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Abstract 

From the open-loop tele-operator systems of 1950’s to the modern kinesthetic 
training and surgery support setups, haptic systems took a long way of evolution. 
Application areas ranging from minimally invasive surgery to space training systems for 
astronauts, still there is a large room for improvements. The vast areas of emerging 
applications put a number of demands on haptic interfaces. Fidelity, large workspace 
and high force/torque capacity are among those demands.  

The thesis concentrates on the design of a haptic master arm. The mechanical 
system with an analysis of dynamics properties, electronic hardware, algorithms for 
forward and inverse kinematics and software for the integration of sensors and actuators 
are developed to create an infrastructure for haptic interaction. Though the major design 
criteria applied in this design are a large workspace and high force/torque capacity, 
dynamics compensation techniques are also discussed as part of the developed 
infrastructure. The main focus of the thesis is the design of this hardware and software 
base for haptic applications rather than the design of haptic control algorithms.  

A survey on haptic interfaces and master arm design criteria is presented firstly. A 
set of specifications for the master arm is determined for a general and multipurpose yet 
ergonomic use. Newton-Euler based simulation techniques are employed for the 
component selection. Sensors and controller hardware are selected according to the 
demands of the haptic control problem. Dynamics compensation techniques for the 
designed manipulator are considered and tested in simulation. Finally the designed 
master arm is assembled and electrically integrated.  
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Özet 

Dokunma hisli (haptik) sistemlerin gelişimi, 1950’lilerdeki açık döngülü uzaktan 
komutalı sistemlerden bugünkü modern dokunsal öğretim ve cerrahi destek 
tertibatlarına kadar süren uzun bir yol katetmiştir. Uygulama alanları minimal invaziv 
cerrahiden astronotlar için uzay eğitim sistemlerine kadar uzanmakta olup, yine de 
gelişme için geniş bir alan bulunmaktadır. Çeşitli alanlarda gelişen uygulamalar 
dokunma hisli ara yüzler için birçok talep ortaya koymaktadır. Sadakat, geniş çalışma 
alanı ve yüksek kuvvet/tork kapasitesi bu talepler arasındadır. 

Bu tezde dokunma hisli ana kolun tasarımı üzerine yoğunlaşılmıştır. Sistemin 
dinamik özelliklerinin analizi ile oluşturulmuş mekanik sistem, elektronik donanım, ileri 
ve ters kinematik çözümleri için algoritmalar ve algılayıcı ve eyleyici uyumu için 
yazılım; dokunma hisli etkileşimin alt yapısını oluşturmak için geliştirilmiştir. Her ne 
kadar bu tasarımda ana tasarım kriterleri geniş iş alanı, yüksek kuvvet/tork kapasitesi 
olsa da geliştirilen altyapının bir parçası olarak sadakat kriterini geliştirmek amacıyla 
dinamik telafi teknikleri de tezde işlenmiştir. Tezin ana konusu dokunma hisli 
denetleme algoritmaların tasarımından çok dokunma hisli uygulamalar için yazılım ve 
donanım tasarımıdır.  

Tezde ilk olarak haptik arabirimler ve kol tasarım kriterleri üzerine yapılan 
literatür taraması sunulmuştur. Genel ve çok amaçlı, aynı zamanda ergonomik bir kol 
için tasarım belirtimleri belirlenmiştir. Newton-Euler tabanlı benzeşim teknikleri 
kullanılarak eyleyici ve transmisyon elemanları seçilmiştir. Haptik denetleme 
algoritmalarının gerektirdiği algılayıcı ve denetleyici donanımı seçilmiştir. Tasarlanan 
manipülatör için dinamik telafi teknikleri üzerinde durulmuş ve bu teknikler benzeşim 
ortamında denenmiştir. Son olarak tasarlanan kol monte edilmiş ve elektriksel 
bağlantıları yapılmıştır. Tez sonuçların sunulması ve tartışılması ile sonlandırılmıştır. 
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1 INTRODUCTION 
 
 
 
 
Haptic is a term that refers to sense of touch. Haptic manipulators or interfaces are 

force-reflecting devices which allow a user to touch, feel, manipulate, create and/or alter 

simulated objects in a virtual environment. The main purpose of using haptic devices is 

to enhance user experience when he/she is interaction with a simulated or remote 

environment. In order to realize tele-presence completely all related information should 

be at disposal of the user. Visual and aural feedback topics are well-covered in the 

literature in comparison to haptics. Haptic feedback conveys physical information about 

the environment such as inertia, friction, compliance, and roughness which can not be 

directly sensed by other sensory systems. 

A haptic interface together with computer hardware and software produces the 

sensation of touch and interaction with the environment. The environment in which the 

device is used can be either real physical surrounding or a simulated environment 

generated by software. Virtual environments might contain objects with masses and 

friction, springs and dampers and virtual walls. Examples of real environments might be 

remote locations or relatively nearby locations where user cannot access due to 

hazardous conditions.  

It has numerous application areas, such as robotic surgery, virtual reality (VR), 

tele-operation, entertainment industry etc. MIS (Minimally Invasive Surgery) is one of 

the application areas where haptic feedback is gravely desired. Compared to traditional 

surgery procedures, MIS employ small incisions through which the cameras and 

instruments are passed to carry out the operation. Haptic feedback is essential in such an 

application since the surgeon do not have direct visual or tactile feedback. It enables the 

surgeon to determine the rigidity of the tissue he/she is manipulating. ZEUS surgery 

robot from Computer Motion Inc. and DaVinci from Intuitive Surgical Inc. are two 

examples of widely-used surgery robots which do not have force feedback. Integration 
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of haptic feedback to these devices could not only improve the quality of operation but 

also increase the speed of the surgeon [1]. 

Virtual Reality applications are used in various industrial areas such as medical 

operation, tele-operation and entertainment. With the incorporation of haptic feedback 

to VR applications, user’s perception of the environment becomes more realistic. Haptic 

devices are the successors of the historical hand controllers used in tele-operation and 

today find a wide usage in the VR applications. As a natural result of the improvements 

in the computer technology, rendering of virtual environments in real-time could be 

achieved. Development of virtual reality technology brought along the increasing 

demand for haptic devices. These robotic mechanisms form the kinesthetic counterpart 

of the VR environment as a complement to the visual, in some cases also aural, 

feedback. Desktop haptic devices are already finding usage as force “displays” for 

computer games, nano-manipulation applications and surgical simulators.  

The main objective of this technology is to create a realistic force-position 

interface between the user and the VR environment. The device commands motion and 

force to its slave counterpart, it receives feedback signals, depending on the control 

algorithm, and reflects the forces felt by the slave side to the user. The quality of this 

interface can be evaluated in terms of “impedance accuracy” and “impedance 

resolution” [2]. Impedance accuracy is the criteria for matching the impedance of the 

haptic device to the environments. Impedance accuracy plays an important role in the 

high-torque applications such as driving simulators and smart exercise machines. 

Impedance resolution or fidelity refers to the sensitivity of the device for discrimination 

of different impedances. Fidelity is more crucial for dexterous applications such as 

surgery where the impedance of the environment is changing.  

In order to achieve high impedance accuracy and resolution, dynamics of the 

haptic device should be optimized. Natural dynamics of the device diminish the realism 

of the haptic feedback since they are sensed by the user as a part of the simulated 

environment. Robotic researchers show great effort to reduce the natural dynamics of 

the manipulators by means of using more efficient drive trains and transmission 

mechanisms or higher strength-to-weight ratio materials. 

However, reduction of the natural dynamics cannot be achieved further by 

physical means for high force/torque output devices. For high output purposes, usage of 

large actuators, drive mechanisms and linkages lead to more inertia and friction thus 

resulting in high natural dynamics. The demand for haptic devices with high 
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force/torque capability is obvious since traditional industrial manipulators are used as 

haptic interfaces. As illustrated in [3], [4] industrial manipulators are used as driving 

and flight simulators. Motorized “smart” exercise machines [5] and Astronaut 

extravehicular training systems [6], [7] are other examples of application areas of 

manipulators as high output haptic devices.  

High fidelity criteria may also suggest that the dynamics of the device should be 

minimized relative to the impedance of task environment. Although the output of the 

haptic device is adequate, natural dynamics of the device might impair the impedance 

discrimination performance. During surgical procedures where the environmental 

impedance is changing, stiffness encountered during the penetration of the scalpel to a 

layer of tissue is a significant example of this phenomenon [8], [9]. 

In addition to mechanical improvement to reduce dynamics, active control can be 

utilized to further cancel dynamical effects. Dynamics compensation can be employed 

as model feedforward or force feedback from an F/T sensor mounted on the haptic 

device itself. Gravity and friction feedforward are also used in dynamic compensation, 

however to employ inertial compensation force or acceleration feedback is required. 

Inclusion of feedback in the control loop leads to a more robust design as well, 

especially when the physical properties of the haptic device are changing. 

What this thesis aims at is the development of a harmonious collection of 

hardware and software components to form the infrastructure for general purpose haptic 

interaction. The primary specifications which are tried to be met are a large workspace 

and high force/torque capacity. Dynamic and kinematic properties, sensor and actuator 

specifications, strengths and weaknesses of the designed system as a haptic interface are 

presented in detail. What this thesis is not about is the development of haptic control 

algorithms. The focus is on kinematic arrangement, mechanical design and 

instrumentation.  

The next chapter presents a survey on haptic interfaces and haptic master arms. 

Chapter 3 develops the design criteria employed for the master arm designed in this 

thesis. The design of the kinematic arrangement to fulfill the workspace specifications 

follows in Chapter 4. Chapter 5 discusses the selection of actuators and transmission 

systems based on stress analysis and dynamics simulations. Sensor selection and control 

hardware integration is also presented in this chapter. A set of dynamics compensation 

tools are presented in Chapter 6. Chapter 7 discusses the production of the device, and 

evaluates the built mechanism. Finally, conclusions are presented. 
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2 LITERATURE SURVEY 
 
 
 
 

The evolution of haptic devices dates back to the first “force feedback” system 

developed by Goertz for remote handling of radioactive materials. This system featured 

a master/slave (M/S) architecture where the master and slave arms were identical and 

were connected to each other via rigid mechanical link (Figure 2.1). After a while, these 

rigid links were replaced with servomotors which enabled the usage of the system over 

larger distances [10]. 

 

 
Figure 2.1. The first “force feedback” system developed by Goertz 

 

Before emergence of haptic devices, master/slave manipulators were used for tele-

operation. In the beginning, passive replicas of the master manipulator were used at the 

remote site, which were commanded by the operator via the master manipulator. Later, 

master arms were motorized so that they could provide force feedback to the operator 

which was present on the slave side. Addition of force feedback to the M/S system 

increased task execution speed, especially in unpredictable or changing environments.   

Computational requirements were minimal since M/S systems employed joint-to-

joint control. With the development of computer technology, complex kinematics 
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computations could be carried out in real-time. This released the limitation of 

constructing master and slave arms identical. The JPL Force Reflecting Hand Controller 

was one of the first systems that employed different kinematics arrangement and it had 

better resolution than the devices built earlier [11]. 

Later on, these M/S slave systems were begun to be used for simulation of virtual 

environments or reproducing forces sensed in a real physical environment. Usage of 

haptic devices brought new research areas with it. Transparency or low dynamics issues 

were scrutinized.  

There are various haptic devices in the literature that feature different kinematic 

structures, actuators, number of DOF, and have ranging workspace and force 

capabilities. All of these devices have their advantages and disadvantages depending on 

the application areas. Although it is still at an early stage, commercial haptic devices are 

also available.  

Pantograph is also a parallel mechanism device which was designed by [12] in 

McGill University. Pantograph was initially designed as 2 DOF, however there are 

different versions of that device that employ more DOF [13], [14]. It has a planar 

structure which the user commands with the fingertip thus enabling the device feedback 

forces. This process resembles exploring a surface. (Figure 2.2) 

 

 

Figure 2.2 The Pantograph linkage 

 

SHaDe is a haptic device designed recently by members of department of 

mechanical engineering, Laval University [15]. This haptic device differs from other 
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devices in the literature with its spherical structure. It has three DOF and only gives 

rotational feedback around a central fixed point. The aim of the authors was to emulate 

the human wrist. It has some advantages compared to other devices such as pure 

rotation around a point located inside the user’s hand, large workspace and ergonomics. 

All actuators are fixed to the base of the device thus yielding a rigid structure. A force 

sensor is also used, placed between the end-effector and the joystick, in order to 

measure torques at the central point. 

 

 

Figure 2.3 SHaDe 

SPIDAR-G [16] (Space Interface Device for Artificial Reality with Grip) is a 

tension-based force feedback device that has seven DOF. It allows the user to interact 

with the virtual objects by manipulating two hemispherical grips located at a center 

point. Haptic sensation is achieved by controlling the tension of eight cables which are 

connected to the vertices of a cube. Its characteristics are smooth force feedback, no 

backlash, low inertia and safety. It is ideally suitable for engineering design 

applications.  

One of the most popular commercial haptic devices is SensAble’s Phantom. 

Several versions of this haptic device are available. Phantom Desktop [17], which is 

also available in Sabanci University Mechatronics laboratory, has six degree of freedom 

and three degrees of force feedback. It is a portable device and it can be connected to 

any computer having a parallel port. It provides the position of its stylus in x, y, and z 

axes and the rotation of its stylus as roll, pitch, yaw forming a total of six degree 

freedom. Force feedback is provided for only x, y, and z axes at a maximum force of 

1.75 Newton. It has a purely serial kinematic structure and do not employ force or 
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torque sensors. It is commonly used for many types of haptic research and the freeform 

modeling applications.  

 

Figure 2.4 SPIDAR-G 

 

Figure 2.5 Phantom desktop 

 

Another interesting haptic device with its huge structure and workspace is 

LHIfAM, (Large Haptic Interface for Aeronautic Maintainability) [18] which is 

specially designed for aeronautic industry. It has a serial structure and provides 6 DOF 

movement and 3 DOF force feedback, with a force sensor integrated in its spherical 

wrist. Its large workspace and possibility for the user to work in different positions are 

remarkable features of LHIfAM (Fig 2.6). 
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Figure 2.6 LHIfAM 

VISHaRD6 [19] (Virtual Scenario Haptic Rendering Device with 6 DOF) shown 

if Figure 2.7 is another haptic device that aims to overcome the force and workspace 

limitations of other devices. It has a purely serial structure and employs force sensor. 

Also, a kinematically redundant version (Figure 2.8) of that haptic device is also built, 

for more flexibility [20]. Both of these devices provide comparatively large workspace 

and high force capability. 
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Figure 2.7 ViSHARD6 

 

 

Figure 2.8 ViSHARD10 
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3 DESIGN CRITERIA 
 
 

3.1 Main Design Criteria 

 
Depending on the application area, haptic interfaces with different features and 

capabilities are designed. However, there are three major criteria that have to be 

satisfied regardless of the usage purpose of the device [21]. These main criteria can be 

summarized as below:  

 

• Free space must feel free 

• Solid objects must feel stiff 

• Virtual or “real” constraints must not saturate easily 

 

The first criterion implies that the natural dynamics of the device should not 

disturb the user’s perception of reality. Apparent mass and friction of the device should 

be reduced as much as possible. Through active control or passive design required 

conditions could be met. 

In some cases, dynamics of the device might be reduced relative to the task 

environment. For example characteristics of the environment in a micro-manipulation 

task and an aeronautic training task are obviously different. Different applications might 

require different dynamics. However, generally obtaining the minimum dynamics is 

preferred. 

The second criterion imposes that the stiffness of the device should be realistic 

enough to convince the user that he/she is in contact with a solid object, such as 

immovable wall. Either in a VR application or a tele-operation task, the device should 

be resistant enough to simulate a solid object. The stiffness coefficient is generally 

taken 20 N/cm as minimum. To satisfy this criterion mechanism should designed as 

rigid as possible or a high bandwidth controller should be employed. Maximum 
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achievable stiffness depends on the natural frequency of the device and the resolution of 

the sensors and actuators. Thus these factors have to be kept in mind during the design 

procedure. 

In order to satisfy the third criterion, force capacity of the device should be high 

enough to simulate virtual solid objects. Force requirement changes according to the 

task. For instance, fingertip contact forces rarely exceed 10 N. However, grip force of 

the hand is much more. To avoid saturation, high force/torque actuators have to be used 

because it is directly related to the peak torque of the actuation mechanism. 

The following sections describe additional design criteria and the specific choices 

made in this thesis. 

 
 
 

3.2 Ergonomics 
 
 
 

Ergonomics is another important criterion that has to be taken into account during 

design procedure. Depending on the task, operators might have to work for long 

periods. Fatigue and discomfort impair the operator’s performance. Haptic devices are 

designed as support machines for some critical tasks, degrading effects of non-

ergonomic design could diminish the operation efficiency. In the case of SHaDe [15], 

with a structure appropriate for simulation of human wrist, users can use the device 

while their arms resting on the desk. This avoids the user to hold his/her arm up 

unnecessarily.  

In the design presented in this thesis we assume that the operator follows the 

virtual world from a desktop computer monitor in front of him/her. The ergonomics 

criterion is addressed by choosing the sitting posture for the operator, and assigning the 

device dimensions in such a way that all points in the workspace can be reached by the 

operator from this posture. This implies that the device should be a desktop one or it 

should easily be placed next to the operator if it has to have a separate base. 

Also considering that the typical working environment is occupied by a variety of 

other interface hardware (keyboard, mouse, buttons key switches etc. depending on the 

application), a narrow cross section base for the mechanical interface is desirable over a 

large base, which would be problematic to fit into the working area of the operator. 
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3.3 Workspace 
 
 
 

Workspace consideration is an essential part of the haptic device design. Usually, 

obtaining the largest workspace without sacrificing the performance of the device is 

desired. 

In this work, as stated in the discussion of ergonomics, the position workspace of 

the mechanical interface is defined by the reach of an arm of a sitting human operator. 

For the average user, the range reached by the palm of a hand can be described by a 

rectangular prism of 50x70 cm base dimensions and 25 cm height. These dimensions 

are based on the assumptions that the upper body position and orientation are kept fixed 

and that the hand is not raised over the shoulder height and not lowered below the 

standard desktop height. 

Orientation workspace of the tool tip has to be considered as well as the position 

workspace. In contrast to the positional workspace, which can be defined with the 

assumptions in the paragraph above, the flexibility of human joints varies a lot from 

human to human. Therefore, also considering that large ranges of revolute motion can 

be realized by state of art actuators, largest orientation space without exceeding 360° 

motion at the revolute joints of the mechanical device is inferred as a design 

specification. 

 
 
 

3.4 Force/Torque Capacity 
 
 

 
As mentioned above hard surfaces in the virtual environment should feel stiff and 

virtual constraints should not be saturated easily. In addition to these requirements, task 

dependent specifications also put demands on the minimum force/torque capacity of the 

interface.  

As stated in [22], for the average user, index finger can exert 7 N, the middle 

finger 6 N and ring fingers 4.5 N continuously without experiencing discomfort or 

fatigue. Total force applied on each finger should not exceed 30-50 N for operator 
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safety. Considering these facts, a force capacity of 15 N is aimed in the design presented 

in this thesis. The torque capacity requirement is taken as 1 Nm [23]. 

3.5 Resolution 

Position and force resolution of the device depends on the human sensory system. 

Minimum resolution of the device, to satisfy haptic feedback criteria, should be better 

than that of human. As illustrated in [1], resolution of the encoders should be 2700 pulse 

per revolution for the operator to feel the smallest change in the position. Force sensing 

resolution of a human is 0.06 N, so the resolution of the force sensing mechanism 

should be smaller than that value. 

The next two chapters present how a suitable kinematic arrangement and 

hardware components can be selected in order to satisfy the design criteria discussed 

above. 
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4 DESIGN OF THE KINEMATICS ARRANGEMENT 
 
 
 
 

The criteria and assumptions presented in Chapter 3 are used in this chapter as 

guidelines to design the kinematic arrangement and link lengths of a master arm. The 

sensor and actuator mechanisms and the controller hardware are discussed in the next 

chapter. 

4.1 Parallel or Serial Arrangement? 

The following factors considered in the previous chapter favor a serial kinematic 

arrangement for the haptic device presented in this thesis.  

 

• The position workspace demanded is quite large and this can be addressed 

much easier with serial mechanisms rather than parallel mechanisms [24]. 

• The orientation workspace demanded is very large, in the order of 360 about 

the main axes. (Large roll, pitch, yaw angles range desired.) This is not 

practical with parallel mechanisms [25]. 

• The requirement that the base cross section should be small cannot be fulfilled 

easily with parallel mechanisms. This also eliminates a hybrid design with 

parallel main axes and a spherical wrist. 

 

With this argumentation the choice is made for a serial mechanism.  
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4.2 Spherical Wrist 

The requirement of large orientation workspace can be fulfilled with a spherical 

wrist structure with minimal contribution from the main axes. The spherical wrist 

structure also enables a very convenient inverse kinematics solution for many 

manipulator kinematic arrangements [26]. Therefore in this work a design decision is 

made for a compact spherical wrist. 

 
 
 

4.3 Kinematic Arrangement of the Main Axes 
 
 
 
In the decision for the main axes, one of the primary factors is the effect of the 

gravity. Also important are frictional factors. The main axes (between the base and the 

wrist) should preferably be not affected by those factors too severely. The articulated 3 

DOF elbow structure [26], which is a popular arrangement for the main axes of 

industrial manipulators, is hence eliminated because of its nature prone to gravitational 

forces. The Cartesian xyz system is also not suitable because it violates our rule of 

minimal cross section for the base, if supported by parallel double linear guides. On the 

other hand the bearings would be too heavy if supported by a single linear guide over 

the large positional workspace. The SCARA (Selective Compliant Articulated Robot for 

Assembly) like main axes structure stands out by its immunity to gravity and minimal 

base cross section and therefore this structure is chosen for the first two joints of the 

mechanical interface. This leaves the question of motion in the vertical direction. The 

elevator structure, also used in the industrial SCARA, is the natural choice to bridge the 

SCARA type main two axes and the spherical wrist. Its alternative is a revolute joint; 

however such a joint shown in Figure 4.1 requires large contribution of the two 

horizontally placed main links for the vertical motion. Therefore the linear elevation 

mechanism is chosen as the vertical motion mechanism in this work. The main axes 

arrangement reached after these design decisions is shown in Figure 4.2 
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Figure 4.1 The alternative revolute z axis 

 

Figure 4.2 Main axis arrangement 

4.4 Placement of the Spherical Wrist 

For the placement of the spherical wrist, we have a number of choices. Some of 

those choices are investigated and the most suitable configuration for the haptic device 

is determined. It can be placed on top of the elevator axis or just on the bottom of it. The 

location at the bottom of the elevator link (vertical axis) is typical for the for the wrist 

joint of an industrial SCARA robot (Figure 4.3). However, in our case the typical use of 
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a haptic interface should be considered. The wrist at the bottom structure for a haptic 

interface implies that virtual workpiece is positioned high up in the virtual world. 

However, manipulating workpieces or objects on top of a desk or other workbench is 

more typical for human and many machines. Therefore the wrist in the presented work 

is positioned on top of the vertical link (Figure 4.4).  

 

 

Figure 4.3 Spherical wrist mounted to the bottom of z axis 

 

Figure 4.4 Spherical wrist mounted on top of the z axis 
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Typical spherical wrist shown in Figure 4.5 is composed of three revolute axes, in 

the roll-pitch-roll arrangement. Once the first roll is placed, the rest of the wrist location 

is determined. However, the placement of the roll axis relative to the uppermost point of 

the vertical link can be in two different ways shown in Figure 4.6. The one shown in 

Figure 4.6a has the largest orientation space for a user approaching and holding the tool 

tip from above. The one in Figure 4.6b is more suitable for a user holding the tool tip 

from lateral direction and it is more advantageous for the problem definition and the 

requirements discussed in Chapter 3. This arrangement is the one chosen for the haptic 

interface presented in this thesis.  

 

 

 

Figure 4.5 Typical spherical wrist  
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(a) 
 

(b) 

Figure 4.6 Placement options for the spherical wrist 

4.5 Link Sizes 

Firstly, the link sizes and the working ranges of the three main axes will be 

considered. The discussion for the link sizes for a compact spherical wrist to be added 

on top of these main links will follow.  

Although the last offset (the length of the last roll link) also contributes to the x, y 

and z position range of the manipulator; it will be excluded from the x, y and z position 

range computations. This is equivalent to consider the set of points which can be 

reached by the center of the spherical wrist as the position range. The discussion in the 

previous chapter defines a prism with 50 cm x 70 cm x 25 cm as the required position 

workspace. Because of the orthogonal arrangement of the horizontal plane and the 

vertical joint axis, the x-y workspace and the z workspace problems can be considered 

separately. It is obvious that the vertical axis work range should be at least 25 cm to 

cover the required z range.  

For the working area on the horizontal plane with the first two links of the 

SCARA structure (in other words for the planar elbow manipulator) at least the 

following two solutions apply as shown in Figure 4.7. The solution on the left seems to 

be more advantageous because smaller links can be used to cover x-y workspace. 

However it has a major disadvantage that reaching the points at the rear side of the arm 
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would cause the human operator to touch the base link. These would be a rather 

uncomfortable usage for the operator and therefore it is abandoned at the cost of longer 

links shown in Figure 4.7b on the right hand side.  

 

(a) 

 

(b) 

Figure 4.7 Comparison of link lengths and workspace 

These figures also show that sum of the link lengths of link 1 and link 2 should be 

at least 60 cm to cover the x-y workspace. A natural choice for the proportion of the first 

ands the second link lengths is 1:1. The advantage of 1:1 proportion is that the whole of 

the interior of a 60 cm diameter workspace can be covered by the end of the second link 

without leaving a “hole” at the center of the workspace (Figure 4.8). Hence the first two 

link lengths are 30 cm each. The last offset (from spherical wrist to handle tip) is taken 

as 12.5 cm which is small enough to keep the size of the whole machine as a desktop 

one and large enough to be kept by the human hand firmly.  
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Figure 4.8 Workspace with a hole in the middle 

4.6 Axis Assignment and Denavit - Hartenberg parameters 

The discussion in the previous sections of this chapter enables us to assign the 

joint axes and to form the Denavit Hartenberg table for the master arm. Some of the 

values of the link lengths and offsets can be determined by the discussion above too 

(two main link lengths are already determined). Still, some others have to be left 

parametric (and unknown) in this chapter. They can only be computed after the 

selections of the actuation and transmission mechanisms, and hence this computation is 

left to the next chapter. 

The joint axis assignment is shown in Figure 4.9. The origins and x axis 

assignments which complete the frame assignment are shown in Figure 4.10. The 

Denavit Hartenberg parameters derived from this figure and from the link lengths 

obtained before is given in Table 4.1. In this table, the angles θ1, θ2, θ4, θ5, θ6 and the 

linear displacement d3 are joint variables. 
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Figure 4.9 Joint axes assignment 

 

Figure 4.10 Complete axes assignment 
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Link # a α d θ 
1 h1 0 0 *

1θ  
2 h2 0 0 *

2θ  
3 0 -90 *

3d  -90 

4 0 -90 0 *
4θ  

5 0 90 0 *
5θ  

6 0 0 h3 *
6θ  

 Table 4.1 D-H parameters for the designed arm 

 

4.7 Forward Kinematics 

The homogenous transformations relating adjacent link frame coordinates are 

given by the Denavit-Hartenberg matrix formula [26]. 

αθ ,,,, xaxdzzi RotTransTransRotA =  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0 i

i dcs
sscccs
csscsc

A
ii

iiiiii

iiiiii

αα

θαθαθθ

θαθαθθ

    (4.1) 

 

When the joint coordinates are given, the homogenous transformation matrix 

relating the handle frame coordinates to the base frame coordinates can be found as the 

product of the link-to-link homogenous transformation matrices. 

654321
6

0 AAAAAAT =      (4.2) 
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4.8 Inverse Kinematics 

Inverse kinematics equations of the manipulator also have to be derived, in order 

to be used in simulation or experiments. Solution of the inverse kinematics is relatively 

easier since the last three joints form a spherical wrist, thus enabling us to use kinematic 

decoupling. Given a 4x4 homogenous transformation matrix denoting the end effector 

position and orientation; 
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If ( ) is the position of the spherical wrist center. Inverse position 

problem, which is dependent of the first three joint variables

cxp cyp czp

),,( 321 dθθ , is easily solved 

using trigonometric relations. For the first two links, elbow left configuration is 

selected. The following equations illustrate the relationship between joint variables and 

spherical wrist center point position.  

21

2
2

2
1

22

2
)(

hh
hhpp

D cycx −−+
=     (4.4) 

),1(2tan 2
2 DDa −=θ      (4.5) 

))cos(),sin((2tan),(2tan 221221 θθθ hhhappa cxcy +−=    (4.6) 

czpd =3         (4.7) 

For the inverse orientation problem, firstly  have to be computed.  6
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From the obtained  matrix the last three joint variables are obtained. 6
3R

),(2tan 13234 rra=θ       (4.9) 

),(2tan 31326 rra −=θ       (4.10) 
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),1(2tan 33
2

335 rra −=θ      (4.11) 

 

This completes most of the kinematic arrangement discussions, with the exception 

of a few link offset parameters. The next chapter discusses the hardware component 

selections to go one step ahead to the complete design of the haptic device.  
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5 COMPONENT SELECTION 

In the design procedure, motors and gears are firstly assigned for the joints by 

rough estimates using force/torque capacity requirements and static load considerations. 

The weight values of the motors, reductors and links starting from the tool tip and 

moving to the base of the robot are used to determine the static load on the robot links 

and required thickness of the materials used for the links. 

All these weight and shape information is then used in a Newton-Euler based 

inverse dynamics simulation. The joint torque and forces recorded for demanding 

reference trajectories and handle forces/torques indicate whether the torque capacities of 

the chosen motors and reductors are appropriate or not. 

The chapter further discusses a number of sensors for the haptic interface and 

explains how the position and force sensors are selected. 

Finally, the controller hardware used is introduced and the hardware and software 

integration of the selected actuators and sensors is presented. 

 
 
 

5.1 Selection of Actuators 
 
 
 

Selection of actuators is a fundamental part of the design process. According to 

the design criteria described in the Chapter 3, appropriate actuator mechanisms should 

be selected. There are numerous actuator options which can be utilized. In this section, 

comparison of commonly used actuators is carried out; advantages and disadvantages of 

usage for haptic devices are discussed. Table 5.1 summarizes the various options [1]. 
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Actuator Advantages Disadvantages 
DC Motor Cheap, easy to control Torque ripple, cogging, high 

inertia 
 
DC Motor with 
Gearhead 

 
Easy to control, high 
torque output, less torque 
ripple 

 
Play in gears, backlash, high 
inertia, friction 

 
Special DC Motor 

 
Low cogging, low torque 
ripple 

 
Expensive 

 
DC Motor with 
Brake 

 
High stiffness can be 
simulated 

 
Bulky, difficult to control 

 
Voice Coil 

 
Easy to control, torque at 
zero velocity, smooth force 
signals 

 
Low range of motion, suitable 
components commercially 
hardly available, Needs 
special treatment 

Table 5.1 Comparison of actuator options 

The first actuator that comes to mind is DC motor. Unfortunately ordinary DC 

motors have some properties that make the use of DC motors as haptic actuators 

inappropriate. First of all, torque output of the motor depends on the shaft position. This 

issue causes torque ripple which will be felt by the user. To overcome this problem 

large number of commutators has to be used or good compensation controller has to be 

used. Additionally, DC motors have cogging problem and big inertia, which will also 

impair the user’s perception of “reality”.  

Addition of a gearhead might improve the performance of the DC motor in terms 

of torque output and torque ripple. Limited torque capacity of a motor can be increased 

be using a gearbox. Torque ripple becomes less noticeable by the user since addition of 

gear increases the frequency of the torque ripple. Nevertheless geared motors have some 

disadvantages. It introduces backlash, friction and high inertia which are undesired in 

haptic applications. Friction introduced by the gears can be compensated through active 

control algorithms. 

Combination of a motor and a brake unit might solve the problem of producing 

big forces at zero velocity. In that setup, motor is responsible of creating small forces, 

when large forces are needed brake can be used. However, addition of a brake unit also 

adds to the inertia and mass of the motor and complicates the control algorithm. 
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Specially designed DC motors are available in the market which features coreless 

design, special windings etc. These motors show no cogging, minimal torque ripple and 

small inertia depending on the selection criteria [27]. 

Another option is voice coil actuators. They have some characteristics which 

make them almost ideal for haptic interfaces: force independent of shaft position, no 

torque ripple, linear behavior of input current vs. force output. However rotary voice 

coil actuators might not be useful in cases where range of motion is large. Rotary voice 

coils have ± 60° range of motion. 

With the discussion above the use of harmonic drive reductors with output 

bearings and Maxon RE family DC motors stand out as candidates for the transmission 

and actuation mechanism. Due to their compactness Maxon planetary gears are also 

candidates for reduction for the joints where the place for assembly is limited. Since 

reductors and motors are expensive and the delivery times are quite long (in the order of 

3-5 months), motor and reductors are selected from the Mechatronics Program 

inventory. The Maxon DC motors in the inventory range from 20 W to 150 W (20 W, 

70 W, 90 W, and 150 W). Due to the starting torque specifications the suitable sizes of 

harmonic drives, which can be used together with 20 to 150 W Maxon motors, are 25, 

20, 17 and 14. Appendix A provides various design data about those sizes. 

20 W Maxon RE family DC motors and planetary gears with a reduction ratio of 

86:1 are chosen for the wrist axes because of their compact size and light weight. A 90 

W DC motor with a planetary gear of reduction ratio 156:1 is used for the elevator axis. 

For the two main revolute axes which bear the largest tilting moments due to gravity, 

the size 25 harmonic drives are chosen due to their large output bearing. The motors 

used are the highest power (150 W) ones. 

5.2 Stress Analysis 

Regarding the mechanical design procedure, preliminary design is completed. 

However link shapes and thicknesses are not decided yet. In order to satisfy the design 

requirements mentioned in Chapter 3, inertia and mass of the device have to be kept 

minimal. For proper selection of the structure of the links stress analysis has to be 

carried out. Since the device will be used with low speeds, static analysis of the 

mechanical design would be sufficient. 
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Lame shape is used for the links because of simplicity and ease of processing. The 

link shape and weights are computed for 7075 class aluminum as construction material. 

This material is used because of its high yield strength over weight ratio. 

Since basic analysis is carried out, using COSMOSXpress plug-in of Solidworks, 

in which the modeling is also done, is sufficient. Analyses carried out are computation 

of von-Mises stresses and the static safety factor for each link. Displacement 

distribution is also monitored. 

According to the analysis results, material or the thickness values of the links 

should be modified in iterations. The weight values of the motors, reductors and links 

starting from the tool tip and moving to the base of the robot are used to determine the 

static load on the robot links. Initial thicknesses of the links were assigned during 

preliminary design. In the case of link 6, which is the handle of the device, static 

loading is negligible since any force applied to that link will be transferred to the former 

links. 

In Figure 5.1 to Figure 5.5 deformation of the manipulator under static loading is 

illustrated. Contour diagram and maximum and minimum deformation points are shown 

in the figures. Legend on the right hand side of the figure shows the distribution of 

contour diagram. It should be noted that displacement on these figures are scaled for 

better understanding. 

Naturally, maximum deflection occurs at the end of the links. Table 5.2 lists the 

maximum deflection values obtained from the analysis. Tool tip deformation in the z 

direction under static loading of 15 N, which is the force capacity for the manipulator, is 

the sum of maximum deflections at each link which is 0.7025 mm.  
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Figure 5.1 Displacement distribution of link 1 

 

Figure 5.2 Displacement distribution of link 2 
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Figure 5.3 Displacement distribution of link 3 

 

Figure 5.4 Displacement distribution of link 4 
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Figure 5.5 Displacement distribution of link 5 

Link # Maximum displacement (mm) 
1 0.151011 
2 0.0101582 
3 0.44627 
4 0.0957262 
5 0.000523109 

Table 5.2 Maximum displacement of the links 

 

In Figure 5.6 to Figure 5.10 distribution of von-Mises stresses is illustrated. 

Contour diagram and maximum stress points are shown in the figures. Legend on the 

right side of the figure shows the distribution of contour diagram. Using the obtained 

maximum stress values, static safety factor is calculated for each link. Observed from 

the graphs, link 3 and 4 are the most critical links which are exposed to maximum stress 

in any condition. However the static safety factor calculated for each link is high 

enough. Table 5.3 shows the maximum stresses and safety factors for each link. 

 32



 

Figure 5.6 von-Mises stress distribution for link 1 

 

Figure 5.7 von-Mises stress distribution for link 2 
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Figure 5.8 von-Mises stress distribution for link 3 

 

Figure 5.9 von-Mises stress distribution for link 4 
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Figure 5.10 von-Mises stress distribution for link 5 

Link # Max. von-Mises Stress (MPa) Static Safety Factor 
1 8.79 57.45 
2  1.19 424.37 
3 33.85 14.91 
4 12.22 41.32 
5 0.18 2805.55 

Table 5.3 Max von-Mises stresses and safety factors 

5.3 Design Verification with Newton-Euler Based Inverse Dynamics Simulation 

The weight and shape data obtained in the previous section is used in a Newton-

Euler based inverse dynamics simulation. In this simulation, the master arm moves 

between randomly generated points in the workspace and at the same time it exerts full 

capacity (as defined in Chapter 3) randomly directed force and torque to the external 

environment at the tool tip (handle location). The joint torque and forces are recorded in 
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the simulation and they indicate whether the selection for motor and reductors are 

appropriate or not. 

The dynamics of a robotic manipulator can be expressed as: 

linke
T uFJqgqqqCqqD =+++ )(),()( &&&&     (5.1) 

when the friction and inertia effects of the actuators, the transmission and 

reduction elements are not considered. Therefore, the equation above can be described 

as the “link dynamics”. In this equation  is the vector of joint positions, is the joint 

velocity vector and  is the joint acceleration vector, u stands for the joint force/torque 

vector. 

q q&

q&&

D  stands for the manipulator inertia matrix, C is the matrix for Coriolis and 

Centripetal force computation and g is the gravity effect vector. J is the manipulator 

Jacobian and Fe is the force / torque vector [Fex Fey Fez nex ney nez] exerted by the tool tip 

on the environment expressed in the world coordinates. JTFe represents the effect of 

external forces and torques on the joint torques. When the actuator and transmission 

friction and inertia are included in the model too, the complete dynamics description 

can be expressed as 

mlinke
T

cVm uuFJqgqqbqqBqqqCqqDJ +=+++++ )(),()(),())(( &&&&&&  (5.2) 

In this expression mJ  is the combined actuator and transmission inertia as 

reflected to the joint side of the transmission: 
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Here r is the reduction ratio (typically in the range of [1 – 0.005]), Ja is the 

actuator inertia (the rotor inertia in the case of a DC motor) and  is the inertia of the 

transmission mechanism (inertia of the gears in the case of a reductor mechanism).  

gJ

BV is usually a constant diagonal matrix with entries computed as the combined 

viscous friction constants of the actuator and the transmission elements as reflected to 

the joint side of the transmission. 
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In this equation, Bai is the actuator viscous friction constant and Bgi is that of the 

transmission mechanism. 

Similarly,  in (5.2) denotes the combined Coulomb friction of the actuators and 

transmission elements as reflected to the joint side. 
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The inertia, friction and reduction parameters of the motors and reduction 

mechanisms assigned above can be found from the product specification sheets. 

The generalized force/torque input u in (5.2) can be obtained by an inverse 

dynamics based on the Newton-Euler dynamics algorithm, when the  

trajectories are given. 

),,( qqq &&&

 

Figure 5.11 The inputs and outputs of the N-E algorithm 

On the other hand, from (5.2) can be computed as  mu

mcVm ubqBqJ =++ &&&       (5.6) 

for the given joint position trajectory . ),,( qqq &&&

Therefore, the required joint forces/torques can be computed for any given  

and  trajectory. Creating typical reference position trajectories (within the workspace 

of the robot) and demanding the highest end effector forces and torques within the 

specification described in Chapter 3 can reveal the order of joint torques needed for the 

designed master arm. Furthermore, since the NE algorithm can be used separately (with 

special configurations) to compute the inertial, the centripetal and Coriolis, the gravity 

gg

eF
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effects, the torque requirement can be broken down into those groups too. The same is 

true for a breakdown of the actuator side joint force/torque requirements too. 

Hence, in the inverse dynamics simulations the total joint torque required is 

plotted together with the joint torque required due to end effector force/torques, joint 

force required due to inertial and Coriolis effect, joint force/torque required due to 

gravity effects and joint force/torque required due to friction effects.  

In many simulations carried out, random points in the joint workspace of the arm 

are specified and joint space point-to-point trajectories are generated via trapezoidal 

velocity profiles and motion is synchronized for all joints. 

Simulation results indicate that the chosen motors are appropriate in that they 

satisfy the speed and torque requirement as described in Chapter 3. 

Below presented are four cases with different speed and external force/torque 

settings. In addition to demonstrating the feasibility of the motor and reductor 

selections, the plots in Figures 5.12 to 5.35 also serve a second purpose. Since the 

various components (gravity external effects inertia friction) can be monitored in the 

plot, we can assess the weaknesses and strengths of the joint against those factors and 

infer guidelines and device compensation methods for the transparency of the haptic 

motion.  

Analyzed below, with the figures 5.12 to 5.35 are the four cases which can be 

shortly identified as: 

• high speed – high end effector force/torque 

• high speed – low end effector force/torque 

• low speed – low end effector force/torque 

• low speed – high end effector force/torque 

 

These cases are chosen to observe the dominant characteristics / effects of joint 

actuation mechanism under different working conditions. The high-speed case is 

generated by choosing 0.25 rad/s velocity and 0.25 rad/s2 acceleration then generating 

the trapezoidal velocity references. Low speed refers to 0.025 rad/s and 0.025 rad/s2 

velocity and acceleration, respectively. For the prismatic vertical axis 0.25 m/s and 

0.025 m/s are the low and high speeds respectively and 0.25 m/s2 and 0.025 m/s2 are the 

low and high acceleration for the joint. As high handle force 15 N is chosen in random 
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direction. Low force is 1.5 N with random direction. For the end effector torques 1 Nm 

and 0.1 Nm are taken for high and low values, respectively again with random direction. 

In these figures, total joint torque required is represented by solid lines, friction 

component represented by dash-dotted lines, inertial and Coriolis effects shown by 

dotted lines and torque to generate tool tip forces/torques are shown by dashed lines.  

 

 

Figure 5.12 Total joint torque requirement and its components for shoulder joint, high 
joint speed, high end effector force/torque case 
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Figure 5.13 Total joint torque requirement and its components for shoulder joint, high 
joint speed, low end effector force/torque case 

 

Figure 5.14 Total joint torque requirement and its components for shoulder joint, low 
joint speed, low end effector force/torque case 
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Figure 5.15 Total joint torque requirement and its components for shoulder joint, low 
joint speed, high end effector force/torque case 

 

Figure 5.16 Total joint torque requirement and its components for elbow joint, high 
joint speed, high end effector force/torque case 
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Figure 5.17 Total joint torque requirement and its components for elbow joint, high 
joint speed, low end effector force/torque case 

 

Figure 5.18 Total joint torque requirement and its components for elbow joint, low joint 
speed, low end effector force/torque case 
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Figure 5.19 Total joint torque requirement and its components for elbow joint, low joint 
speed, high end effector force/torque case 

 

Figure 5.20 Total joint torque requirement and its components for vertical axis joint, 
high joint speed, high end effector force/torque case 
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Figure 5.21 Total joint torque requirement and its components for vertical axis joint, 
high joint speed, low end effector force/torque case 

 

Figure 5.22 Total joint torque requirement and its components for vertical axis joint, 
low joint speed, low end effector force/torque case 
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Figure 5.23 Total joint torque requirement and its components for vertical axis joint, 
low joint speed, high end effector force/torque case 

 

Figure 5.24 Total joint torque requirement and its components for roll 1 joint, high joint 
speed, high end effector force/torque case 

 45



 

Figure 5.25 Total joint torque requirement and its components for roll 1 joint, high joint 
speed, low end effector force/torque case 

 

Figure 5.26 Total joint torque requirement and its components for roll 1 joint, low joint 
speed, low end effector force/torque case 
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Figure 5.27 Total joint torque requirement and its components for roll 1 joint, low joint 
speed, high end effector force/torque case 

 

Figure 5.28 Total joint torque requirement and its components for pitch joint, high joint 
speed, high end effector force/torque case 
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Figure 5.29 Total joint torque requirement and its components for pitch joint, high joint 
speed, low end effector force/torque case 

 

Figure 5.30 Total joint torque requirement and its components for pitch joint, low joint 
speed, low end effector force/torque case 
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Figure 5.31 Total joint torque requirement and its components for pitch joint, low joint 
speed, high end effector force/torque case 

 

Figure 5.32 Total joint torque requirement and its components for roll 2 joint, high joint 
speed, high end effector force/torque case 
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Figure 5.33 Total joint torque requirement and its components for roll 2 joint, high joint 
speed, low end effector force/torque case 

 

Figure 5.34 Total joint torque requirement and its components for roll 2 joint, low joint 
speed, low end effector force/torque case 
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Figure 5.35 Total joint torque requirement and its components for roll 2 joint, low joint 
speed, high end effector force/torque case 

 

In Figures 5.12 to 5.35, it can be observed that friction effects, and specially the 

coulomb friction is one of the dominant factors in the master arm dynamics. The 

viscous friction component within the friction curve can be identified by the trapezoidal 

form (due to trapezoid velocity reference profile) and the rest in friction curves belong 

to Coulomb friction. 

The gravity term is dominating the dynamics of the third link. The speed of the 

motion, for the speed values used in the simulations, the inertial and Coriolis effects 

remain insignificant when compared to the friction terms. The requirement of end 

effector forces and torques reflect themselves in the joint torques requirements too. 

These observations are used as guidelines for compensation algorithms on Chapter 6. 

The motion of the manipulator is animated in an OpenGL based animation 

environment shown in Figure 5.36. 

 

 51



 

Figure 5.36 Animation window 

 
 
 

5.4 Selection of Sensors 
 
 
 

Sensor selection is crucial in the design procedure since the control feedback loop 

is closed via the information gathered from the sensors. Robustness and stability of the 

control loop is dependent on the quality of sensor. Since haptic device is considered as 

an interface between position and force, feedback of this variables are needed. Possible 

options are compared and evaluated according to design requirements. 

 
 
 
5.4.1 Position Sensor Selection  

 
 
Usage of position sensor is inevitable since the position of the end effector and 

links have to be calculated. Commonly used positions sensors are: Hall Effect sensor, 

resolver, and optical encoder. Advantages and disadvantages of these sensors have been 

summarized in Table 5.2 [28] 
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Criteria  Hall Effect Sensor  Integral Resolver  Optical Encoder  
Position Resolution Good  Good  Excellent  
Shock Resistance  Excellent  Excellent  Poor  
Temp. Range  Fair  Excellent  Fair  
Speed Range  Poor  Excellent  Good  
Size  Excellent  Good  Poor  

Table 5.4 Comparison of position sensor options 

According to Table 5.2, resolver seems to be the most appropriate position sensor 

for general use. However, in haptic simulation; shock resistance, temperature range and 

size are not as critical as resolution of the sensor. Detecting the position accurately is far 

more important than proper commutation of the rotor. Kinematics and dynamics 

equations depend on the accurately measurements of the position. The need for closing 

the position feedback loop is the main reason why optical encodes are preferred over 

Hall Effect sensors and resolvers.  

While resolution of the optical encoder makes it the first preference, there is no 

way of sensing the initial position of the rotor, unless it is an absolute encoder. Since 

initial position is needed, sometimes Hall Effect sensor or resolver is used until the 

optical encoder hits a marker. When the marker is hit, controller automatically switches 

to optical encoder signal. Using combination position sensors might solve both 

initialization and accurate position measurement issue.  

In our design, because of the aforementioned reasons optical encoders are used. 

Maxon motors employed in our haptic device already have incremental encoders. 

Encoders are mounted to the back of the motor since the deflection of the rotors is 

negligible in each axis. Maxon HEDL 5540 encoders with 500 pulse per revolution are 

used in each link. Taking the gearheads and harmonic drives into account, resolution of 

the encoders for each link is shown in Table 5.5 below. 

Joint # Encoder Resolution  

1 0.0072 

2 0.0072 

3 0.0046 

4 0.0083 

5 0.0083 

6 0.0083 

Table 5.5 Resolution of encoders 
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5.4.2 Force Sensor Selection 
 
 

Force/torque sensors are widely used in robotic applications. There are different 

versions available in the market, satisfying wide range of requirements. Since small-

sized sensors with wide F/T measurement range are available in the market, addition of 

extra mass to the system is not problematic in our case.  

Pressure foils are easy to implement because of their size, however their 

measurements are not accurate enough. Hysteresis effect in these sensors makes the 

software compensation for measurement error impossible.  

Load cells incorporate strain gages which measures the force based on the 

deflection of a surface. Various sizes are available commercially. However, only axial 

forces can be measured and torque cannot be measured by load cells. Also, special care 

must be taken to ensure that the force is applied perpendicular to the surface at a 

predefined position. 

Prediction of torques based on current flow in combination with a motor model 

can be used as a substitute for force sensors. Although this method gives satisfactory 

results, proper functioning of the software has to be ensured in order not to cause 

dangerous situations. This drawback of force estimation avoids the usage of it. 

 

Sensor Advantages Disadvantages 
 
F/T sensor 

 
Various versions available 
commercially, easy to 
integrate 

 
Only for high angular 
velocities 

 
Pressure foils 

 
Dimension, easy to 
integrate, cheap 

 
Not accurate, hysteresis 

 
Load cell 

 
Accurate measurement 

 
Adds extra mass to the system, 
needs special construction to 
apply force 

 
Estimation 

 
Cheap, no extra mass and 
dynamics added to the 
device 

 
Performance depends on 
software, software errors 
might result in dangerous 
situations 

Table 5.6 Comparison of F/T sensor options 
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In the literature, generally F/T sensors are employed in the high-torque 

applications. Mini-40 6-axis F/T sensor of ATI Automation has been selected for our 

design since it is already available in our laboratory and its measurement range satisfies 

the force requirements of our device. So as to achieve more reliable force measurement, 

force estimation and force sensor could be combined in the control loop of the system. 

5.5 Controller Hardware, Actuator and Sensor Integration 

In order to control the overall system, the DS1103 control board and the dSPACE 

Control Desk program were used. The DS1103 PPC board is a standalone control board 

which has 6 incremental encoder inputs, 8 DAC, 20 ADC units and other features (such 

as RS232 and CanBus channels) which makes it adequate for control purposes of the 

designed haptic device. With the capacity of this hardware 6 motors could be controlled 

at the same time. 

Encoder cables of the motors could not be connected to dSPACE directly because 

of the different connector types. In order to overcome this problem, a small intermediate 

circuit which converts the flat encoder cable of the motor to D-Sub 15 connector is 

designed. In order to avoid noise problems with the encoder signals, special noise-

immune SAB Bröckskes encoder cables were used. 

Power cables of the motor were connected to the Maxon ADS_E 50/5 

Servoamplifier driver card. Set-value inputs of the driver are connected to DSPACE 

DAC output via coaxial cables. Wiring diagram of the driver for current control mode is 

shown below in Figure 5.37. 
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Figure 5.37 Maxon motor and driver connections for current control mode 

  

The force sensor assembled on the end effector is ATI Mini40 6-axis force/torque 

sensor. The sensor comes with a driver card which is inserted to PC’s PCI bus. Before 

starting to use the sensor, it has to be installed. A GUI is also included in the sensor 

software package which takes care of installation and calibration of the sensor. A 

snapshot of the GUI can be seen in Figure 5.38. 
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Figure 5.38 F/T sensor GUI 

 

Gathering information from the sensor can be done via several ways: 

• Via a text file 

• Via C library 

• Via Microsoft Excel 

• Via Visual Basic 

 

GUI of the sensor has a feature to export values read from the sensor to a text file. 

Transfer of the data involves the usage of the GUI program, writing the values to a text 

file and then reading the text file using another C program which sends the data to 

DSPACE. So many intermediate phases to read the sensor reduce the performance of 

real-time operation. This scheme also depends on the internal routines of the MS 

operating system which reduces the stability and reliability of the procedure.  

At a first glance, the easiest way to gather data from the sensor and use in 

DSPACE seems using the C library of the sensor. However, the C library is not 

compatible with MS Windows operating system. It is implemented under Linux. 

Interfacing the C code with the C-Lib library of the DSPACE also ends up with failure.  
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Reading the force sensor via Microsoft Excel, which utilizes a Visual Basic 

macro, is also cumbersome since it is not intended for such real-time applications. Other 

innate features of the program make it slow. 

Using Visual Basic seems to be the most efficient way to integrate the sensor to 

DSPACE. Unfortunately DSPACE do not allow Visual Basic codes to be embedded in 

its internal codes. Communicating VB code of the sensor with C-Lib library of 

DSPACE solves the problem. 

A TCP/IP socket is created in both the VB and VC programs thus transferring the 

data between force sensor and the C-lib program. VC program also utilizes C-lib to 

communicate with the DSPACE’s registers. VB program which has GUI as shown in 

Figure 5.39 reads the values from the sensor and sends them to the VC program. VC 

program serves as a messenger between VB program and DSPACE. It receives the data 

from the VB program and sends them to DSPACE registers using C-Lib. 

 

 

Figure 5.39 F/T sensor VB program GUI 
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6 DYNAMICS COMPENSATION ALGORITHMS 

Transparency is one of the most important specifications for a haptic interface. 

Although low impedance (low friction, low inertia) mechanisms are favorable for the 

design of naturally low impedance interfaces, large force and torque ranges which might 

be demanded by the haptic interfaces and low impedance characteristics are conflicting 

specifications. 

The N-E based inverse dynamics analysis in Chapter 5 indicates that the master 

arm designed is mainly affected by gravity and friction. Table 6.1 lists the dominant 

effects encountered at the joints of this arm. 

 

Joint # Dominant effect 
1 Coulomb friction 
2 Coulomb friction 
3 Gravity and Coulomb friction 
4 Gravity and Coulomb friction 
5 Gravity and Coulomb friction 
6 Coulomb friction 

Table 6.1 Dominant dynamics effects at the joints 

A number of dynamics compensation techniques like inverse dynamics, computed 

torque methods, gravity compensation, friction compensation can be used for removing 

the undesired effects of dynamic factors for the whole arm, as a multivariable approach. 

However, the online applicability of these approaches, which need intensive matrix 

multiplication, is limited. Computational power and sampling rate are of fundamental 

importance in the haptic control problem because master arm is in contact with the 

external world (the human operator). High sampling frequencies are demanded in such 

applications for the appropriate measurement or estimation of contact forces. 

The requirement of high sampling frequencies is directly related with the 

computational power of the controller hardware. The execution of the code has to be 

fast enough to fit between two sampling instants. Since for a given controller (in our 
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case DSPACE 1103) the computational power available is fixed, the way to attack the 

computational power problem is writing efficient control code. This makes the use of 

full dynamics compensation algorithms in the multivariable fashion unfeasible. 

Friction and gravity compensation techniques, however, can be applied to the 

individual joints, independently. Our observation in Chapter 5 also indicates that 

friction (especially Coulomb friction) and gravity are the primary source of nonlinear 

effects.  

These arguments suggest that friction and gravity effect compensation in an 

independent joint scheme is favorable because of the simple nature, computational 

effectiveness and suitability to the specific dynamics compensation problem at hand. 

In this work, the compensation techniques are tested in a joint position controller 

framework for simplicity. Their use in a variety of haptic controllers is straight forward. 

As stated in Chapter 5, this dynamics model can be described by the following equation.  

uFJqgqqbqqBqqqCqDJ e
T

cVm =++++++ )(),()(),()( &&&&&&   (6.1) 

Gravity compensation is the addition of a gravity effect estimate term to the joint 

torque vector (control vector) as: 

)(ˆ qguu control +=       (6.2) 

The term  can be generated in many ways, for example as a proportional 

and derivative (PD) control scheme or any other control method.  

controlu

In this thesis a PD control scheme is used as the control term . The 

application of the independent joint friction compensation is very similar to the gravity 

compensation case. Here only Coulomb friction compensation is considered because it 

is the dominant term in the friction effect: 

controlu

ccontrol buu ˆ+=        (6.3) 

It should be noted that, since the various weight and length parameters are known 

and joint variables are measured precisely, the computation of  does not pose a 

significant problem. However, in the case of friction, the modeling is quite difficult. 

)(ˆ qg

Below presented are the results of four simulations: 

• PD control with controller gains obtained from a computation based on 

effective inertia and friction values 

• PD control based on fine tuning of the controller above 

• Fine tuned PD controller with gravity compensation  
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• Fine tuned PD controller with gravity and Coulomb friction compensation 

 

The first step (and the first simulation) is for obtaining rough values for the PD 

controller gains. The computation of the gains is based on effective joint inertia and 

joint viscous friction values and linear system approximations of individual joints. As 

discussed in Chapter 5, the motor side inertia of the joints when reflected to the joint 

side is computed as  
2/)( kgam rJJJ

kkk
+=    [ ]6,1Lk∀     (6.4) 

Ignoring the coupling effects introduced by the off-diagonal terms in the 

manipulator inertia matrix D, the combined inertia coefficient for joint k is then  

 which further can be simplified to the expression  2/)( kkkm rqDJ
k

2/ kkkm rDJ
k

 where 

kkD  a constant nominal inertia value is. In this work, this term is computed from 

 with )(qDkk 0=q (home position of the master arm).  

Similarly, (as stated in Chapter 5) the viscous friction coefficient as reflected to 

the joint side of the transmission and reduction is . These two coefficients can 

be used to form the simplified model.  

2/ kf rB
k

kkeffkeff uqBqJ
kk

=+ &&&       (6.5) 

for the kth joint of the arm with 
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Application of u in a PD control architecture with proportional and derivative 

gains  and  respectively results in the equality 
kDK

kPK

)()( k
d
kDk

d
kPkeffkeff qqKqqKqBqJ
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where  represents the desired joint position for joint k. Hence, d
kq

( ) d
kD

d
kPkPkDeffkeff qKqKqKqKBqJ

kkkkkk
&&&& +=+++ .    (6.9) 

Using Laplace transform, the transfer function between desired and actual joint 

positions can be computed as 
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The characteristics equation of this transfer function is 
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Equating this expression with the typical monic second order characteristics equation 

 where 02 22 =++
knknk ss ωωζ kζ  is the damping coefficient and 

knω  is the undamped 

natural frequency, we can determine the controller gains by the selection of kζ  and 

knω .  

For the fastest response without overshoot, kζ  is chosen equal to 1 (a critically 

damped system). knω  determines the speed of the response. Table 6.2 lists the values of 

knω  used for the six joints of the arm. 

Joint # knω  
1 10 
2 10 
3 10 
4 20 
5 20 
6 20 

Table 6.2 Values of knω  used for the joints 

Figure 6.1 shows the results obtained with this controller for reference joint 

positions formed as combinations of step and sinusoidal functions. It can be observed 

from this figure that Coulomb friction and gravity problems cause large position errors 

which cannot be handled by the controller. The reason of the low performance, 

however, is that the controller gains are obtained by a rough approximation model. Fine 

tuning of the gains by trial and error results in the position curves in Figure 6.2. Still the 

large position error in link 3 (the elevator prone to gravity) and the distortion of the joint 

positions due to Coulomb friction could not be solved by fine tuning.  

Figure 6.3 shows the controller performance when gravity compensation is added 

to the PD control signal. It can be observed that the errors due to gravity are removed 

successfully. Also, since the amount of PD control action which can counteract the 

 62



Coulomb friction effect is larger now, position distortions due to friction are reduced 

too.  

Finally, in Figure 6.4 the tracking performance with the PD control with gravity 

and Coulomb friction compensation is shown. That the estimation of the Coulomb 

friction is difficult is reflected in the simulation by adding an estimation error in the 

form of a 20 Hz sinusoidal with an amplitude equal to 10% of the Coulomb friction. 

The addition of Coulomb friction compensation does not actually add a lot to the 

controller performance after the addition of gravity compensation term. This suggests 

that the use of the “reliable” gravity compensation alone can be favored over using it 

with the hard to compute Coulomb friction compensation. 

We conclude by reemphasizing that the discussion of the compensation design is 

equally valid for any other controllers including haptic controllers which require 

dynamics compensation.  

 

 

Figure 6.1 PD control performance without fine tuning 
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Figure 6.2 PD control performance with fine tuning 

 

Figure 6.3 PD control with gravity compensation 
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Figure 6.4 PD control with gravity and Coulomb friction compensation 
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7 ASSEMBLY 

Mechanical design of the device is carried out in SolidWorks program. Assembly 

and detailed drawings have been completed prior to production. Three major sub-

assemblies of the device, namely planar elbow mechanism, vertical axis assembly and 

spherical wrist assembly are illustrated in the following figures. 

 

 

Figure 7.1 Base and planar elbow manipulator assembly 
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Figure 7.2 Vertical axis mechanism 

 

Figure 7.3 Spherical wrist mechanism 

 

Figure 7.4 Spherical wrist mechanism 
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Production of the designed parts is carried out at the Sabancı University 

machining workshop. Some of the parts had to be reprocessed or manufactured again in 

order to compensate for modeling errors or inaccurate manufacturing.  

Finally, the whole device containing motors, harmonic drives, bearings and force 

sensor is assembled. Photographs of the built device can be seen in the following 

figures. 

 

 

Figure 7.5 Full view of the haptic device 
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Figure 7.6 Close view of the vertical axis and spherical wrist 

After the mechanical assembly, wiring of the motors has been done and motors 

were tested to observe whether they operate as intended.  

Harmonic drive assembly has to be done properly in order to ensure high 

performance. During the manufacturing process of the drive construction parts, 

dimensions and tolerances stated in the harmonic drive catalogue has to be satisfied in 

order to achieve recommended concentricity and run-out values. 

Unfortunately, because of inaccuracies of our manufacturing facility, tolerances of 

the parts in contact with the harmonic drive are unfeasible which leads to mismatch in 

the axis alignment of the motor and the drive. Although harmonic drives employ 

Oldham couplings at the input stage, their tolerances were not sufficient to compensate 

for the inaccurate manufacturing. As a result of the axis misalignment and imprecise 

shaft tolerances, encountered friction was higher than calculated before. Thus no load 

running torque of the harmonic drive is increased. A large portion (almost 2/3) of torque 

capacity of the motor is spent to compensate the running torque of the harmonic drives. 

For the vertical axis mechanism, between different options such as rack and 

pinion, belt drive, ball and screw mechanism etc., the linkage structure shown in Figure 
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7.2 was chosen. This mechanism does not have backlash or friction as with other 

mechanisms mentioned above. Link lengths and thicknesses were selected according to 

workspace requirements and stress analysis. Once the assembly of the mechanism is 

completed, it was realized that the friction and backlash issues of other mechanisms 

were indeed prevailed. During the operation of the mechanism, backlash and friction 

problems were not encountered, thus the motor torque was efficiently spent on gravity 

effect. However, the rigidity of the linkage structure was not as high as foreseen. Our 

observation is that this is due to the complex assembly which employed large number of 

parts. 

Finally, spherical wrist part of the device is working properly showing expected 

dynamics. For the fifth link, timing belt is used which suffers play and backlash caused 

by elongation of the belt. In order to prevent this, a simple mechanism which provides 

tension to the belt is designed and built. Also the force sensor is mounted to the end 

effector between last roll axis motor and the handle. This procedure concludes the 

assembly of the device. 

The machining problems observed in the last phase of the thesis made 

reprocessing of certain parts necessary. Since the machining process requires time in the 

order of a couple of weeks (sometimes months) this re-machining process is left as a 

future work. 
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8 CONCLUSION 

The design and construction of a 6 DOF haptic device as an infrastructure for 

haptic applications is considered in this thesis. The design guidelines have been large 

workspace, high force-torque capacity and ergonomic use. A suitable kinematics 

arrangement and a set of actuation mechanisms are chosen for the specifications 

determined by these guidelines. Inverse dynamics simulations and stress analysis results 

are used to verify the performance of the selected actuators and transmission 

mechanisms and stiffness of the mechanical design. In order to fulfill the transparency 

requirements, dynamics compensation algorithms are developed for the designed haptic 

device. Based on the design requirements, the haptic device is built, assembled and 

integrated with the control hardware. 

The main problem encountered in the thesis work was the misalignment in the 

assembly of the reduction mechanisms and transmission elements of the three main 

axes. Improvements in the mechanical design and re-machining is considered as a future 

work. After reassembly, we expect that the device can function as a versatile test bed for 

haptic experiments at Sabancı University Mechatronics Laboratory. 
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