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ABSTRACT 

 

 

Due to their superior performance and stable leakage characteristics, brush seals 
are one of the dynamic seals used in oil and oil mist applications in aero-engines and 
turbines. The viscous medium between the high speed rotor surface and brush seal 
bristles generates a hydrodynamic lifting force that determines seal clearance and 
leakage rate in oil sealing applications. The analytical solution to bristle lifting force can 
be obtained by using Reynolds formulation. Following a short bearing approximation, a 
closed form solution of the lifting force has been previously presented. However, 
solution to hydrodynamic lift force suggests a strong dependence on oil temperature and 
viscosity. This work presents an analytical solution to oil temperature rise due to shear 
heating. Starting with continuity and Navier Stokes equations, temperature distribution 
is derived by solving thermal energy equation. The hydrodynamic lift force relation has 
been expanded to include oil temperature and viscosity variability due to rotor speed 
and lift clearance. Results are also compared with the experimental data obtained from 
the dynamic oil seal test rig. In addition to temperature analysis, pressure distribution 
for the brush seal is also derived by tracking three different ways, all of which gives 
consistent results with each other and real life applications. Derivation of shear heat 
effect included lift clearance, which is the most important parameter for leakage 
performance of brush seals, is also done and compared with experimental lift clearance 
data. 
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ÖZET 

 

 

Yüksek performansları ve kararlı akış karakteristikleri sebebiyle fırça keçeler, 
uçak motorlarında ve türbinlerde yağ ve yağ buharı sızdırmazlığında kulanılan dinamik 
sızdırmazlık elemanı türlerinden biridir. Yağ sızdırmazlığı uygulamalarında yüksek 
hızlı rotor yüzeyi ile fırça keçe telleri arasındaki viskoz ortam hidrodinamik kaldırma 
kuvveti oluşturur. Bu kuvvet fırça keçe ile rotor arasındaki mesafeyi, dolayısıyla yağ 
kaçak miktarını belirler. Hidrodinamik kaldırma kuvvetinin analitik çözümü Reynolds 
formülasyonu kullanılarak yapılabilir. Kısa yatak kabulü yapılarak kaldırma kuvveti 
için analitik çözüm daha önce elde edilmiştir; ancak hidrodinamik kaldırma kuvveti 
fonksiyonu yağ sıcaklığına ve viskoziteye bağlıdır. Bu çalışma viskoz ısı kaybından 
ötürü yağ sıcaklığı artışı için analitik çözüm sunmaktadır. Süreklilik ve Navier Stokes 
denklemlerinden başlanmış; termal enerji denklemi çözülerek sıcaklık dağılımı 
türetilmiştir. Hidrodinamik kaldırma kuvveti bağıntısı, rotor hızıyla ve hidrodinamik 
kaldırma yüksekliğiyle değişen yağ sıcaklığı etkisini içerecek şekilde genişletilmiştir. 
Sonuçlar dinamik yağ sızdırmazlık test düzeneğinden elde edilen deneysel verilerle 
karşılaştırılmıştır. Sıcaklık dağılımının yanı sıra, fırça keçe için basınç dağılımı üç ayrı 
yol izlenerek türetilmiştir. Basınç dağılımı için bulunan çözümlerin birbirleriyle ve 
gerçek uygulamalarla tutarlı olduğu görülmüştür. Fırça keçelerin sızdırmazlık 
performansının belirlenmesinde en önemli parametre olan hidrodinamik kaldırma 
yüksekliği, vizkos ısı kaybının etkisini de içerecek şekilde teorik olarak türetilmiş ve 
deneysel verilerle karşılaştırılmıştır. 
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1 INTRODUCTION 

 Sealing technology plays an important role in controlling turbo machinery 

leakages and coolant flows in turbines and compressors. They also help control overall 

rotor dynamic stability during transient conditions. Improvements in fluid film sealing 

lead to 0.2 to 0.6% reduction in heat rate and 0.3 to 1% increase in power output in 

compressor applications. Seal clearance is the most important parameter in determining 

leakage performance, where excessive clearances cause efficiency losses and flow 

instabilities. Brush seals recently emerged as a seal technology in oil and oil mist 

applications in order to avoid clearance related problems and to achieve higher 

efficiences. Labyrinth seals, carbon seals or oil rings are other sealing elements that are 

commonly used around the bearings and oil sumps. Tighter clearances are required at 

these locations to avoid oil contamination of the downstream turbine components, or to 

minimize oil consumption levels. In some generator applications, these requirements are 

accentuated by the presence of explosive cooling gas. Due to their superior leakage 

performance, stable leakage characteristics and superior performance in accommodating 

transient conditions, brush seals are becoming more and more popular in sealing 

applications.  

1.1 Brush Seal Structure 

Brush seal is a dense pack of fine diameter (0,05 to 0,15mm) wire bristles which 

are sandwiched and welded between backing plate and the retaining plate (front plate). 

Fiber density is around 785fiber/cm (2000 fibers/in). The weld on the seal outer 

diameter is machined to obtain tight tolerances at the outer sealing surface which is 

fitted into a suitable housing. The bristles are extended radially inward beyond the 

backing plate, and machined to form a bore fit with the mating rotor. Typically, brush 

seals are mounted around a rotor with a slight interference. Selection of interference 
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must be properly done to avoid catastrophic rotor overheating and excessive rotor 

thermal growth problems.     

 

 
Figure 1.1 Brush seal geometry 

 

 Low pressure occurs at the downstream side while high pressure is applied at the 

upstream side of the brush seal. Pressure difference between upstream and downstream 

sides is called the “pressure load”. Under the pressure load, fluid flows from upstream 

side to downstream side, which corresponds to rotor axial direction, in the presence of 

pressure load. Shaft rotation is perpendicular to the leakage flow direction. 

 Backing plate is placed at the downstream side of the brush seal to provide a 

mechanical support to bristles under differential pressure loads. Retaining plate tightly 

clamps the bristles and holds them in plane. Brush seal is mounted around a mating 

rotor with a slight interference where bristles touch the rotor with an acute angle, which 

is so called cant angle, in the direction of the rotor rotation. Brush seals perform very 

well under rotor transients owing to the inherent compliance of bristles. Cant angle 

allows bristles to bend without buckling so that radial shaft movements can be 
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accommodated. Typically, cant angle, Ө, changes between 35o to 55o. Decreasing Ө 

causes bristles to behave much stiffer during rotor excursions. 

 BH is the distance between the front plate and the rotor surface, and defined as 

“free bristle height”. FH, which is defined as “Fence height”, is the distance between 

the rotor surface and the backing plate. Bristles have most lack of restriction in fence 

height region. 

 

 
Figure 1.2 Brush seal parameters 
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1.2 Main Phenomenon in Brush Seals  

In brush seal applications, pressure difference between upstream and downstream 

sides results in fluid flow in rotor axial direction. In addition, a small amount of radial 

flow can also be observed in brush seals since there is a pressure difference between the 

upper and bottom sides of the brush pack as well. In brush seals, leakage performance 

of the seal is mostly determined by the dominant axial flow. 

 
Figure 1.3 Leakage flow in a brush seal, Aksit [33] 

 

 Together with frictional forces, loads generated by leakage flows and pressure 

gradients in radial and axial directions cause mainly four phenomenon in brush seal 

applications, 

 Bristle stiffening 

 Hysteresis 

 Blow-down (Pressure closure) 

 Bristle fluttering 
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1.2.1 Bristle Stiffening 

As a consequence of pressure load in axial direction and friction mechanism, 

frictional forces are generated in between the bristles and between the bristle pack and 

the backing plate. During transient operation, rotor excursion takes place because of 

maneuver loads, thermal expansion and elastic deformation of the rotor. Frictional 

forces cause bristles to behave much stiffer when they are pushed radially during a rotor 

excursion. Bristle stiffening leads to increase in contact loads at the rotor surface, which 

cause high wear rates.  

In steady state conditions of oil seals, frictional forces take a role in determining 

seal clearance as they contribute to reaction forces, which balance the hydrodynamic lift 

force. 

1.2.2 Hysteresis 

There are two types of hysteresis, one of which occurs after a rotor excursion 

and called dynamic hysteresis. During rotor excursion, bristles are pushed radially out 

in order to compensate eccentric and thermally expanded rotor. After steady conditions 

are reached, rotor returns to its steady state position and dimension whereas radially 

displaced bristles can not follow the rotor, and remain hung-up due to pressure load and 

friction mechanism. This time, frictional forces prevent bristles to track rotor motion. 

Dynamic hysteresis creates a leakage problem since  it causes leakage rate to increase 

by increasing seal clearance. 

Other type of hysteresis is static hysteresis, which is observed without any rotor 

excursion. If a simple pressurization-depressurization cycle is applied to a brush seal, 

leakage rate for each leg of the cycle differs from each other. During pressurization leg, 

bristles are pushed radially out and locked in a certain position, again as a result of 

pressure load and friction mechanism. Therefore, same seal clearance can not be 

obtained during depressurization leg which results in different leakage rate. Change in 

leakage rate with pressure load for a pressurization-depressurization cycle is called 

hysteresis curve. 
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Figure 1.4 Bristle stiffening and dynamic hysteresis, Aksit [33] 

1.2.3 Blow-down 

As it was mentioned in the previous pages, a limited amount of radial flow within 

the bristle pack occurs due to slight pressure difference in the radial direction. 

Therefore, when a pressure load is applied to a brush seal, bristles at high pressure side 

are prone to move towards the rotor. This is called “blow-down” or “pressure closure”. 

Radial flow and blow-down force increases as moved downstream within the bristle 

pack. Bristles at high pressure side are less restricted compared to the bristles at 

downstream side due to increasing cumulative axial pressure and inter bristle contact 

forces.  However, downstream bristles are subject to higher radial pressure loads.  

In order to control pressure closure, extended retaining plates can be used. 

Although usage of extended retaining plates eliminates most radial flow, pressure 

closure can still be observed. The reason for this pressure closure is the tendency of 

inclined bristles to bend towards the rotor under axial load. Increasing pressure load and 

cant angle increases pressure closure. 

In steady state conditions, blow down force driven by radial pressure gradients 

takes an important role in determining seal clearance and contact forces.  
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1.2.4 Bristle Fluttering 

As a result of lack of restriction, upstream side bristles tend to flutter under the 

aerodynamic disturbances at inlet region such as turbulence or jet flow coming from an 

upstream brush seal in a cascade setup. Flutter problem is generally observed in air 

brush seal applications, and causes sudden loss of high pressure side bristles uneven 

seal wear. Damping shims and extended retaining plates can be used in order to avoid 

bristle fluttering problem.   

1.3   Problem Statement  

 The leakage performance of the brush seal is directly related to seal clearance. 

Therefore, seal clearance becomes the most important parameter in steady state. When 

air is the sealing medium, aerodynamic lift forces, which are generated on very small 

bearing surface, can not overcome blow-down and friction forces driven within the 

brush pack. The small bearing surface and the low viscosity of the air are the reasons for 

weak aerodynamic forces. If the sealing medium is oil, hydrodynamic lifting force 

becomes dominant, and the associated clearance becomes important. 

 In oil brush seals, lifting force deflect the bristles off the rotor surface. 

Hydrodynamic lift clearance is determined when the balance between the hydrodynamic 

lifting force and reaction forces is reached. Reaction forces mainly consists of three 

components: Reaction forces due to bristle deflection, blow-down forces occuring due 

to radial pressure gradients and frictional forces in between the bristles and between the 

bristle pack and the backing plate.  

 Shear heating of the oil is the main phenomena in brush seals which causes high 

speed lift stabilization. Hydrodynamic lift clearance increases with rotor surface speed 

up to a certain value due to considerable lifting effect with rotation. Effect of shear heat 

dissipation on viscosity can not overcome the lifting effect of rotation at low surface 

speeds. Increasing shear heating effect at moderate and high speeds yields to a 

significant drop in viscosity, which stabilizes the lift clearance, and therefore leakage 

flow.  
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1.4   Literature Survey  

 Literature on thermal aspects of brush seal remain limited, despite their increasing 

use in secondary flow sealing applications during the last few decades. In one of the 

early works, Gorelov et al. [1] showed that with the decrease in airflow rate, there is a 

marked heating of the brush. At the same time, very little airflow is sufficient for 

cooling at low-pressure differentials. Hendricks et al. [2] were the first to consider the 

frictional heat flux by employing a formula as products of spring force, surface speed, 

and interface heat coefficient. They calculated increasing heat flux as a function of 

interference. Owen et al. [3] developed a formula to calculate the heat generation; 

however, their analysis requires the rotor surface temperature as an input. It was 

assumed that heat was conducted towards bristles and dissipated to the airflow. Chew 

and Guardino [4] developed a computational model for flow between the bristle tips and 

the rotor to calculate tip force, wear, and temperature. The model includes heat 

conduction and heat generation due to contact friction. Demiroglu [5] developed a 

closed form equation to calculate heat generation. He measured the temperature field 

over the rotor rim and fence height region using an infrared thermograph technique. In a 

more recent work, Dogu et al. [6] provided analytical and numerical investigations of 

brush seal temperature distribution after providing an outline for the seal heat transfer 

mechanism. The full flow and temperature field solution has been obtained using a two-

dimensional axisymmetric CFD model. 

 All of the above mentioned literature deals with air as the sealing medium, and 

studies frictional heat related problems at rotor bristle contacts. On the other hand, when 

a liquid medium needs to be sealed such as hydrogen generator buffer oil seals or liquid 

hydrogen/oxygen seals in rocket turbo pumps, problem gets more complicated as 

hydrodynamic lift prevents bristle rotor contact, and shear heating gets into the picture. 

Although there had been some early experimental works to use brush seals under 

cryogenic conditions for liquid hydrogen/oxygen sealing [7], only a few data points 

have been published on thermal aspects [8]. Rumors on some early coking failures with 

stiff metallic brush seals, which were actually designed for air applications, hindered 

brush seal oil applications.  Renewed attempts for oil and oil mist sealing applications 

are rather new starting with Ingistov [9], who reported use of brush seal in a bearing oil 

sealing application. Later, Bhate et al. [10] reported success in a similar gas turbine 
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bearing oil sealing application. Both of these applications involved use of nonmetallic 

brush seals to prevent bearing oil from being ingested in to the compressor. However, 

these seals were designed to work with buffer air or oil mist. Therefore, the work by 

Ingistov [9] did not include any oil temperature rise issues. Bhate et al. [10] reported 

that heating across the seal was not excessive. Although limited, their tests did not 

reveal any apparent oil coking. 

Brush seal applications for liquid oil flow appeared first in patent disclosures [11-

14]. Detailed performance characteristics of oil brush seals were reported by Aksit et al. 

[15]. They have demonstrated feasibility of metal brush seals for oil sealing applications 

if the seal had been designed properly. Their experimental data clearly indicated 

presence of hydrodynamic lift appearing as increased oil leakage with speed. They 

studied the temperature rise in oil brush seal applications. Their findings indicated that 

oil temperature rise levels at high speeds due to shear thinning. 

When oil is the sealing medium, hydrodynamic lift becomes dominant, and 

associated clearance can not be omitted. Seal clearance generated by hydrodynamic lift 

bears critical importance in oil seals, as it affects leakage performance and amount of 

shear heat generated. In an attempt to help designers with brush seal applications when 

sealing medium is liquid, Aksit et al. [16] provided a simple analytical formulation that 

does not rely on any empirical constants or correlations. Their analysis is developed 

based on Reynolds relation typically used for hydrodynamic bearings. Although simple 

and easy to use, their analysis required the knowledge of effective viscosity of the oil 

for a given speed and lift clearance. As indicated at the early experiments, shear heating 

becomes dominant at high rotor speeds. Strong temperature-viscosity dependency of 

lube oils presses the need for a detailed analysis and understanding of the effect of shear 

heat on hydrodynamic lift of brush seals in oil sealing applications. To provide a better 

understanding about the critical balance of hydrodynamic lift force with speed, viscosity 

and pressure difference, this work presents an analytical study to investigate shear heat 

temperature rise in liquid sealing medium within the hydrodynamic lift clearance. A 

closed-form solution to temperature distribution in axial and radial directions has been 

obtained by solving thermal energy equation. Effective temperature has been calculated 

for different values of rotor surface speed, pressure difference and hydrodynamic lift 

clearance. Calculated speed dependent viscosity values have been adopted into the 



10 

bearing theory to calculate hydrodynamic lifting force. Results have been compared 

with lifting force obtained by Aksit et al. [16] through beam and short bearing analyses. 

 In addition to boundary layer and temperature analysis for the oil under the bristle 

pack, pressure distribution under each bristle is also derived by applying Reynolds 

bearing theory. 

 As mentioned before, hydrodynamic lift clearance is the most important 

parameter which affects the brush seal steady state leakage performance. Therefore, 

hydrodynamic lift clearance is analytically derived, and compared with the available 

experimental lift data. 

 In this study, design and design considerations for high speed seal test rig is also 

given.  
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2 TEST RIG DESIGN AND EXPERIMENTAL LEAKAGE DATA 

In steady state, seal clearance is the most important parameter for the brush seal. 

If the sealing medium is oil, hydrodynamic lifting force becomes dominant, and the 

associated clearance becomes significant. Hydrodynamic lift clearance is the main 

parameter in determining leakage performance of the oil brush seal. Lift clearance 

changes with rotor surface speed and pressure load. In engine applications, clearance 

increases as rotor speed increases, and stabilizes after a certain rotor speed. The reason 

for this stabilization is the shear heating of the oil. A better understanding of shear heat 

dissipation can be achieved by means of thermal analysis and hydrodynamic bearing 

theory. A seal test rig is designed to obtain leakage data for hydrodynamic lift clearance 

evaluation, pressure and temperature data, which will be used to validate theoretical 

results of thermal and hydrodynamic bearing analysis. In this chapter, information about 

design and assembly of the test rig is given.  

2.1   Test Rig Design 

Design and production of the components of the seal test rig allows tight tolerance 

control on critical dimensions. Every part of the assembly is made of stainless steel, 

which permits testing at high temperatures. Since balancing of the rotating sections has 

a great importance, test rig components are produced with tight tolerance and minimal 

surface roughness.    
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2.1.1  Seal Housing Design 

Seal housing assembly is the part of test rig where brush seals are placed. 

Exploded view of housing assembly is shown in Figure 3.1.   

 
Figure 2.1 Exploded view of the seal housing assembly    

 

 

2.1.1.1 Housing  

Housing is the base part for the seal housing assembly. Test oil is supplied 

through an oil inlet hole to the cavity between rotor and brush pack surfaces, and in 

between bristles. Three probe holes are threaded in accordance with 3/8-24UNJF-3B 

standard, two of which are for pressure gauges, and the third one is for the 

thermocouple. ETM-375-7BAR-A types of GE pressure transducers are used, which 

have 707.927mV/BAR sensitivity and -18oC to 100oC compensated temperature range. 
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Thermocouples are K-type with 1000oC full scale range. Measured pressure and 

temperature values are transferred to the computer by means of 20-channel data 

acquisition system, and monitored in an EXCEL sheet. 

Since the testing medium is pressurized oil, O-rings have to be used between 

mating housing parts to avoid bias leakages. For this purpose, O-ring grooves are 

opened on both sides of the housing.  

Seal housing components are assembled using bolt-nut combination. Bolt holes 

are drilled through the side surfaces of the housing. Seal housing assembly is fixed to a 

graduated moveable slide from the bottom of the housing with M16 bolts. 

 

 
Figure 2.2 Detailed view of housing   

   

In cases where leakage is small and test speed is high, shear heat developing 

within oil can not be removed quickly. Therefore, heating of the housing constitutes a 

problem arising from elevated oil temperatures during leakage tests. In order to 

overcome heating problem, water is used as a cooling fluid, which is circulated within 

the housing through a set of water cooling holes. Cooling water at the outlet is send to a 

heat exchanger than a water tank with the aid of a circulation pump. A detailed drawing 

of housing is given in Figure 2.2. 
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2.1.1.2 Adaptor and Seal Rings 

Adaptor is designed to support brush seals and to form a sump to collect the oil 

leaking through the test seals. Inlet region of the adaptor is manufactured with a recess 

in order to provide satisfactory space for the oil inlet chamber. Outer surface of the 

adaptor is mated to the inner surface of the housing, and brush seals are mounted at 

either sides of the adaptor. Together with seal rings, adaptor forms the high pressure 

inlet cavity for brush seals. Seal rings clamp the brush seals to the adaptor. The simple 

geometry of the seal rings makes their replacement convenient bringing the flexibility 

of working with different brush seal geometries. Adaptation of different brush seals can 

be achieved by only changing the seal ring dimensions. Detailed view of adaptor and 

seal rings assembly is given in Figure 2.3. 

 

 
Figure 2.3 Detailed view of assembly of adaptor and seal rings 
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2.1.1.3 Side Plates 

Side plates are mounted at either sides of the housing and bolted through in order 

to tighten seal rings. During leakage tests, high pressure is obtained at the inlet region of 

the adaptor. Therefore, oil flows from this inlet region towards the side plates, and gets 

collected in the sump region, which is formed between side plates and cover sheets. 

Excess oil is pumped backed to the oil tank from oil outlet, so that continuous 

circulation of oil is maintained.   

 
Figure 2.4 Detailed view of left side plate 

2.1.1.4 Cover Sheets 

Since test medium is oil, contamination problem may arise from exposure to 

environment. Together with the side plates, cover sheets avoid contamination by 

forming a closed sump region. Left cover sheet is produced as a single part whereas 

right cover sheet consists of two distinct components. Upper half of the right cover 

sheet has an extension, which prevents oil leakage to spil or drip on rotating shaft. 

During leakage tests, rotor spins inside the seal housing assembly. Circular opening on 

the right cover sheet allows rotor placement into the assembly.  
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Cover sheets are assembled onto side plates with M10 bolts. They can be removed 

without disassembling seal housing. Therefore, intervention to the seal assembly in the 

case of any problem can be achieved by simply removing one of the cover sheets. 

Detailed view of left and right cover sheets are shown in Figure 2.5 and 2.6 

respectively. 

 
Figure 2.5 Detailed view of left cover sheet 

 
Figure 2.6 Detailed view of right cover sheet 
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2.1.1.5 Seal Housing Assembly 

The seal housing assembly is designed to test two seals at the same time. 

Symmetric location of two brush seals eliminates any axial loading on the rotor. This 

brings the advantage of high speed testing at elevated pressures which are typically 

experienced in gas turbine brush seal applications.  Use of through bolts provides easy 

assembly and disassembly. Removable seal rings allow testing of different brush seal 

geometries and facilitate testing of other rotary seals.  

 

 
Figure 2.7 Seal housing assembly 

 

Oil is pumped into the inlet cavity of the adaptor where the high pressure is 

obtained. As a consequence of the pressure difference between the inlet cavity and the 

outer side of the seal rings, pressure driven leakage flow occurs in the axial direction. 

On the other hand, Couette flow occurs in the direction of rotor rotation in addition to 

Poiseuille flow. Rotor surface speed is the reason for velocity driven circumferential 

flow. Cross-sectional view of the seal housing where rotor and brush seals are located is 

given in Figure 2.8. 
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Figure 2.8 Cross-sectional view of the seal housing assembly 

 

 

2.1.2  Spindle Holder Design 

 Spindle is the part which supplies power for the shaft rotation. Rotational motion 

of the spindle is transmitted to the rotor through a connection rod. Balancing of the rotor 

has an extreme importance as small imbalance together with high rotor speeds may 

cause serious problems. Therefore, centering of the rotor and stabilization of the spindle 

is critical. Spindle stabilization is achieved by tightening it between two clamps, one of 

which is assembled onto a moveable slide. As shown in Figure 2.9, spindle holder 

consists of five main components: Spindle, upper clamp, lower clamp, connection rod 

and rotor.    
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Figure 2.9 Exploded view of spindle holder assembly 

 

 

2.1.2.1  Clamps 

 Spindle is mounted between upper and lower clamp, and tightened with the aid of 

six M12 imbus bolts. Radii of the inner surface of clamps are 75mm, which equals to 

spindle radius. In order to obtain sufficient tightness to fix the spindle, lower surface of 

the upper clamp is machined around 0.4mm so that contact of upper and lower clamp is 

hindered. As a result of this, inner surfaces of both clamps perfectly touch the surface of 

the spindle. As clamps are bolted, they tend to approach each other. However, contact 

between spindle surface and inner surfaces of clamps avoid this movement so that all 

compression force acts on the spindle, and desired tightness can be obtained.  

Since the parallelism and the stabilization of the spindle are critical, inner surfaces 

of the clamps are manufactured with tight tolerances and small surface roughness. 
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Middle parts of both clamps are produced with the radius of 79mm in order to make 

clamping insensitive to any possible form errors.  

Lower clamp is placed onto a moveable slide, and fixed with three M16 imbus 

bolts. The channel on the inner surface of the lower clamp is opened to embed bold 

heads within the lower clamp. 

 
Figure 2.10 Detailed view of upper clamp 

 

 
Figure 2.11 Detailed view of lower clamp 
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2.1.2.2 Spindle and Connection Rod  

Rotor rotation is powered by GMN-High frequency spindle. Model of the spindle 

is HV-X 150-45000/25, with 150mm diameter, 45000rpm maximum rotational speed 

and 25kW output rating.  

Power of the spindle is transmitted to the rotor by a connection rod, which is 

produced from the runout test rod supplied with the spindle. Original test rod gives 8µm 

run-out at 10 cm from spindle end. This tight run-out value helps a great deal in 

balancing the rotor. Original test rod has 28mm diameter at the spindle side, which is 

completely bolted into the spindle head. Its diameter increases to the value of 48.2mm 

as moved away from spindle. Test rod is threaded to provide assembly with spindle 

head. This threaded connection permits tightening in one direction.  

In order to achieve accurate centering of the rotor, original test rod is machined 

with 15o cone angle, and its diameter is reduced to 30mm. This reduced section is 

threaded after cutting the unnecessary length. Rotor is also bored with same cone angle 

so that the inner surface of the rotor becomes coincident with the conical surface of the 

connection rod. M30 nuts are used to tighten the rotor on the connection rod.  

 

 
Figure 2.12 Drawings of original test part and connection rod 
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2.1.2.3 Rotor 

 Shaft and brush seals contact in the engine is simulated by the test rotor. As 

mentioned before, rotor is placed and rotated at the bore of the seal and the housing. 

Each seal faces three radial rotor steps. Varying diameter of the rotor surface allows 

testing the brush seals under different seal interferences. Center of the rotor is drilled 

with 15o cone angle down to a diameter of 30.5mm, and thereafter has a bore with 

constant diameter. Cross-sectional view of the rotor and detailed view of connection 

rod-rotor assembly is given in Figures 2.13 and 2.14 respectively. 

 
Figure 2.13 Cross-sectional view of the rotor 

 

 
Figure 2.14 Detailed view of connection rod-rotor assembly 
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2.1.2.4 Spindle Holder Assembly 

 Spindle is successfully fixed with the given spindle holder design. Isometric view 

of spindle holder is given in Figure 2.15. 

 
Figure 2.15 Spindle holder assembly 

 

 

2.1.3 Test Rig   

 Seal housing and spindle holder are mounted on slides, which are positioned using 

dowel pins, and bolted onto a stainless steel platform. Usage of a platform brings the 

advantages of added stiffness, further damping of vibration and ease of portability for 

the test rig. Assembly process starts with mounting the brush seals into the housing with 
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the aid of adaptor and seal rings, and assembling the components of seal housing instead 

of cover sheets. Then, rotor is placed into the seal housing using the slide.  

 
a) 

 
b) 

Figure 2.16 Different views of test rig: a) Isometric view b) Front view 
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Figure 2.17 Cross-sectional view of the test rig 
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 Axial motion of the rotor is achieved by the slide under the lower clamp whereas 

housing motion, which is vertical to the rotor axis, is achieved by the slide mounted 

under housing. This motion of the housing permits performing leakage tests for 

eccentric rub conditions. 

 
Figure 2.18 Side view photo of test rig 

 

 
Figure 2.19 Isometric view photo of test rig   
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Figure 2.20 Isometric view photo of test rig from different perspective  

 

Stainless steel platform, where test rig is constructed on, is fixed onto a steel table 

for stability. Oil and water tanks are placed under the table. The control unit for the 

spindle is hanged onto the platform. 
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2.2   Experimental Results 

 Hydrodynamic lift clearance is the most important parameter for oil seal 

applications in steady state. However, direct measurement of lift clearance is very 

difficult. Therefore, leakage rate is measured during leakage tests. Since dual brush seal 

configuration is used in order to avoid axial loading on the rotor, leakage values are 

averaged.  

Flow rate measured for static case represents the leakage through the porous 

bristle pack. As rotor surface speed increases, additional leakage occurs due to the fact 

that bristles are lifted of the rotor surface. Flow rate stabilizes after a certain rotor speed 

which indicates stable hydrodynamic lift clearance formation as a result of shear 

heating. Due to the fact that manufacturing of the designed seal test rig could not be 

completed in time for this dissertation, experimental data provided by Aksit et al [16] 

has been used for verification. Measured flow rate per seal circumferential length 

change with rotor surface speed for different pressure loads is given in Figure 2.21.  

 
Figure 2.21 Flow rate per seal circumferential length versus rotor surface speed for 

different pressure loads 
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 ∆P = 48.3 kPa ∆P = 89.6 kPa 

Rotor surface speed 
[m/s] 

Flow rate 
[(cm3/s)/cm] 

Flow rate 
[(cm3/s)/cm] 

0 0.109 0.162 

6.2 0.196 0.256 

12.3 0.226 0.293 

20.5 0.226 0.301 

Table 2.1 Experimental flow rate data for different rotor surface speeds and pressure 

loads 

 

 Assuming that the portion of the leakage flow through the porous bristle pack 

does not change with hydrodynamic lift clearance, which means that pressure difference 

between upstream and downstream side is remained constant for increasing rotor 

surface speeds, hydrodynamic lift clearance inducing additional leakage can be 

calculated.  

 CFD model of Aksit et al [16] is used for hydrodynamic lift clearance 

calculations. In his model, Aksit et al  [16] define the rotor surface as a non/rotating 

wall boundary in circumferential direction. In ax-symmetric direction, boundaries of the 

model domain are defined as symmetric boundaries for non-rotational cases. Cyclically 

matched boundaries are defined for cases with rotation. In his study, domain is divided 

into finite volumes, and Navier-Stokes equations are numerically solved for this 

domain. Aksit et al use the porous medium approach for the bristle pack, which is given 

by the following equation. 

 

( )i i i i
dP u u
dx

α β− = +  (2.1)

 

 In Eq. 2.1, P is pressure, αi is the effective anisotropic inertial flow resistance, βi is 

the effective anisotropic viscous flow resistance and ui stands for the mean velocity of 

the fluid. Effective flow resistance coefficients for bristle pack are calibrated to match 

the experimental leakage data by performing CFD analysis for non-rotating conditions. 

Rotation and clearance are included into the CFD model after leakage is matched in the 

first step. The clearance of CFD model is changed until experimental leakage data for a 



30 

given pressure load and rotor surface speed is captured. As a result of this, 

hydrodynamic lift clearance data can be derived from experimental leakage data with 

the aid of CFD model with calibrated coefficients. Change of hydrodynamic lift 

clearance with rotor surface speed is given in Figure 2.22 [16].  

 

 
Figure 2.22 Hydrodynamic lift clearance versus rotor surface speed under different 

pressure loads, based on experimental leakage data, Aksit et al [16] 

 

 ∆P = 48.3 kPa ∆P = 89.6 kPa 

Rotor surface speed 
[m/s] 

Hydrodynamic lift 
clearance [mm] 

Hydrodynamic lift 
clearance [mm] 

0 0 0 

6.2 0.044 0.038 

12.3 0.052 0.044 

20.5 0.048 0.044 

Table 2.2 Hydrodynamic lift clearance data for different rotor surface speeds and 

pressure loads, based on experimental leakage data 
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 As it can be seen from the figure, hydrodynamic lift clearance increases with rotor 

surface speed, and stabilizes after a certain value of speed. The reason for that 

stabilization is the shear heating of the oil. Lift clearance is highly dependent on oil 

viscosity, which is a strong function of temperature. High rotor speed together with 

small clearance result in oil temperature to rise, which causes shear thinning of the oil 

by means of decrease in viscosity. This shear thinning effect is the reason for high speed 

lift clearance stabilization. 
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3 DERIVATION OF OIL TEMPERATURE DISTRIBUTION FOR BRUSH 

SEALS IN OIL SEALING APPLICATIONS 

 
 Significance of hydrodynamic lift clearance in determining leakage performance 

of brush seals in oil sealing applications brings up the issue of shear heating effect. As 

mentioned in the previous chapter, shear heat dissipation, which causes oil viscosity to 

decrease, is the reason for high speed lift clearance stabilization. Therefore, detailed 

investigation and theoretical derivation of the oil temperature distribution has a great 

importance in brush seal applications. In this chapter, temperature distribution analysis 

is done. Continuity and Navier-Stokes equations are solved with the assumptions which 

are also given in this chapter. A closed form solution to the temperature distribution of 

the oil is obtained with the assumption of linear pressure distribution in the axial 

direction of the rotor. Function of temperature is also derived for nonlinear pressure 

distribution in the rotor axial direction, and temperature distribution is solved 

numerically for the nonlinear pressure case. Results of two temperature analyses are 

also compared.                   

3.1   Selection of Control Volume 

Analysis of boundary layer and thermal energy equations starts with the selection 

of a control volume. For this purpose, control volume is selected as the volume between 

the bristle pack and the rotor surface, as shown in Figure 3.1.   
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Figure 3.1 Selection of control volume 

 

 Due to the fact that the axial leakage flow is dominant, radial flows (flows in z-

direction in Figure 3.1) are neglected for the sake of simplicity. To be able to solve 

thermal energy equation, it is required to solve continuity and Navier-Stokes equations 

to find the velocity profile for the fluid. These equations are solved under the 

assumptions of, 

1. Steady state  

2. Incompressible flow 

3. Convection from rotor surface and bristle surfaces to the fluid is neglected. 

In the analysis of the boundary layer equations, rotor and bristle surfaces are taken 

as flat surfaces, and the control volume as the rectangular volume between these 

surfaces. As shown in Figure 3.2, L is the circumferential length of the rotor surface, w 

is the width of the bristle pack, H is the hydrodynamic lift clearance, and u is the rotor 

surface speed. Note that L, w, and H are also the dimensional scales for the control 

volume. Seal design parameters which are used in analyses as well as the experiments 

are, 

mmRrotor 67=  

mRL rotor
3104052 −⋅≈⋅⋅= π  

mw 41025 −⋅=  
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 Hydrodynamic lift clearance changes with pressure difference and rotor speed. 

Based on the experimental data, amount of lift and the inlet temperature for the initial 

steps of analysis are taken as, 

mH 61040 −⋅=  

CTu
°= 50  (upstream temperature) 

 Density and the specific heat values for the oil at the upstream temperature are,  
3884.61 /kg mρ =  

2030.5 /pc J kg C= °  

 

 
Figure 3.2 Unwrapped brush seal geometry 

 

3.2   Solution to Continuity and Navier Stokes Equations for the Brush Seal       

 To be able to solve thermal energy equation, velocity profile and pressure 

distribution for the oil have to be known. Therefore, it is required to solve continuity 

and Navier-Stokes equations. 
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 The leakage flow through the control volume is a channel flow, and Reynolds 

number is required to investigate whether the flow is laminar or turbulent. 

Hydrodynamic lift clearance, which is perpendicular to the flow, is the characteristic 

length for the Reynolds number. 

 

Re f
H

Hρ υ
µ

⋅ ⋅
=  (3.1)

 

Where ρ is the density of the fluid, and υf is the mean fluid velocity. Viscosity of the oil 

at 50oC, which is the upstream temperature, is 0.0195Pa.s, and the density of the oil at 

upstream temperature is 884.61kg/m3. Mean fluid velocity is derived by dividing the 

flow rate per circumferential length of the rotor with hydrodynamic lift clearance. To 

match the available data, flow rate per circumferential length of the rotor is taken as 

0.4(cm3/s)/cm, and hydrodynamic lift clearance is taken as 40µm. Reynolds number is 

found with these values as, 
4

6
6

0.4 10884.61 40 10
40 10Re 1.81 2300
0.0195

f
H

Hρ υ
µ

−
−

−

⋅⋅ ⋅ ⋅⋅ ⋅ ⋅= = ≈ <<  (3.2)

          

Therefore, the flow is determined to be laminar. Another concern is about whether the 

flow is fully developed or not. For the flow of interest, starting point for the fully 

developed region can be calculated by using the equation given below. 

 

, 6 6
,0.05 Re 0.05 1.81 40 10 3.6 10fd h

H fd h
lam

y
y m

H
− − 

= ⋅ ⇒ = ⋅ ⋅ ⋅ ≈ ⋅ 
 

 (3.3)

   

As mentioned before, width of the bristle pack is taken as 2.5mm. From Equation (3.3), 

the starting point of fully developed laminar flow is found as 3.6µm, which is almost 

thousand times smaller than the width of the bristle pack. As a result of this, the flow is 

assumed to be fully developed through the bristle pack.    

Continuity and Navier-Stokes equations with the assumption of no radial flow (no 

flow in z-direction) are given through Equations (3.4) to (3.6). 
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P is the pressure, υx, υy, υz are the fluid velocity components in x, y and z-directions, µeff-z 

is the dynamic viscosity of the oil at a certain z coordinate, and g stands for gravitational 

acceleration. Since gravitational terms are small compared to other terms, they can be 

neglected. For steady state conditions, 
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Since there is no flow in z-direction, all related terms takes the value of zero. 
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Following from brush seal geometry relations provided in Equation (3.9) can be stated 

for dimensional scales of the problem.  
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which further leads to the following inequality the relations. 
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Following the above mentioned simplifications, N-S equations given in Equations (3.5) 

and (3.6) are reduced to the form given below by using relations given in Equations 

(3.7) through (3.11). 
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 In Equations (3.12) and (3.13), µeff-z is taken out from ∂ /∂ z. In this study, 

dynamic viscosity is taken as a function of temperature. Temperature field, which is 

going to be derived in the following sections, varies along y- and z-directions. µeff-z is the 

value of dynamic viscosity which is calculated for a certain point on z axis. As a result, 

µeff-z is a function of y, and independent of z. 

 Terms of modified Navier-Stokes Equations given in Equations (3.12) and (3.13) 

are non-dimensionalized in order to take the analysis one step further. For this purpose, 

following normalized parameters are used. 
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Substituting these parameters into the modified N-S Equations (3.12) and (3.13) gives, 
* * 2 **

* *
* * * *2Re x x x

H u x y
H P
L x y x z

υ υ υυ υ−

 ∂ ∂ ∂∂
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 (3.15)
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* * 2 ** 2
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ReH-u stands for Reynolds number for which the characteristic length is the 

hydrodynamic lift clearance and the velocity is the rotor surface speed. To match the 

available data, ReH-u is calculated for 10m/s rotor surface speed using the above 

mentioned viscosity, density and H values. 
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Since the ReH-u is much smaller than unity, inertia terms can be neglected. 

Therefore, left hand sides of the Navier-Stokes equations drop leading to reduced 

Navier-Stokes equations (3.18) and (3.19) as, 
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 Velocity profiles for the fluid in x and y directions are found by solving reduced 

Navier-Stokes Equations (3.18) and (3.19) respectively. 

 

( ) 





 −⋅+⋅−⋅

∂
∂
⋅=

H
zuHzz

x
P

zeff
x 1

2
1 2

µ
υ  (3.20)

( )Hzz
y
P

zeff
y ⋅−⋅

∂
∂
⋅= 2

2
1
µ

υ  (3.21)



39 

Substituting xυ  and yυ  into the continuity equation (Equation (1)) yields, 
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Since L>>w, which means 22 yx ∂
∂

<<
∂
∂ , Equation (3.22) reduces to, 
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Equation (3.23) is the differential equation governing the variation in 

hydrodynamic pressure in axial (y) direction. Pressure takes the value of upstream 

pressure for y equals to zero, and takes the downstream pressure value at the end of 

bristle pack, where y equals to the width of the bristle pack, w. These two values of the 

pressure set the boundary conditions for Equation (3.23). Downstream pressure value 

equals to atmospheric pressure. Upstream pressure value is determined per pressure 

load value, ∆P, which changes from design to design.  

3.3   Solution to the Thermal Energy Equation with Linear Pressure Distribution 

Assumption                 

 The term µeff-z in Equation (3.23) depends on y, and can not be taken out.  

However, for the sake of simplicity, and to be able to find a closed form solution to the 

temperature distribution, pressure gradient along y-axis is assumed to be constant. As 

stated by Bhate et al [10], axial pressure drop is almost linear. Therefore, Equation 

(3.23) reduces to, 
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 Pressure distribution can be obtained by solving this differential equation with the 

given boundary conditions as,  

u
PP y P

w
∆

= − ⋅ +  

where u dP P P∆ = −  

(3.25)

All required information to solve thermal energy equation has been obtained. In 

most general form, 3-D thermal energy equation for an incompressible flow is given 

below. 
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 (3.26)

where φ  is the dissipation function defined as, 
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(3.27)

 

 In thermal energy equation (3.26), '''q  stands for heat input per volume and equals 

to zero for the control volume of interest. Since the circumferential length of the rotor 

(L) is much larger than the bristle pack width (w) and hydrodynamic lift clearance (H), 

temperature of the oil can be assumed to be lumped in x-direction. In addition, 

dissipation function terms, xυ∂ / x∂ , xυ∂ / y∂  drops out when compared to xυ∂ / z∂ , and 

yυ∂ / x∂ , yυ∂ / y∂  drops out when compared to yυ∂ / z∂ . Since υz is zero, all related 

terms on the left hand side of the thermal energy equation and in the dissipation 

function drop out. . Assuming that there is no convection from the rotor and the bristle 

surfaces to the fluid, and neglecting the heat conduction, thermal energy equation 

reduces, 
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 (3.28)
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Based on the experimental leakage data, flow rate in y-direction is taken around 

0.4cm3/sec. Taking the value of thermal conductivity as 0.145 W/m-K, using other oil 

properties for the test conditions, the Peclet number, which is the ratio of forced 

convection to heat conduction, takes a value around 495. Since the contribution of heat 

conduction to energy transfer is small in comparison to convection terms, conduction 

terms are neglected in this study. 

Note that dynamic viscosity, µ appears in thermal energy equation (3.28) instead 

of µeff-z, which is defined earlier and used in the continuity and N-S equations. µeff-z is 

used in these equations in order to get rid of z dependency of µ. However, there is no 

difference between using µ or µeff-z in thermal energy equation since the differential of 

temperature is taken only with respect to y (z behaves as a constant when integrating it 

with respect to y, so there is no difference in using z or any other constant number).      

Thermal energy equation given in Equation (3.28) is first order differential 

equation, where its boundary condition is the upstream temperature; Tu. Due to their 

weak dependence on temperature, density and specific heat of the fluid are assumed to 

be constant at their values at upstream temperature. After adjustments given below, 

thermal energy equation of (3.28) takes the form given in Equation (3.29). 
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(3.29)

 

  µo, β are oil properties, and for the oil of interest, β is 0.0294 and µo is 0.028Pa.s 

for To = 37.78oC. This differential equation is of the form, 

 

( )( , ) , 0M y N y yθ θ θ⋅∂ + ⋅∂ =  (3.30)
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Since , yM  does not equal to ,N θ , the differential equation is not an exact differential 

equation. An integration factor must be found to make it exact. Integration factor, which 

is only function of y, can be found after making calculations given below.   
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An exact differential equation can be obtained by multiplying the Equation (3.29) 

with the integration factor η(y). After multiplication, the following relations are 

obtained. 
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Integrating F,y with respect to y yields, 
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After taking the derivative of F(θ,y) with respect to θ and equating it to Equation (3.34), 

C(θ),θ is obtained as zero, which means that C(θ)=C, which is a constant. Now, solution 

to function F(θ,y) is found. However, it is required to find θ in order to find 

temperature. It is known from the differential equation (3.32) that F∂  equals to zero, 

which means F(θ,y) is a constant. As a result, solution to differential equation is 

obtained as,  
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C2 is a constant other than C. After applying temperature boundary condition, T = Tu at 

y = 0, C2 is obtained as, 
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After substituting this constant into the Equation (3.36) and rearranging, temperature 

distribution is reached as, 
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Temperature distribution under the bristle pack along y and z axes is obtained as a 

function of pressure difference (∆P), upstream temperature (Tu) rotor surface speed (u), 

hydrodynamic lift clearance (H), bristle pack width (w) and oil properties(ρ, cp, µo, β). 

Pressure load and upstream temperature are design parameters and known. Oil 

properties are also known. Hydrodynamic lift clearance changes with rotor surface 

speed and pressure difference. Relation between lift clearance and rotor surface speed 

can be obtained from experimental leakage data given in Chapter 2. To compare the 

results with the hydrodynamic lift data following seal parameters are used in the 

analyses, 

 Bristle radius, Rb = 0.051 mm  

    Elasticity modulus of the bristle, E = 2.07x1011 Pa 

   Cant angle, θ = 45o 

   Viscosity constants for the fluid, β = 0.0294, µo = 0.028Pa.s at To = 37.78o 

   Free bristle height, BH = 16mm. 

As it can be seen from the temperature function (3.38), it gives 0/0 uncertainty for 

value of H/2 for z. Uncertainty of the temperature function at z = H/2 is removed by 

applying L’Hopital’s Rule. Temperature function at z = H/2 is obtained as given in 

Equation (3.39). 
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  Since convection from bristles and rotor surfaces is neglected, temperature 

distribution goes to infinity at both ends for z, which does not reflect the real case. 

Therefore, mean value of temperature with respect to z is used for temperature analysis.   
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T y T y z dz
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Tmean-z is the mean temperature in z-axis. Temperature is a complex function of z, 

which makes taking its integral with respect to z almost impossible. Therefore, 

numerical integration methods are used. Trapezoid rule as given by Equation (3.41) is 

employed as the numeric integration method. 

 

( ) ( ) ( )1 1 2
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( , ) , 2 , ... ,
2

H lT y z dz T y z T y z l T y z⋅ = ⋅ + + + +  ∫  (3.41)

 

l , the rise of z for each step, is taken as H/80, which is around 5x10-7 m. In Equation 

(3.41), z1 takes the value of zero, and z2 stands for H, where temperature goes to 

infinity. To be able to get over this problem, values of the temperature at both ends are 

taken as equal to the temperature values at H/80 further from these ends for the numeric 

integration. After the integral is taken, mean temperature value with respect to z at any y 

point can be derived by simply dividing it by H, as given in Equation (3.40).A simple 

MATLAB code is written to compute the numeric integration and mean-z temperature 

values along y-axis. Mean-z temperature distribution along y-axis is given in Figure 3.3 

for different pressure loads and rotor surface speeds.  

As it can be observed in Figure 3.3, temperature distribution along y-direction 

yields consistent results with real life applications. Temperature of the fluid at y = 0 

equals to upstream temperature, 50oC. As the fluid under the bristle pack flows to the 

downstream side, temperature of the fluid increases, and takes its maximum value at the 

downstream end. The reason for this temperature rise is mostly related to viscous forces 

in the fluid causing shear heat dissipation. Shear heating has great influence on 

hydrodynamic lifting force at moderate and high rotor surface speeds. 
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a) 

 
b) 

Figure 3.3 Mean-z temperature, Tmean-z(y), distribution along y-axis (in the direction of 

leakage flow (rotor axial direction)) for different pressure loads and rotor surface speeds 

a) ∆P = 48.3 kPa, b) ∆P = 89.6 kPa 
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Temperature rise along y-axis for different rotor surface speeds are also obtained, 

and results are presented below. Temperature rise along the y-axis is defined as the 

difference between the mean value of the downstream temperature with respect to z and 

the upstream temperature.  

( )
0

1( ) ,
mean z

H

d mean zT T y w T w z dz
H− −= = = ⋅∫  

⇓  

mean zd uT T T
−

∆ = −  (3.42)

 

 ∆P = 48.3 kPa ∆P = 89.6 kPa 

Rotor surface speed 
[m/s] 

Temperature rise 
along y-axis, ∆T  

Temperature rise 
along y-axis, ∆T 

0 0 0 

6.2 4.3 oC 4.2  oC 

12.3 7.4 oC 7.7  oC 

20.5 19  oC 15.4  oC 

Table 3.1 Temperature rise along y-axis for rotor surface speeds and different pressure 

loads 

3.4   Solution to the Thermal Energy Equation for Nonlinear Pressure Distribution 

In the previous section, a closed form solution for the temperature distribution is 

obtained based on the assumption of linear pressure distribution along y-axis. In this 

section, temperature function is derived using a nonlinear pressure distribution by 

solving reduced continuity equation (3.23) and thermal energy equation (3.28) 

simultaneously. Steps of temperature analysis for nonlinear pressure distribution are 

given in this chapter.  

After the implementing assumptions given in Chapter 3.2, substituting values of 

υx and υy into the continuity equation and making necessary simplifications, reduced 

continuity equation (3.23) was obtained as, 
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If the pressure distribution is assumed to be linear along y-axis, Equation (3.23) 

can be reduced to Equation (3.24). However, µeff-z depends on y, and can not be taken 

out from the differentiation. If the dependency of the µeff-z to y is included, Equation 

(3.23) yields, 
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As it does not depend on y, hydrodynamic lift clearance, H can be taken out of the 

parenthesis and it drops out. Integrating Equation (3.43) with respect to y gives, 

zeffC
y
P µ⋅=
∂
∂  (3.44)

where C is the integration constant. Substituting it into the υy given in Equation (3.21) 

yields, 
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Substituting this υy and other necessary parameters into the thermal energy equation 

(3.28) gives, 
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(3.46)

Equation (3.46) represents the differential equation for the temperature for nonlinear 

pressure distribution along y-axis. 
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Further substituting temperature dependant viscosity, ( )0
0

T Te βµ µ − −= , into the Equation 

(3.46) and making necessary arrangements following differential equation is obtained. 
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Solving this differential equation with the given boundary condition results in the 

temperature distribution as given below. 
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(3.48)

 

Temperature function for nonlinear pressure distribution is derived as in Equation 

(3.48). However, the integration constant, C, which appears in the temperature function 

and it is still unknown. Value of this integration constant can be determined by 

substituting temperature function into the viscosity, and plugging this viscosity into the 

pressure distribution. As the first step, viscosity is found as, 
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After arranging Equation (3.49), the viscosity relation becomes, 

( ) ygCgCgg
Cg

⋅+⋅+⋅⋅
⋅

⋅=
4

2
321

2
0µµ  

                                 ( )0
1

TTueg −= β  

                                 ( )Hzzcg p ⋅−⋅⋅= 2
2 ρ  

                                 ( )
2
2 2

0
3

Hzg −⋅⋅
=

βµ  

                                 2

2
0

4
2

H
ug ⋅⋅

=
βµ  

(3.50)

Substituting viscosity in Equation (3.50) into the Equation (3.44) yields, 
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Pressure distribution can be found by integrating Equation (3.51) with respect to y. 
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Second boundary condition, P = Pd for y = w, is applied to Equation (3.52) to find the 

value of C. Applying this boundary condition yields, 
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 (3.53)

 

Temperature distribution for nonlinear pressure distribution can be obtained after 

finding C by solving Equation (3.53). However, it is too difficult to solve the Equation 
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(3.53) with respect to C. Therefore, iterative methods are used to find the value of C. 

Newton-Raphson method is used as an iteration method. For the given values of u and 

∆P, C can be found. For the sake of simplicity, value of C is evaluated for z = H/2. 

Details for the application of Newton-Raphson method is given below. 
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To start the iterations a C value is assumed, and iterations are carried on per 

Equation (3.56) until f(Ck)=0 is reached. Experimental leakage data given in Table 2.2 

are used for the values of u, ∆P and H. Iteration steps and values for C and f(y) for each 

step are given below. A MATLAB code is written in order to evaluate the iteration.  
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∆P = 48.3 kPa, u = 6.2 m/s 

i C f(C) 

1 -1.467190032478470x1017 -7.170613863850467x1012 

2 -1.622604627200000 x1010 -7.431177179456878 x105 

3 -1.020919675799299 x109 -57.24674198166031 

4 -1.019746870394267 x109 -7.891775021562353 x10-5 

5 -1.019746868777486 x109 7.275957614183426 x10-11 

 

∆P = 48.3 kPa, u = 12.3 m/s 

i C f(C) 

1 -2.958904348221451 x1017 -1.446107662728780 x1013 

2 4.346580761600000 x1010 2.175957942153573 x106 

3 -1.056944999159943 x109 -2.771599680559739 x102 

4 -1.051247524913726 x109 -0.00639666891948 

5 -1.051247393413701 x109 -7.275957614183426 x10-12 

 

∆P = 48.3 kPa, u = 20.5 m/s 

i C f(C) 

1 -1.071895903042292 x1018 -5.238688195543623 x1013 

2 -2.762253053440000 x1011 -1.343888531736573 x107 

3 -1.249907927827210 x109 -2.706902437069635 x103 

4 -1.192548816797807 x109 -3.53490875660646 

5 -1.192473712509011 x109 -6.515794666483998 x10-6 

6 -1.192473712370573 x109 0 

 

Table 3.2 Iteration steps for ∆P = 48.3 kPa, for different rotor speeds 
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∆P = 89.6 kPa, u = 6.2 m/s 

i C f(C) 

1 -4.765982124671900x1017 -2.329282787733927x1013 

2 2.689013201280000 x1011 1.323452623375372 x107 

3 -1.892342866748383 x109 -1.161821916631016 x102 

4 -1.889962829877517 x109 -1.655978412600234 x10-4 

5 -1.889962826485172 x109 1.891748979687691 x10-10 

 

∆P = 89.6 kPa, u = 12.3 m/s 

i C f(C) 

1 -1.040328040209791 x1018 -5.084405550921667 x1013 

2 3.558414656000000 x1010 1.835259805359471 x106 

3 -1.968093846392174 x109 -6.026381985460321 x102 

4 -1.955700519338615 x109 -0.01763559535902 

5 -1.955700156639186 x109 -2.910383045673370 x10-11 

 

∆P = 89.6 kPa, u = 20.5 m/s 

i C f(C) 

1 -2.560836574902911 x1018 -1.251560122492059 x1014 

2 4.396122685440000 x1011 2.159152323314469 x107 

3 -2.175514578239014 x109 -2.869161751936306 x103 

4 -2.115506616109094 x109 -1.46474330038473 

5 -2.115475949613914 x109 -4.004687070846558 x10-7 

6 -2.115475949605530 x109 0 

 

Table 3.3 Iteration steps for ∆P = 89.6 kPa, for different rotor speeds 

  

 After finding values of C for different pressure gradients and rotor surface speeds, 

temperature distribution of the oil along y-axis can be found by using Equation (3.48). 

Temperature distributions along y-axis at z = H/2 are compared for both linear and 

nonlinear pressure distributions in Figures 3.4a through 3.4f. 



54 

 
a) 

 

 
b) 
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c) 
 

 
 

d) 
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e) 

 
f) 

Figure 3.4 Comparison of the temperature distribution of the oil along y-axis with linear 

pressure distribution assumption and for nonlinear pressure distribution, 

a) ∆P=48.3kPa, u=6.2m/s, b) ∆P=48.3kPa, u=12.3m/s, c) ∆P=48.3kPa, u=20.5m/s, 

d) ∆P=89.6kPa, u=6.2m/s, e) ∆P=89.6kPa, u=12.3m/s, f) ∆P=89.6kPa, u=20.5m/s. 
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  As it can be seen from Figure 3.4, for low rotor surface speeds oil temperature 

distribution is almost the same for both linear and nonlinear pressure cases, and they 

slightly differ from each other for moderate rotor surface speeds. When the effective 

temperature is considered, the slight difference between the linear and nonlinear 

pressure cases becomes much smaller. As a result, it can be concluded that linear 

pressure distribution assumption provides a good approximation, and closed form oil 

temperature solution given in Equation (3.38) is sufficiently accurate for seal analysis 

and design. 

  Linear pressure distribution gives pressure as a function of rotor axial direction, y, 

bristle pack width, w, and pressure load, ∆P. On the other hand, nonlinear pressure 

distribution, which is given in Equation (3.52), is also function of hydrodynamic lift 

clearance, H, and rotor surface speed, u. As illustrated in Figure 3.5, nonlinear pressure 

distribution shows a little change with rotor surface speed. Nonlinear pressure is 

calculated by substituting C values found by iteration and given in Tables 3.2 and 3.3 

and the available data of experimental leakage data given in Table 2.2.           

 

 
a) 
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b) 

Figure 3.5 Comparison of linear pressure distribution and nonlinear pressure 

distribution for different cases, a) ∆P = 48.3 kPa, b) ∆P = 89.6 kPa  

 

  Pressure distributions for linear and nonlinear cases show similar characteristic 

with temperature distributions. Nonlinear pressure distribution is almost linear for low 

rotor surface speeds, and slightly differs from linear pressure for larger rotor surface 

speeds.  

 

 

 

 

 

 

 

 

 

 

 



59 

 

4 INCLUDING SHEAR HEATING EFFECT INTO LIFT FORCE THEORIES 

AND VALIDATION WITH OTHER WORKS IN LITERATURE 

  Shear heat dissipation is an important phenomenon in brush seals since it directly 

affects the hydrodynamic lift clearance, which determines leakage performance of the 

seal. Aksit et al. [16] investigate lifting force in two different ways: Simple beam theory 

and bearing theory. Their studies about simple beam theory underestimates the lifting 

force since it does not include blow down and friction forces. The force estimated by 

bearing theory balances all of the reaction force contributions. However, it increases 

continuously with rotor surface speed since it does not include the shear heating effect. 

Effect of shear heat dissipation can be included into the bearing theory by means of 

effective viscosity, which can be evaluated by using the results of thermal analysis 

given in Chapter 2. 

  In this chapter, simple beam theory and bearing theory of Aksit et al. [16] are 

shortly reviewed. Lifting force is evaluated by using shear heat effect included bearing 

theory, and results are compared with previous studies in the literature.               

4.1   Hydrodynamic Lifting Force in Brush Seals 

  During operation, cant angle and deflection of the bristle together with the 

contribution from rotor radius are the reasons for the convergent surface formation 

between bristle and rotor. The fluid is pulled into this wedge by the moving rotor 

surface, and lifting force is generated as a result of this fluid motion. Convergent 

surface is called wedge, and the pull of the fluid into this wedge by the rotor generates 

the wedge action. 

  When air is the sealing medium, aerodynamic lifting forces, which are generated 

on very small bearing surface, can not overcome the blow down forces driven by radial 
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pressure gradients within the brush pack. The small bearing surface and the low 

viscosity of the air are the reasons for inadequate aerodynamic lift forces.  

  If the sealing medium is oil, hydrodynamic lifting force becomes dominant, and 

the associated clearance becomes important. Hydrodynamic lift force acts to deflect 

bristles off the shaft surface. This force is balanced by a reaction force due to 

beam/bristle deflection, frictional forces and so called “blow-down” forces occurring 

due to radial pressure gradient within the bristle pack. During operation, hydrodynamic 

lift clearance, which is the most important parameter for leakage performance of an oil 

brush seal, is determined when the lift force becomes equal to the reaction forces.  

4.2   Simple Beam Theory  

  In their study, Aksit et al. [16] calculate lifting force by using simple beam theory. 

In simple beam theory, lift force is estimated with beam bristle/beam deflection forces.     

 

 
Figure 4.1 Geometric relations for a bristle at an angle, Aksit et al. [16] 

 

  Fb is the component of the lifting force normal to the bristle section. Deflection of 

the beam, yd, is calculated using the relation, 

 

θsin
Ryd

∆
=  (4.1)
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  where θ  is the cant angle of the brush seal, and ∆R equals to hydrodynamic lift 

clearance, H. Normal component of the lifting force can be easily obtained by applying 

beam bending theory.  
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d b
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   where E is the modulus of elasticity, I is the second moment of inertia, and Lb is 

the beam length. Bristles are clamped at the outer end of the free bristle height, and they 

are supported at this point. Therefore, Lb can be calculated simply by dividing the free 

bristle height by sine of cant angle.  

 

sinb
BHL
θ

=  (4.3)

 
4(2 )

64
bRI π

=  (4.4)

 

  After substituting second moment of inertia and bristle length into the Fb, lifting 

force can be evaluated as, 
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  Values of modulus of elasticity and bristle radius are given in the previous 

sections. H, hydrodynamic lift clearance values are taken from experimental leakage 

data given in Table 2.2. For the brush seal of interest, free bristle height, BH, is 16mm 

and cant angle is 45o. 

  Due to radial pressure gradients, there is an additional fluid force on bristles 

which pushes them radially inward. When the inter bristle interlocking and frictional 

effects are also considered, beam theory always under estimates the actual bristle tip 

force that will balance the hydrodynamic lift. However, beam theory results are useful 

to serve as a lower limit or bench mark for the lift force estimates.      
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4.3   Bearing Theory  

  Taking advantage of the wedge action, Aksit et al. [16] apply well known 

Reynolds lubrication theory for bearing surfaces of the brush seals. They apply short 

bearing theory to a single bristle for hydrodynamic lifting force calculation. In Figure 

4.2, simplified bristle geometry is given.  

 

 

 

 

 

 

Figure 4.2 Simplified bristle geometry, Aksit et al. [16] 

 

  As it can be seen from the figure above, the origin is taken at the projection of the 

midpoint of the bristle tip on the rotor surface. The distance between the rotor surface 

and bristle surface is defined by Hertzian contact formulation for two cylinders with 

inclined axes.  
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  where H is the hydrodynamic lift clearance, Ra is the equivalent bristle bending 

curvature for infinite boundary, and Rb is the bristle radius. Equivalent bristle bending 

curvature is defined as,     
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  where Rrotor stands for rotor radius. Typical Reynolds equation for hydrodynamic 

bearing is, 
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  In their study, Aksit et al. take boundaries as infinity for the sake of simplicity, 

and with the idea of small contribution of the pressure to lifting force at the outer region 

of the bristle. As boundary conditions, they take ambient pressure as y goes to infinity, 

and they assume the derivative of the pressure with respect y as zero due to symmetry. 

After order of magnitude test, they neglect ∂ / x∂  related terms in Equation (4.8), which 

yields to the reduced differential equation, 
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Equation (4.9) implies the short bearing theory. Integrating once leads to,  
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where C1 is an integration constant, which is found as zero upon application the 

boundary condition 0
0

=
∂
∂

=yy
P . Substituting h  function defined in Equation (4.6) 

yields,  
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Hydrodynamic fluid pressure can be obtained by integrating again with respect to y. 
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  C2 is the integration constant. Applying second boundary condition, 

( ) aPyP =∞→ , gives C2 as ambient pressure, Pa. Substituting this value of integration 

constant into the Equation (4.12) and rearranging gives hydrodynamic fluid pressure as, 
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  Hydrodynamic lift force is calculated by integrating hydrodynamic fluid pressure 

over the bristle lift surface.   
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  This lift force is a function of dynamic viscosity, bristle radius rotor surface speed 

and hydrodynamic lift clearance. Hydrodynamic lift clearance for different rotor surface 

speeds can be verified from the experimental leakage data given in Table 2.2. 

  For steady state operation, lift force given by Equation (4.14) is balanced by 

bristle reaction forces which will include beam deflection as well as the effects of blow-

down and frictional forces. However, as the rotor surface speed increases, estimated lift 

force, which is calculated using bearing theory with constant viscosity, increases 

continuously. This continuous increase is due to the fact that this formulation does not 

include oil thinning effect arising from shear heat dissipation. In engine applications, as 

the test data illustrate in Figure 2.22, increase in rotor speed cause temperature to rise, 

which results in decrease of dynamic viscosity. This decrease in viscosity is the reason 

for high speed lift force stabilization.       
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4.4   Shear Heating Effect Included Bearing Theory  

  To include the effect of shear heating into the bearing theory, effective 

temperature is calculated by using temperature distribution given by Equation (3.38). 

Effective temperature is calculated by using the mean values of the temperature 

distribution along y and z-axes.  
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  Numerical integration methods are used again in order to calculate effective 

temperature. Trapezoidal rule is preferred as the numerical integration method. 
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(4.16)

 

  Parameters l  and 2l  are the rise for each step of numeric integration for z and y 

respectively. l  is taken as one eightieth of the hydrodynamic lifting clearance, H/80, 

and 2l  is taken as w/2500. Integration steps are taken as small as possible in order to 

minimize the numerical integration errors. Effective temperature is calculated for the 

hydrodynamic lift clearance, which is obtained from experimental leakage data for 

different rotor speeds under various pressure loads. Evaluations of numeric integrals are 

performed by a code written in MATLAB. 
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  Effect of shear heat dissipation is included into the bearing theory by means of the 

effective viscosity. Effective viscosity is obtained from the effective temperature as,  

 
( )oeff TT

eff e −−⋅= βµµ 0   (4.17)

 

  Values of µo, To and β are provided in the previous sections. Substituting this 

effective viscosity into the lift force previously derived with constant viscosity yields a 

lift force formulation that includes the shear heating effect as, 
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Figure 4.3 Comparison of hydrodynamic lifting force using three different methods 

 

  As expected, results in Figure 4.3 illustrates that beam theory underestimates the 

bristle tip force since it does not include friction, interlocking and blow down forces. 

Bearing theory works well at low rotor surface speeds, where the temperature rise in the 

oil is small. As rotor surface speed increases, lifting force of estimated by Aksit et al. 
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[????]’s constant viscosity formulation increases continuously, and overestimates the 

lift force. This is somewhat expected. As their analysis does not include temperature 

effects, lift force does not stabilize. On the other hand, the present formulation including 

temperature-viscosity effect gives more consistent results with the stabilized lift force 

trend observed in high speed leakage tests. At low rotor speeds, where the temperature 

rise is small, both analyses predict similar lift force magnitudes. As rotor speed 

increases, shear heating becomes dominant, and stabilization of the lift force becomes 

evident. The effect of shear heating appears in the lift force through effective viscosity. 

Dynamic viscosity change with rotor speed is given in Figure 4.4. 

 

 
Figure 4.4 Change in effective viscosity with rotor surface speed for different pressure 

loads 
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5 DERIVATION OF OIL PRESSURE FOR EACH BRISTLE 

 
  In the previous sections, control volume was selected as the oil between the rotor 

surface and the bristle pack. Pressure distribution was firstly assumed to change linear 

in the rotor axial direction, and thermal analysis was done with this pressure 

distribution. Keeping on analysis with the same control volume without constant 

pressure gradient assumption gave pressure and temperature distribution close to the 

results of analysis of linear pressure. In the literature, experimental studies suggest 

almost constant pressure gradient in the rotor axial direction, which is consistent with 

the results of previous boundary layer analysis of this study.  

  In this chapter, pressure distribution is found for the control volume which is 

selected as the oil under each bristle by applying Reynolds bearing theory. Pressure 

distribution for each bristle of one row in the rotor axial direction is evaluated. Cyclic 

pressure distribution is assumed for the bristles in the rotor tangential direction (x-

direction in Figure 3.2). Later, pressure profiles under each bristle are combined to yield 

the pressure profile under the brush pack as illustrated in Figure 5.1.                     

5.1   Selection of Control Volume  

  Selection of control volume is important since it defines the valid region for the 

derived pressure distribution. For hydrodynamic bearing theory, control volume for 

each bristle is selected as given in Figure 5.1. As it can be seen from the same figure, 

local coordinate system is defined for each control volume of interest. The subscript in 

the coordinate system stands for the bristle number. First bristle is at the upstream side, 

and the last bristle is at the downstream side. Number of bristles in one row of the 

bristle pack is defined by nr, which generally changes between ten and sixteen. For the 

brush seal of interest, nr is 16.        
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Figure 5.1 Selection of control volume for each bristle 

 

  In order to find the pressure distribution, Reynolds bearing theory is applied with 

the assumptions given below.  

1. Steady state  

2. Incompressible flow 

3. Radial flows are neglected due to the fact that the axial flow is dominant. 

  Similar to boundary layer analysis in Chapter 3, rotor and bristle surfaces are 

taken as unwrapped flat surfaces. As given in Figure 5.2, hi is the distance between the 

rotor and ith bristle surfaces, and defined by Hertizian contact of two cylinders with 

inclined axis, as in Equation 4.6. H is the hydrodynamic lift clearance and it is same for 

every bristle. Req is the equivalent bristle bending curvature, and Rb is the bristle radius. 

Hydrodynamic lift clearance and equivalent bristle bending curvature are assumed to be 

the same for each bristle. Value of bristle radius for the brush seal of interest is 0.051 

mm, as defined in the previous sections.     
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2 2

2 2
i i

i
eq b

x yh H
R R

= + +  (5.1)

 

 
Figure 5.2 Geometry, local coordinate selection and boundaries for ith bristle 

 

  Selection of the local coordinates for the ith bristle is illustrated in Figure 5.2. As 

mentioned before, front plate tightly clamps the bristle. Therefore, bristles are assumed 

to be supported from the free bristle height, BH, and they bend under the effect of 

hydrodynamic lifting force generated by wedge action. Free bristle height for the bristle 

is 16mm. Selection of control volume for a bristle can be observed more detailed in 

Figure 5.2. Boundaries for y-coordinate are 0 and 2Rb. The length of the bristle 

projection can be taken as BH since the cant angle, Ө, is 45o. Boundaries for x-

coordinate are –BH and 0. 

  The equivalent bristle bending curvature is the radius of bristle where the radii of 

unwrapped rotor and bent bristle are combined. It can be calculated by using the 

formula,  

 

1 1 1

eq bend rotorR R R
= +  (5.2)
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Rbend is the bent bristle radius, and simply taken as equal to free bristle height. Taking 

this value for Rbend brings an acceptable error as it assumes a little larger bristle 

curvature than the real case. Rrotor is the radius of rotor with the same value given in the 

previous chapters.  

5.2   Reynolds Bearing Theory for Each Bristle  

  As mentioned before, temperature has a great influence on high speed lift 

clearance stabilization, and the effect of shear heating has to be included into the 

analysis of brush seals. Effective viscosity derived in Equation (4.17) by using the 

effective temperature, which is calculated using the temperature function (3.38) (closed-

form solution to temperature with linear pressure distribution under the brush pack), 

gives consistent results with real-life high speed lift-stabilization. Therefore, there is no 

need to solve thermal energy equation for each bristle. In bearing theory application for 

each bristle, effective viscosity of Equation (4.17) will be used. 

  It is known from the previous sections that ReH-u is much smaller than unity so 

that inertia terms can be neglected. Reynolds bearing theory can be applied to each 

bristle with the assumptions given before. Typical Reynolds equation for hydrodynamic 

bearing for the ith bristle is,  

 

3 3 6i i i
i i eff

i i i i i

P P dhh h u
x x y y dx

µ
   ∂ ∂∂ ∂

+ =   ∂ ∂ ∂ ∂   
,     . 0iBH x− ≤ ≤  and 0 2i by R≤ ≤   (5.3)

 

  In the equation above, xi terms can be related with BH=16 mm, and yi terms can 

be related with 2Rb=0.102mm. Since BH>>2Rb, ∂ /∂ xi<< ∂ /∂ yi, and ∂ /∂ xi terms in 

above equation can be neglected when compared with ∂ /∂ yi terms. This simplification 

yields to the differential equation given below. 

 

3 6i i
i eff

i i eq

P xh u
y y R

µ
 ∂∂

= ∂ ∂ 
  (5.4)

 

  Note that differential equations (5.3) and (5.4) are the Reynolds bearing equations, 

which are similar to Equations (4.8) and (4.9). However, Aksit et al. [16] take the 
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boundaries as -∞  to 0 for x, and 0 to ∞  for y. In this study, boundaries are taken as –BH 

to 0 for xi, and 0 to 2Rb for yi so that errors coming from infinite boundaries can be 

neglected. Furthermore, pressure distribution can be obtained for the each bristle in the 

rotor axial direction (y-direction in Figure 3.2). 

  Another difference between two analyses is the boundary conditions. In their 

studies, Aksit et al. [16] assumes the symmetric boundary condition in y-direction 

which gives ∂ P/∂ y zero value at y=0. Second boundary condition in their studies is 

( ) aPyP =∞→ . In this study, different boundary conditions are defined for each bristle in 

y-direction. Boundary conditions for each bristle in a row (in y-direction) can be found 

by using pressure load (∆P) and number of bristles in a row in rotor axial direction (nr). 

By doing so, more realistic boundary conditions are defined and interaction between the 

bristles can be provided. For the first bristle, the left side (Figure 5.1), which 

corresponds the y1=0, has the pressure value of upstream pressure. The right side 

pressure (y1=2Rb) for the oil under the first bristle can be calculated by subtracting the 

pressure decrease portion for a bristle from upstream pressure. Pressure decrease 

portion for a single bristle can simply be calculated by dividing pressure load, ∆P, to nr. 

The first boundary condition for the second bristle equals to the second boundary 

condition for the first bristle, and this interaction continuous until the last bristle in rotor 

axial direction is reached. The boundary conditions for each bristle are given below.  

                                        i=1,  1 1 10 ( 0) uy P y P= ⇒ = =   

                                                 1 1 12 ( 2 )b b u
r

Py R P y R P
n
∆

= ⇒ = = −  
(5.5)

                                        i=2,  2 2 20 ( 0) u
r

Py P y P
n
∆

= ⇒ = = −   

                                                 2 2 22 ( 2 ) 2b b u
r

Py R P y R P
n
∆

= ⇒ = = − ⋅  
(5.6)

                                                                        . 
                                                                        . 

 

                                        i,  0 ( 0) ( 1)i i i u
r

Py P y P i
n
∆

= ⇒ = = − ⋅ −   

                                                 2 ( 2 )i b i i b u
r

Py R P y R P i
n
∆

= ⇒ = = − ⋅  
(5.7) 

                                                                        . 
                                                                        . 
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                                        i=nr,  0 ( 0) ( 1)
r r rn n n u r

r

Py P y P n
n
∆

= ⇒ = = − ⋅ −   

                              2 ( 2 )
r r rn b n n b u r u d a

r

Py R P y R P n P P P P
n
∆

= ⇒ = = − ⋅ = −∆ = =  
(5.8) 

The inter bristle gap, dIb, can be defined as the gap between two adjacent bristles. The 

exact value for inter bristle gap is not know, but it is known that it changes between the 

one-twentieth and one-fortieth of the bristle diameter. Since the inter bristle gap is very 

small compared with bristle diameter, it is neglected in this study by implying boundary 

conditions given through Equations (5.5) to (5.8). 

  Substituting boundary condition (5.7) into the Equation (5.4) leads to, 

 

3 6i i
i eff

i i eq

P xh u
y y R

µ
 ∂∂

= ∂ ∂ 
,  

B.C’s: 

0 ( 0) ( 1)i i i u
r

Py P y P i
n
∆

= ⇒ = = − ⋅ −  

and 

2 ( 2 )i b i i b u
r

Py R P y R P i
n
∆

= ⇒ = = − ⋅  

(5.9)

5.3   Pressure Distribution for Each Bristle  

Pressure distribution for the oil under the ith bristle can now be derived by solving 

the differential equation (5.9) with the given boundary conditions. Integrating with 

respect to yi yields, 

 

3 6i i
i eff i

i eq

P xh u y
y R

µ
 ∂

∂ = ∂ ∂ 
∫ ∫   

⇓  

13 3

1 16 ( )i i i
eff i

i eq i i

P x yu C x
y R h h

µ∂ ⋅
= ⋅ +

∂
 

⇓  

(5.10)
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13 3
2 2 2 2

1 16 ( )

2 2 2 2

i i i
eff i

i eq
i i i i

eq b eq b

P x yu C x
y R x y x yH H

R R R R

µ∂ ⋅
= ⋅ +

∂    
+ + + +      

   

 

 

C1(xi) is integration constant. Integrating equation above with respect to yi yields 

pressure distribution as,  

 

3
2 2

16

2 2

i i
i eff i

eq
i i

eq b

x yP u y
R x yH

R R

µ ⋅
= ⋅ ∂

 
+ +  

 

∫  

                                                   1 23
2 2

1( ) ( )

2 2

i i i

i i

eq b

C x y C x
x yH
R R

+ ∂ +
 

+ +  
 

∫  
(5.11)

 

C2(xi) is another integration constant. Evaluation of the integral components of the 

Equation (5.10) is given in the following. 

 

3 3
2 2 2 2

616

2 2 2 2

eff ii i i
eff i i

eq eq
i i i i

eq b eq b

u xx y yu dy dy
R Rx y x yH H

R R R R

µ
µ

⋅ ⋅⋅
⋅ =
   

+ + + +      
   

∫ ∫  

⇓  Use method of substitution 
2 2

2 2
i i

i b
eq b

x yH y dy R d
R R

γ γ+ + = ⇒ ⋅ = ⋅  

⇓  Substitute 

3 3
2 2

6 6

2 2

eff i eff ii b
i

eq eq
i i

eq b

u x u xy Rdy d
R Rx yH

R R

µ µ
γ

γ
⋅ ⋅ ⋅ ⋅

=
 

+ +  
 

∫ ∫  

⇓  Integrate 

3 2
2 2

6 6 1
2

2 2

eff i eff ii b
i

eq eq
i i

eq b

u x u xy Rdy
R Rx yH

R R

µ µ
γ

⋅ ⋅ ⋅ ⋅ −
= ⋅ ⋅

 
+ +  

 

∫  

⇓  Substitute γ  function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.12)
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3 2
2 2 2 2

6 6 1
2

2 2 2 2

eff i eff ii b
i

eq eq
i i i i

eq b eq b

u x u xy Rdy
R Rx y x yH H

R R R R

µ µ⋅ ⋅ ⋅ ⋅ − = ⋅ ⋅ 
    

+ + + +      
   

∫  

 

1 13 3
2 2 2

2
3

1( ) ( )
12

2 2 2 8

i
i i i

i i i
b i

eq b eq b

dyC x dy C x
x y xH H R y
R R R R

= ⋅
    

+ + + ⋅ + ⋅            

∫ ∫   

⇓  

Define a function, 
2

2 2
2

i
i b

eq

xR H
R

α
 

= ⋅ +  
 

 

⇓  

( )
3

1 13 32 22
2

3

( ) ( ) 8
12

2 8

i i
i i b

i ii
b i

eq b

dy dyC x C x R
yxH R y

R R
α

⋅ = ⋅
  + 

+ ⋅ + ⋅      

∫ ∫  

⇓   

Evaluate the integral 

⇓  

( ) ( ) ( )
3

3
1 13 2 222 2 2 2 2 2

2( ) 8 ( ) 3i b i i
i b i

ii i i i i i

dy R y dyC x R C x
y y yαα α α

 
 ⋅ = ⋅ ⋅ +
 + + + 

∫ ∫  

⇓  

( ) ( )
3

1 2 22 2 2 2 2

2( ) 3b i i
i

i i i i i

R y dyC x
y yα α α

 
 ⋅ ⋅ + =
 + + 

∫  

                       
( ) ( )

3

1 22 2 2 22 2

2 3 1( ) arctan
2

b i i i
i

i i i ii ii i

R y y yC x
yyα α α ααα

     ⋅ ⋅ + +  
+ +     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.13)

 

  Oil pressure distribution for the oil for ith bristle can be found by substituting 

Equation (5.12) and (5.13) into the Equation (5.11). After substituting, integration 

constants can be found by applying boundary conditions given in Equation (5.9).    
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2
2 2

6 1
2

2 2

eff i b
i

eq
i i

eq b

u x RP
R x yH

R R

µ ⋅ ⋅ − = ⋅ ⋅ 
   

+ +  
 

 

                                            

( ) ( )
3

1 222 2 2 22 2

2 3 1( ) arctan ( )
2

b i i i
i i

i i i ii ii i

R y y yC x C x
yyα α α ααα

     + ⋅ ⋅ + + +  
+ +     

 

B.C’s: 

0 ( 0) ( 1)i i i u
r

Py P y P i
n
∆

= ⇒ = = − ⋅ −  

and 

2 ( 2 )i b i i b u
r

Py R P y R P i
n
∆

= ⇒ = = − ⋅  

⇓  Applying first boundary condition yields C2(xi) as, 

2 2
2

6 1( ) ( 1)
2

2

eff b
i u i

r eq
i

eq

u RPC x P i x
n R xH

R

µ

 
 
 −∆

= − ⋅ − − ⋅ 
  

+   
  

 

⇓  Applying first boundary condition yields C1(xi) as, 

1 2 2
2 21

61 1 1( )
2

1
2 2

eff b
i i

r eq
i i

eq eq

u RPC x x
F n R x xH H

R R

µ

  
  
  −∆  = − −   

       
+ + +        

      

 

where 

( ) ( )
3

1 2 2 2 22 2 2

2 2 2 23 1 arctan
2 44

b b b b

i i b i ii i b

R R R RF
RR α α α αα α

    = + +   ++     
 

and  

 
2

2 2
2

i
i b

eq

xR H
R

α
 

= ⋅ +  
 

 

 

 

(5.14) 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.15) 

 

 

 

 

 

(5.16)
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Substituting Equations (5.15) and (5.16) into the pressure equation (5.14) yields, 

  

2
3 4 5

1
i

FP F F F
F

= + ⋅ +  , 

 

( ) ( )
3

1 2 2 2 22 2 2

2 2 2 23 1 arctan
2 44

b b b b

i i b i ii i b

R R R RF
RR α α α αα α

    = + +   ++     
 

2 2 2
2 2

6 1 1
2

1
2 2

eff b
i

r eq
i i

eq eq

u RPF x
n R x xH H

R R

µ

 
 
 −∆  = − −  

      
+ + +       

    

  , 

3 2
2 2

6 1
2

2 2

eff i b

eq
i i

eq b

u x RF
R x yH

R R

µ ⋅ ⋅ − = ⋅ ⋅ 
   

+ +  
 

  , 

( ) ( )
3

4 2 2 2 22 2 2

2 2 23 1 arctan
2

b b b i

i i i i ii i i

R R R yF
yy α α α αα α

    = + +   ++     
  , 

5 2
2

6 1( 1)
2

2

eff b
u i

r eq
i

eq

u RPF P i x
n R xH

R

µ

 
 
 −∆

= − ⋅ − − ⋅ 
  

+   
  

  , 

2
2 2

2
i

i b
eq

xR H
R

α
 

= ⋅ +  
 

. 

(5.17)

 

  Pressure distribution given above includes the effect of shear heating as µeff, which 

is found from effective temperature, appears in the pressure function. Pressure is a 

function of brush seal geometry (Rb, Req, nr), pressure load (∆P), upstream pressure (Pu), 

rotor surface speed (u) and hydrodynamic lift clearance (H). Table 2.2 is used for the 

experimental hydrodynamic lift clearance values. Note that pressure function derived 

above is function of both xi and yi coordinates. Pressure distribution along xi direction 

for yi=Rb (middle of the bristle, see Figure 5.2) of each bristle is given in Figure 5.3 for 
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48.3 kPa pressure load and 6.2 m/s rotor surface speed. Oil pressure along xi behaves 

similarly for different pressure loads and rotor surface speeds, only magnitudes are 

different. Calculations are performed in MATLAB.  

 

 
Figure 5.3 Oil pressure distributions along xi for each bristle, ∆P = 48.3 kPa,  

u = 6.2m/s  

 

  As it can be seen from the figure above, pressure change in xi direction shows 

similar distribution for each bristle. Plots have same character, but magnitudes are 

decreasing as going from upstream side to downstream side as it is expected. Oil 

pressure for the first bristle is around upstream pressure (Pu), whereas it is around 
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downstream pressure (Pd=Pa) for the oil under the last bristle. There is an evident 

change in oil pressure between -2mm and 0, which corresponds to length of projection 

of bristle portion at “Fence height, FH” (Figure 1.4) onto the xi coordinate. After that 

point, pressure change is almost zero till -7mm, and then oil pressure remains constant. 

Fence height is the distance between the rotor surface and the backing plate, and bristles 

have most lack of restriction in that region. Bristles are clamped tighter in the region 

between free bristle height (BH) and fence height (FH), which causes more difficult oil 

flow. Tightness of bristles increases as approaching to the front plate. Therefore, it is 

reasonable and consistent with real-life applications to obtain a constant pressure in xi 

direction after a certain distance from fence height projection on xi-axis.  

  As a representative example, oil pressure distribution along xi and yi axes for 

89.6kPa pressure load and 20.5m/s rotor surface speed are presented in Figure 5.4.  

 
Figure 5.4 Oil pressure change under each bristle along rotor axial and tangential 

directions 
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  Combining oil pressure change with respect to local coordinates of bristles (xi, yi) 

gives the pressure distribution under the bristle pack of one row of bristles. As it can be 

observed from the figure above, pressure distribution along rotor axial direction is 

almost linear for every point in rotor tangential direction as expected. It takes the 

upstream pressure value for y = 0 (at the upstream side), and drops to downstream 

pressure value for y = w (at the downstream side).  

  In the previous chapters, analyses have been performed by selecting the control 

volume between the rotor surface and the bristle pack, and oil pressure distribution 

along y-axis (rotor axial direction) has been found almost linear. Therefore, linear 

pressure distribution has been accepted for the rotor axial direction. In this chapter, oil 

pressure has been developed by selecting control volume as the oil under each bristle, 

and the pressure for each bristle depends on both of the local coordinates, xi and yi. 

From Figure 5.4, comments about almost linear pressure distribution along rotor axial 

direction can be done. Mean value of oil pressure for each bristle with respect to xi 

coordinate is developed in order to make comments on almost linear pressure 

distribution definite. 

 

( )
01 ( , )

mean xii i i i i i
BH

P y P x y dx
BH−

−

= ⋅∫     (5.18)

 

Pi is the oil pressure under each bristle given in Equation (5.17). Again, trapezoid rule is 

selected as a numeric integration method, and numeric integral is evaluated by writing a 

MATLAB code. 

 

                    ( )
01 ( , )

mean xii i i i i i
BH

P y P x y dx
BH−

−

= ⋅∫    

                                      ( ) ( )1 1 2

1 ( , ) 2 , ... ,
2 i i i i i i i i i
l P x y P x l y P x y

BH
  = ⋅ + + + +   

 

(5.19)

 

A step of numeric integration, l, is taken as BH/1600. In Figure 5.5, mean-x pressure for 

the first bristle is given for 89.6 kPa pressure load and 20.5 m/s rotor surface speed. As 

it can be seen from the figure, pressure distribution along yi-axis of the first bristle is 

almost linear. Pressure distribution along y-axis (rotor axial direction), which is given 
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in Figure 5.6, can be obtained by combining local mean-xi pressure distribution of each 

bristle in one row of the bristle pack.     

 
Figure 5.5 Mean-xi pressure change with rotor axial direction for the first bristle 

 
Figure 5.6 Mean-x pressure change with rotor axial direction for the bristle pack 
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  As it can be seen from the Figure 5.6, oil pressure change along rotor axial 

direction (y-axis), which is found by combining local pressure distributions of Equation 

(5.19) for each bristle, is almost linear. This result is consistent with pressure 

distributions derived in Chapter 3 and real-life applications as reported by Braun et al. 

[30].   

 

 

      

     

 

 

 

 

 

 

  

 

 

 

 

 

    

 

 

 

 

 

 

  

 

 

 

 

 



83 

 

6 DERIVATION OF SHEAR HEAT INCLUDED HYDRODYNAMIC LIFT 

CLEARANCE 

 Importance of hydrodynamic lift clearance has been stated in the previous 

sections. Until now, derivation of closed form function for oil temperature has been 

performed and the shear heat dissipation effect has been successfully integrated into the 

lift force formulation. Oil pressure is successfully derived by tracking three different 

ways, all of which give very similar results to each other. All these analyses are 

advanced fluid mechanics and heat transfer analyses, which give consistent results with 

real-life applications. 

 In this chapter, function of shear heating effect included in hydrodynamic lift 

clearance formulation. For a different pressure loads (which is design parameter and 

known), change of hydrodynamic lift clearance with rotor surface speed can be found 

without requiring any experimental leakage data. Furthermore, theoretic lift clearance 

gives highly accurate results with the experimental lift data given in Table 2.2.     

6.1   Theoretic Hydrodynamic Lift Clearance  

 In the previous chapters, pressure distribution is derived by tracking three 

different ways and all of three analyses give almost linear pressure distribution along 

rotor axial direction. In brush seal applications, it is known that pressure changes almost 

linearly in the direction of rotor axis, which means that analyses of this study gives 

agreement with real-life applications.  

 Idea of deriving hydrodynamic lift clearance arises from the almost linear oil 

pressure. Although oil pressure under each bristle, which is given in Equation (5.17) is 

found as a complicated function of lift clearance, pressure load, rotor surface, effective 

viscosity, bristle geometry and local coordinates, it gives almost linear pressure 

distribution along rotor axial direction (See Figures 5.5 and 5.6). Difference between 
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the linear oil pressure and pressure given in Equation (5.17) for the ith bristle is defined 

as error function.  

 

 

( , , , )i i i i lin iu P x y P Pε −∆ = −  
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Pi-lin gives the linear pressure distribution along rotor axial direction for each bristle.  

Note that error function of Equation (5.18), εi(u,∆P,xi,yi), depends on rotor surface speed 

and pressure load. In Chapter 5, it has been mentioned that hydrodynamic lift clearance 

is assumed to be same for each bristle in a row of rotor axial direction. Therefore, 

derivation of lift clearance for any bristle gives the lift data for the brush seal. For this 

reason, values of error function for the last bristle, which corresponds to 16th bristle 

since nr is sixteen, are evaluated for x16 = -BH and y16 = Rb/10000. Values of error 

functions for different pressure loads and rotor surface speeds are given in Table 6.1. 

 

16th element 

x16 = -BH,  

y16 = Rb/10000 

∆P = 48.3 kPa ∆P = 89.6 kPa 

Rotor surface speed 
[m/s] Error = Pi-lin -Pi Error = Pi-lin -Pi 

0 0 0 

6.2 0.18089160071395 0.18259628994565 

12.3 0.37061247121892 0.37043838875252 

20.5 0.51292344700778 0.55241753367591 

Table 6.1 Error between Pi-lin and Pi for the 16th bristle, where xi=-BH and yi=Rb/10000  

 

16th element 

x16 = -BH,  

y16 = Rb/10000 

∆P = 48.3 kPa ∆P = 89.6 kPa 

Rotor surface speed 
[m/s] 

Error % =  
100x(Pi-lin -Pi)/Pi-lin 

Error % =  
100x(Pi-lin -Pi)/Pi-lin 

0 0 0 

6.2 1.73361473x10-4 %   1.707708x10-4 % 

12.3 3.55184673x10-4 % 3.46447845x10-4 % 

20.5 4.91571549x10-4 % 5.16641552x10-4 % 

Table 6.2 Error% between Pi-lin and Pi for the 16th bristle, where xi=-BH and 

yi=Rb/10000  

 

 As it can be seen from the Tables 6.1 and 6.2, error function is almost zero so that 

Pi-lin can be taken equal to Pi. However, for the sake of obtaining more accurate results, 

error for the 16th bristle, for xi = -BH and yi = Rb/10000 can be defined. Since there are 
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two pressure load and three rotor surface speed data, the error function can be found as 

second degree polynomial of rotor surface speed and first degree polynomial of pressure 

load. Define an error function for the 16th bristle as, 
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A, B, C, D, E and F are constant coefficients which can be determined using the data 

given in Table 6.1. Matrix equation given below is obtained as, 
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 Matrix equation given above is solved by using MATLAB, which yields, 
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 0.00000000871259
 -0.00138211964675
 -0.00000016864155
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 -0.12156751681664
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Equation (6.4) is a function of ∆P, µeff, BH, Rb, Req, nr, u and H. ∆P is a design 

parameter and known. BH, Rb, Req, nr are brush seal properties and they are also known. 

µeff  can be calculated from Equation (4.17), by using temperature analysis of Chapter 2. 

Only u and H is unknown in Equation (6.4), and relation between them can be found by 

using this equation, without requiring any experimental data. Since the equation (6.4) is 

a complex function of u and H, closed form solution to H can not be found. Therefore, 

MATLAB code is used in order to find hydrodynamic lift clearance. The logic of 

MATLAB code is as given, 

 

1 Start a “for loop” for rotor surface speed. 

2 Start another “for loop” for hydrodynamic lift clearance. 

3 For u and H, find effective temperature by using Equation (4.16). 

4 Find effective viscosity, µeff , by using Equation (4.17). 

5 Find 16 16( , /10000) ( , /10000)lin b bP BH R P BH R− − − −   for ever u and H value by 

using Equation (6.4). 

6 Find  
2 2

16 16 16( , , , /10000)bu P x BH y R A u P B u C u P D u E P Fε ∆ = − = = ⋅ ⋅∆ + ⋅ + ⋅ ⋅∆ + ⋅ + ⋅∆ +
by using (6.4) 

7 If 

16 16 16 16 16( , , , /10000) ( , /10000) ( , /10000)b lin b bu P x BH y R P BH R P BH Rε −∆ = − = = − − −
break! 

 

Note that shear heating effect is included into the lift clearance through steps 3 

to 4, by using previous thermal analysis.  

6.2   Results and Comparison with Experimental Lift Clearance   

Comparison of theoretical hydrodynamic lift clearance found by introducing a 

MATLAB code for Equation (6.4) and experimental hydrodynamic lift clearance data is 

given in Figures 6.1 and 6.2. As it can be seen from the figures, the lift clearance data 

gives highly consistent results with experimental lift clearance data. High speed-

stabilization in theoretic lift clearance is the result of including shear heating effect by 

means of effective viscosity.     
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Figure 6.1 Comparison of theoretic hydrodynamic lift clearance with experimental lift 

clearance data, ∆P = 48.3 kPa 

 
Figure 6.2 Comparison of theoretic hydrodynamic lift clearance with experimental lift 

clearance data, ∆P = 89.6 kPa 
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 Theoretic lift clearance change with rotor surface speeds are given in Figure 6.3 

for different pressure loads. As it can be observed form the figure, lift clearance 

decreases as pressure load increases, which is also the case for real life applications. Oil 

flow at y-direction increases as pressure load increases, which results in more shear in 

the oil. As a result of increasing shear mechanisms, dissipated heat is higher for large 

pressure loads. Therefore, effective viscosity takes smaller values for same rotor speeds 

at higher pressure loads, which degrades the lift ability of the oil.        

 

 
Figure 6.3 Theoretic hydrodynamic lift clearance change with rotor surface speed for 

different pressure loads 
 

 

 

 
 
 
 
 
 
 
 
 



91 

 

7 CONCLUSION 

 Shear heating in brush seals has great importance as it affects the hydrodynamic 

lift clearance and lifting force. This in return, determines the seal leakage performance. 

In brush seal applications, shear heat dissipation is the reason for stabilization of the 

lifting force after certain rotor speeds. Until now, suggested theories did not include the 

shear heating effect, or underestimate the frictional and blow down forces.  

 In this study, after selecting an appropriate control volume, and analyzing the 

boundary layer equations, thermal energy equation for the control volume has been 

derived. A closed-form solution for the temperature distribution of the oil is provided as 

a function of oil properties, hydrodynamic lift clearance, and pressure difference 

between upstream and downstream sides. Effect of shear heating on the lifting force is 

successfully represented by including the temperature effects into the bearing theory. 

Comparison of analysis results with the available experimental data show reasonable 

agreement with proper high speed lift stabilization due to shear thinning. 

 Pressure distribution of the oil is another important task for brush seal 

applications. Until now, there is no theoretical work on oil pressure for brush seals. This 

study derives oil pressure by tracing three different ways. As a result of pressure 

analyses, pressure distribution in rotor axial direction is found almost linear, which is 

consistent with engine applications. 

 The most important parameter for leakage performance of the brush seal is 

hydrodynamic lift clearance. Lifting force theories until now are derived in order to give 

a sight about lift clearance, and they require experimental leakage data. In this study, 

theoretic lift clearance is derived by using the similarity between oil pressure under each 

bristle and linear pressure distribution. Shear heating effect is also included into the 

lifting clearance analysis by means of effective viscosity. In conclusion, theoretic 

hydrodynamic lift clearance shows high consistency with experimental leakage data.   
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