plots are given. As can be seen from these 

figures, at 5 GHz s11 is -15.6 dB and looking in a logarithmic scale as in 4.20 (b), from 

4.59 GHz to 5.79 GHz, s11 stays below -10 dB. This means that in a bandwidth of 1.2 

GHz, very reasonable s11 value is obtained. Figure 4.21 shows the s22 response, which is 

-9.8 dB at 5 GHz. This s22 value is much better than the s22 value obtained in the 

previous subsection for the single stage PA case. Additionally the power gain (s21) of 

the power combined PA is shown in Figure 4.22. It can be seen from this figure that the 

power gain is about 14.3 dB at 5 GHz.    
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(a)  

 

 
 (b)  

Figure 4.20: (a) s11 response (b) s11 in a logarithmic scale (s11 is below -10 between 4.59 
– 5.79 GHz bandwidth) 
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Figure 4.21: s22 response 

 

 
Figure 4.22: Power Gain (s21) 
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4.4 RF Choke Alternative (Transmission Line Structures) 
  

 

 In Chapter 3, theoretical basics of the capacitive loaded microstripline/CPW 

model are given along with two example models constructed in ADS. In this chapter the 

same CPW model will be simulated with more realistic coplanar waveguide substrate 

characteristics. But before presenting those results, Cadence simulation results of the 

single stage PA circuit shown in Figure 4.23 will be given. In this circuit, RF choke is 

replaced with a single transmission line. This line is 5000μm in length and it shows an 

inductance of 4.5 nH at 5 GHz. The reason we inserted a single transmission line model 

instead of a capacitive loaded coplanar waveguide is that Cadence is unable to solve the 

capacitive loaded CPW model. This simpler structure is easy to simulate and it shows 

very similar characteristics to capacitive loaded transmission line model. Thus, 

simulating this circuit gives us an insight about the behavior of the new RF choke 

structure under overall PA configuration.  

 
Figure 4.23: Cadence test setup for testing the CPW structure 

 

 Since Cadence could not perform periodic steady state (pss) analysis with 

distributed components, we could not directly obtain input power versus output power 

plot of the PA circuit shown in Figure 4.23. In order to plot input power versus output 

power graph, we first performed transient analysis and then obtained the voltage swing 

at the output. Our aim is to calculate the power at the output from the voltage swing at 

the output node. With the aid of the calculator tool of Cadence, we took the dft (discrete 

Fourier transform) of the output voltage waveform for a certain time interval (from 0ns 

to 10 ns) and a certain number of samples (512). Then, to obtain the output power 
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spectrum the following mathematical expression is applied to the discrete Fourier 

transform of the output voltage waveform.  

)(20 magewaveforoutputvoltdftdBumPoutSpectr =                        (4.1) 

 This expression gives the output power spectrum from DC to ~25 GHz 

frequency range. Since the PA is designed at 5 GHz, the power level at 5GHz is 

marked. The power level at 5GHz is added up with 10 to obtain the real output power   

level.     

 As a result, this mathematical expression gives the output power spectrum. An 

example of the voltage waveform and the output power spectrum is given in Figure 

4.24. This simulation is done with an input power level of -10 dBm.  

 
Figure 4.24: Output voltage waveform and power spectrum at -10 dBm input power 

 

  These calculations were performed for different input power levels (from -20 

dBm to 20 dBm) by taking about 20 data points. After the calculations, input and output 

referred 1 dB compression points of the PA design in Figure 4.23 are found to be 1 dBm 

and 16.5 dBm respectively. Thus, the gain at 1 dB compression point is 15.5 dB and the 

linear gain is 16.5 dB. The overall results of these calculations are given in Figure 4.25. 

Power added efficiency of 27% is obtained at 1 dB compression point, as shown in 

Figure 4.26. Finally the s parameter responses are obtained. S11 is -19 dB at 5 GHz, and 

remains below -10 dB from 4.5 GHz to 5.6 GHz, as shown in Figure 4.27. At 5GHz, s22 
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is -5.8 dB and s21 (power gain) is 16.7 dB as shown in Figure 4.28 and Figure 4.29, 

respectively.      

  

 
Figure 4.25: Input referred 1 dB compression point (Gain=15.5 dB at 1 dB compression 

point) 
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Figure 4.26: Power added efficiency 
 

 
(a) 
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(b) 

Figure 4.27: (a) s11 response (b) s11 in a logarithmic scale (s11 is below -10 dB from  
4.5 GHz to 5.6 GHz) 

 

 
Figure 4.28: s22 response 
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Figure 4.29: Power Gain (s21) 

 

 CPW structure was realized using thick upper layer (MET4) for the signal line. 

In order to find the conductor (MET4) conductivity, we referred to the sheet resistance 

values from AMS’s design parameters. For the MET4 layer, typical sheet resistance is 

10 mohm/square and the maximum sheet resistance is 15 mohm/square. The electrical 

conductivity of MET4 can be found from the following formulas. 

A
LR ρ

=                                                           (4.2) 

AR
L
*

1
==

ρ
σ                                                      (4.3) 

where R is the electrical resistance, ρ is the resistivity, L is the length, A is the cross 

section area of the conductor (A=L*T) and σ is the electrical conductivity. The MET4 

thickness (T) is about 3.1 μm and typical sheet resistance of MET4 layer is 10 mohm/ 

square. Inserting these values into the conductivity expression, we obtain: 

7
863 10*2.3

10*1.3
1

10*1.3**10*10
=== −−− L

Lσ siemens/meter            (4.4) 

 Using this conductivity value (3.2*107 siemens/meter) we modified the 

capacitive loaded CPW model example which is given in Chapter 3.7.3. The new 

version of this model with more realistic conductor conductivity value is shown in 

Figure 4.30. Here CPWSub defined the coplanar waveguide substrate characteristics. 
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All the values are realistic since they are in accord with the AMS 0.35 μm SiGe 

BiCMOS process characteristics. In Figure 4.30, a single CPW with a length of 1600 

μm, gap of 15 μm and width of 10 μm is connected in parallel with a capacitor of 1.19 

pF. Reducing the capacitances and extending the length of the CPW were unavoidable, 

because the conductivity is dropped from 1*1015 to 3.2*107 siemens/meter. 

 
Figure 4.30: Modified CPW structure 

  

 As given in Figure 4.31, this CPW structure provides an inductance of about 3 

nH at 5 GHz. However, the quality factor is not exceeding 1.  
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Figure 4.31: Inductance of the CPW structure in Figure 4.33 

 

 Keeping all parameters the same except the Gap (G) width of the coplanar 

waveguide and the shunt capacitance, higher inductance values can be obtained while 

trading off the quality factor. This is possible by increasing the Gap width from 15 μm 

to 30 μm and reducing the capacitance from 1.19 pF to 0.95 pF. ADS simulation setup 

and the simulation results of this structure are given in Figure 4.32 and Figure 4.33, 

respectively. Figure 4.34 shows the layout of the single stage PA circuit with the CPW 

structure inserted. 
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Figure 4.32: CPW structure 

 

 
Figure 4.33: Inductance of the CPW Structure in Figure 4.35 
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Figure 4.34:  Layout of the single stage PA with the CPW Structure in Figure 4.35 
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Chapter 5 
 
 

5 CONCLUSIONS AND FUTURE WORK 
 

  
 
 
 Ever since the IEEE 802.11a standards have extended the frequency band from 

2.4 GHz to 5 GHz frequency bands, the new generation of 802.11a Wireless LAN 

standard is becoming popular due to high speed, greater system capacity, low 

interference and less congestion.  

 In this thesis, we presented the design of a power amplifier, which is one of the 

most challenging components in transceiver architecture. The PA is designed in AMS 

0.35μm SiGe BiCMOS technology for IEEE 802.11a Wireless LAN standard, actually 

for the lowest frequency band allocated for this standard. 

 The PA is a single stage Class A design and uses three npn HBT transistors in 

parallel in order to achieve an output power level of 40 mW, which is the maximum 

required output power level as specified for the lowest frequency band of 802.11a 

standard. Since the SiGe devices capable of operating at 5 GHz have a low collector 

emitter breakdown voltage, it is difficult to extract high output power from a single 

transistor. This can be overcome by using power combining techniques. Accordingly, 

this idea is tested and implemented by combining two single stage PAs via on-chip 

Wilkinson power combiner to obtain higher output power levels. Also in order to 

decrease the conductor and dielectric substrate losses of low Q inductors and also to 

decrease the die area, idea of using capacitively coupled transmission line model instead 

of low Q inductors is implemented.          

 As a future work, the on-chip Wilkinson power combining technique can be 

extended. In this thesis we concentrated on combining only two single stage power 

amplifiers, but this method can be applied to N numbers of PAs. The layout of the 

combined PA topology can also be drawn and fabricated. Also, the post layout 

simulations of the layout given in this thesis can be done and those circuits can be 
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fabricated. Additionally, idea of using capacitively loaded transmission lines as an 

inductor can be investigated in more detail. In this work, we developed this idea but as a 

future work, the exact values of shunt capacitors and the lengths of the transmission 

lines in this structure can be found in order to obtain high inductances with better 

quality factors.  
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APPENDIX 

 

Appendix A 

WLAN Channel Model 
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Notes/Equations 

 

1. The multipath delay profile determines the frequency selective nature of the 

channel. Delay profile is specified by the user via the ModelType, 

DelayArray and PowerArray parameters. 

2. This component is used to simulate a multi-path fading channel based on a 

tapped-delay line model. Each firing, one token is consumed at the input pin, 

and one token is produced at the output pin. 

3. The fading type of the first path can be Rayleigh or Ricean; if FadingType= 

Ricean, RiceanFactor determines the power ratio of the direct signal to all 

other indirect signals. 

4. ModelType = A, B, C, D or E, the PathNumber, DelayArray, FadingType, 

and Ricean Factor parameters are automatically set. 

  If ModelType = UserDefined, the user determines channel characteristics 

  by setting these parameters 

  If ModelType = NoMultipath, only Doppler frequency shift is   

  incorporated. 

5. The delay spread is modeled via a tapped delay line where the number of 

taps is based on the size of DelayArray and PowerArray. In each case the 

input signal is delayed and the carrier phase due to the delay signal is 

incorporated. Figure A.1 illustrates this modeling process when connected to 

a simple antenna. 
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Figure A.1: Delay and Doppler Spread and Carrier Phase Shift 

 
6. If Delay Array values are not the time as Tstep, the interpolation is made to 

gain this point of signal and a delay of 64 tokens is introduced. 

7. For each tap, Jakes model or noise filter model provides Doppler spectrum as 

well as the fading channel specifications. Jakes model uses N0 low frequency 

oscillators to generate a fading waveform. 

8. If speed is zero, the channel is time invariant. However, multipath still exists 

so a static channel is applied and each tap is a complex constant value. The 

complex constant value is randomly generated and can be changed by 

changing the Seed parameter. 

9. Five model types have been designed: 

 Model A corresponds to a typical office environment. 

 Model B corresponds to a typical large open space environment with 

NLOS conditions or an office environment with a large delay spread. 

 Model C and E correspond to typical large open space indoor and 

outdoor environments, respectively with a large delay spread. 

 Model D corresponds to LOS conditions in a large open space indoor or 

outdoor environment. 

Characteristics of these models are listed in Table A.1 through Table A.5. 
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Table A.1: Model A, typical office environment with NLOS conditions and 50ns 

average rms delay spread 
 

 
Table A.2: Model B, typical large open space and office environments with NLOS 

conditions and 100ns average rms delay spread 
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Table A.3: Model C, typical large open space environment with NLOS conditions and 

150ns average rms delay spread 
 

 
Table A.4: Model D, typical large open space environment with LOS conditions and 

150ns average rms delay spread; a 10 dB spike at zero delay has been added resulting in 
an rms delay spread of approximately 140ns 
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Table A.5: Model E, typical large open space environment with NLOS conditions and 

250ns average rms delay spread 
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Appendix B 
 
 
 

High Voltage HBT Module Parameters 
(npn254h5) 

 

 
Figure A.2: Gammel Plots of a bipolar transistor (npn254h5; 24μm emitter length) 

 
 

 
Figure A.3: Beta plots of a bipolar transistor (npn254h5; 24μm emitter length) for a 

typical wafer 
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Figure A.4: Ft plots of a bipolar transistor (npn254h5; 12μm emitter length) for a typical 

wafer 
 
 

 
 

Figure A.5: Fmax plots of a bipolar transistor (npn254h5; 12μm emitter length) for a 
typical wafer 

 
 
 
 
 
 
 
 
 
 
 
 
 



88 
 
 

 

Main Parameters of Thick Metal Inductors 
 
 

 
Table A.6: Extracted L, Qmax and resonance frequencies of thick metal inductors 

 
 

Metal-Metal Capacitor (CMIM) 

 

 The metal metal capacitor is built up of: METALC (top-plate) – insulator 

(silicon nitride) – METAL2 (bottom plate). Capacitors with values ranging from 0.1 pF 

to 1 pF were measured. Based on theoretical calculations the series resistance lies in the 

order of 0.1 Ω resulting in quality factors of significantly exceeding 100.  

 

Subcircuit model of the MIM capacitor: 

 
The major Q limiting factor is the top plate contact resistance.  

The model is valid in the following range: 

 Frequency range: up to 6 GHz 

 Capacitance range: 0.1 pF to 1 pF 

 Well terminal (n well) connected to the substrate or AC ground (e.g. Vcc) 
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Measured and simulated series capacitance and normalized impedance: 

 

 


