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FUZZY LINEAR PROGRAMMING: REVIEW AND IMPLEMENTATION

Esra Dervigoglu

Abstract

Most of the time we encounter problems where quantities cannot be expressed
by crisp numbers; instead, the use of vague qualifications is preferred. The Fuzzy
Set Theory (FST), developed by Lotfi A. Zadeh, is an effective framework which can
be used in the solution of such problems. In FST, the objects belong to a set to a
degree between [0, 1]. The degree of belongingness is referred to as the membership
degree. FST states that utilizing this membership degree is more profitable than
just partitioning the objects dichotomously as in classical bivalent (two-valued) set
theory. In most of the problems, where linear programming can be applied, the
decision maker chooses to state the inequalities and the coefficients used in objective
function and constraints by vague expressions. Fuzzy Linear Programming, based
on the FST, is developed to model and solve such problems. In this thesis, the
proposed approach, in the most general case, first compares the fuzzy left-hand
side with the fuzzy right-hand side and the fuzzy objective function with a fuzzy
goal by means of a membership function based on the fuzzy relation using “min”
function. After determination of these membership functions associated with the
constraints and the objective function, a new auxiliary problem is formed. The
obtained auxiliary problem is a non-linear fractional programming problem with its
nominator and denominator are defined by linear functions. The optimal solution

of such a problem can be found by solving a sequence of linear programs.

In this study, the solution approaches present in the literature for fuzzy linear
programming are categorized, some points which are unclear is identified and tried
to be improved, and finally the proposed solution methodology is applied to so-called

fuzzy analytical hierarchy process.



BULANIK DOGRUSAL PROGRAMLAMA: INCELEME VE UYGULAMA

Esra Dervigoglu

ézet

(Cogu zaman, niceliklerin kesin sayilarla ifade edilmeyip, muglak nitelemelerin
tercih edildigi problemlerle karsilagmaktayiz. Lotfi A. Zadeh tarafindan geligtirilmis
olan Bulanik Kiimeler Kurami (BKK) bu tip problemlerin ¢oztimiinde kullanilabile-
cek etkin bir ¢ergeve saglamaktadir. BKK’de kavramlar, bir kiimeye [0,1] araliginda
bir derece ile baghdirlar. Bu baglilik derecesi, aitlik derecesi olarak adlandirilir.
BKK kavramlarin, iki-degerli klasik kiimeler kuraminda oldugu gibi ikiye ayrilmasin-
dansa aitlik derecesi ile tanimlamasinin daha faydali oldugunu ortaya koymaktadir.
Dogrusal programlama yonteminin uygulanabilecegi bir ¢cok problemde, karar verici,
amag fonksiyonu ile kisitlarda kullanilan katsayilar: ve esitsizlikleri, muglak niteleme-
ler ile ifade etmeyi tercih etmektedir. Bulanik dogrusal programlama yontemi,
BKK’yi temel alarak, bu tip problemlerin modellenmesi ve ¢oziimlenmesi i¢in geligti-
rilmigtir. Bu tezde ele alinan problem yapisinda ¢oziim, en genel haliyle, ilk olarak
kisitlarin sol taraflarinin degerini kisitlarin sag tarafinin degeri ile, amac fonksiy-
onunun degerini digaridan verilen bir degerle minimum fonksiyonunu temel alarak
karsilastirmaya dayanmaktadir. Bu aitlik fonksiyonlarinin elde edilmesinden sonra,
yeni bir yardimci problem tamimlanmaktadir. aitlik derecesi bulunmaya calisilmakta-
dir. Elde edilen yardimci problem, pay1 ve paydasi dogrusal olan kesirli dogrusal
olmayan programlama problemine dontigmektedir. Bu yeni problemin en iyi ¢oziimii,

bir seri dogrusal programlama problemi ¢oziilerek elde edilir.

Bu calismada, literatiirde onerilen kimi yontemlerin simiflandirilmasi, acik ol-
mayan kimi noktalarin aydinlatilmasi iyilegtirmelerin yapilmasi, son olarak da soz

konusu yontemin analitik hiyerargi prosesine uygulanmasi yapilmigtir.
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Chapter 1

Introduction

1.1 Elementary Concepts in Fuzzy Set Theory

Fuzzy set theory derives from the logic underlying the modes of reasoning, which
are approximate rather than exact. The importance of fuzzy logic derives from the
fact that the modes of human reasoning, and especially, common sense reasoning is
approximate in nature; both do not well-define boundaries of referred objects, such
as young man, high temperature, big size, and so on. Futhermore, everything is a
matter of degree; such as not quite young, high to some extend, and so on. In 1965,
Zadeh states this phenomenon “A fuzzy set is a collection of objects that might
belong to the set to a degree, varying from 1 for full belongingness to 0 for full

Y

non-belongingness, through all intermediate values ” and come up with the fuzzy

set theory [41].

A paradigm is a set of rules and regulations which defines boundaries and tells
us what to do to be successful in solving problems within these boundaries. Thus
fuzzy set theory is a superset of a paradigm shift from the conventional bivalent (two-
valued) set theory. Bivalent set theory can be somewhat limiting if a humanistic
problem is described mathematically. For example, Figure 1.1 illustrates the bivalent

sets to characterise the temperature of a room.

The most obvious limiting feature of bivalent sets can be seen clearly from Figure
1.1; in that they are mutually exclusive. For example, “cold” and “cool” is divided
by 1 degrees celcius and at that boundary they have the same membership; i.e, they

are true at the same degree. The conventional (bivalent) set theory represents the
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Figure 1.1: Bivalent sets to chacterize the temperature of a room.

temperature in this way; however, the natural system differs. The natural system
can be described more accurately by the fuzzy set theory. Figure 1.2 shows how

fuzzy sets can describe the natural system [46].

Membership
Function

1

Figure 1.2: Fuzzy sets to chacterize the temperature of a room.

The characteristic function of a fuzzy set, often called the membership function,
is a function, whose range is an ordered membership set containing more than two
(often a continuum of) values (typically, the unit interval). Therefore, a fuzzy set is
often understood as a function. This conception has been a source of criticism from
mathematicians [3] as functions are already well-known, and a theory of functions
already exists. However, the novelty of the fuzzy set theory, as first proposed by
Zadeh, is to treat functions as if they were subsets of their domains. Such func-
tions are intersection, union, complement, inclusion, and so on. By Zadeh they
are extended so as to combine functions ranging on an ordered membership set.

For example, in elementary fuzzy set theory, the union of functions is performed

2



by taking their pointwise maximum, intersection by pointwise minimum, comple-
mentation by means of an order-reversing automorphism of the membership scale,
and set-inclusion by the pointwise inequality between functions. Fuzzy set theory
indeed closely connects to many-valued logics that appeared in 1930s, if degrees of
membership are understood as degrees of truth, intersection as conjuction, union as

disjunction, complementation as negation and set-inclusion as implication [9].

Additionally, fuzzy set theory has a number of branches such as fuzzy mathemat-
ical programming, fuzzy decision analysis, fuzzy pattern recognition, fuzzy topology,
and so on. Here we will deal with fuzzy linear programming (FLP) which is a branch
of fuzzy mathematical programming. Before going on to FLP, it is useful to give
basic definitions, properties and operations about fuzzy sets. For a more extensive

discussion of these elemantary concepts, we refer the reader to [9].

Definition 1.1.1 If X is a collection of objects denoted generically by x, then a

fuzzy set A in X is a set of ordered pairs:

A={(z, pix))le € X}, (1.1)

where 11 ;(x) is called the membership function or grade of membership (also degree
of compatibility or degree of truth) of z in A that maps X to the membership space
M. When M contains only the two points 0 and 1, A is a nonfuzzy set and p i(x) is
identical to the characteristic function in conventional set theory. The range of the
membership function is a subset of the nonnegative real numbers whose supremum

is finite. Elements with a zero degree of membership function are normally not

listed [44].
Example 1.1.1 A = “real numbers around 10”

A= {(, pi@) € X},

where
0, r<4,x>16
pi(z) =9 %4, 4<z<10
-2 10 <z < 16.
The membership function of fuzzy set A = “real numbers around 10” is shown in
Figure 1.3:



4 10 16
Figure 1.3: Real numbers around 10.

Definition 1.1.2 The fuzzy set A is called normal if sup yu;(x) = 1. Otherwise, if
it is not empty, it can easily be normalized by dividing p ;(z) by sup p;(z) = 1.

From now on if not stated, it is assumed that fuzzy sets are normalized and repre-

sented as in equation (1.1.)

Definition 1.1.3 The support of a fuzzy set A, S(A), is the crisp set of all z € X
such that p4(z) > 0.

Definition 1.1.4 The height of a fuzzy set A, Hgt(A), is given by

Hgt(A) = sup{p;(z)|lr € X}.

Definition 1.1.5 The crisp set of elements that belong to the fuzzy set A at least

to the degree « is called the a-level set (a-cut):
Ao = {z € X|pz(e) > .

Figure 1.4 shows the a-cut of A:

7 A}Ew)

]

]

]

'

]

1

' \

Y ! »
Y 4y > L

Figure 1.4: a-cut of A.

The operators for the intersection and union are named as t-norms and ¢-conorms

respectively. For the intersection of fuzzy sets, the min-operator and the algebraic

4



product have been suggested. A general class of operators for the intersection of
fuzzy sets is called triangular norms or t-norms, which are operators with two argu-

ments from [0, 1] x [0, 1] that satisfy the following conditions:
o 10,0)=0; t(us(e)1) = 0L ps(@) =i, ©€X  (boundary)

o t(pi(x), np(x)) < tlpe(@), pp(x)) if pi(r) < palz) and pp(z) < pp(e)

(monotonicity)

o t(pi(@), tpp(x), pe(r)) = 1t (u(x), pg(e), pe(r))  (associativity)

The most used t-norm is the min operator.

For the union of fuzzy sets, the max-operator and the algebraic sum have also
been suggested. A general class of aggregation operators for the union of fuzzy
sets called triangular conorms or ¢-conorms (s-norms), which are operators with
two arguments that map from [0,1] x [0,1] into (0, 1] that satisfy the following

conditions:
o s(1,1)=1; s(ua(x),0) =s(0,p4(x) =pz, 2€X  (boundary)

o s(pui(x), pp(x)) < s(pa(), pp(e)) it pi(r) < pe(r) and pp(r) < pp(e)

(monotonicity)

o s(ni(r), s(up(@), pe(x))) = s(s(pi(e), pp(r), na(x))  (associativity)

The most used t-conorm is the max operator.

One of the most fundamental concepts in fuzzy set theory, which can be used
to generalize crisp mathematical concepts to fuzzy sets, is the extension principle.

The extension principle can be defined as follows:

Definition 1.1.6 Let X be a cartesian product of universes X = X; x ... x X,
and Ay, ..., A, be r fuzzy sets in X1, ..., X,, respectively. Suppose, f is a mapping
from X to a universe Y, y = f(x1,...,2,). Then the extension principle allows us to

define a fuzzy set B in Y by



B = {(yaﬂﬁ(y))ly = f($17 "'7x7")7 (3717 "'7377’) S X}7 (1'2)

SUD (4, anyef-1G min{pg (x1), o pg (2}, i 7N (y) #0,

npy) = .
0, otherwise,
where f~!is the inverse of f.

For r = 1, the extension principle reduces to

SUp,e -1y M) if f7H(y) #0,

0, otherwise.

pp(y) =

The membership functions for fuzzy sets can be in any form (as far as convexity
is preserved) but for the most applications, linear membership fuctions are prefered
since the convexity is preserved throughtout the operations. The most widely used
fuzzy number forms are triangular and trapezoidal forms. Triangular fuzzy numbers
are represented as below:

X = (z,2,7),
where z is the center value, z is the left spread and Z is the right spread. A triangular
fuzzy number X is illustrated in Figure 1.5.

Mz (X)

Figure 1.5: A triangular fuzzy number X.

The membership function of a triangular fuzzy number, X can be formed as

follows:
( t—(z—z) if
. o I r—x< t<ux,
(1) = 4 1, if t=ux,
Hx(t) = —
WD g4 T>t>a
\ 0, otherwise.



Trapezoidal fuzzy numbers are represented as below:

X = (:L'l: Ty, XL,y E):
where z; is the left most value where membership grade equals to 1, x, is the right
most value where membership grade equals to 1, and z is the left spread and T is
the right spread. A trapezoidal fuzzy number X is illustrated in Figure 1.6.

ﬂ}?(x)

1

\ ) ] T\ )

Figure 1.6: A trapezoidal fuzzy number X.

The membership function of a trapezoidal fuzzy number X can be formed as

follows: (
t—(wl—ﬁ), if r—x<t<ua,
g (t) = 4 b omstea
LA DL g+ T >t > 1,
0, otherwise.

\
Fuzzy sets have their own arithmetic to carry on opearations for calculations.

Some basic fuzzy operations are discussed below:

For triangular fuzzy numbers, fuzzy addition is carried out as follows:

Y = (y,9,9),

X+Y=@+y,z+y7+7).

For trapezoidal fuzzy numbers, fuzzy addition is carried out as follows:

X = (:L'l: Ty, X, -7_7)

Y = (yb Yry Y, g)

X+Y =@ +ys+yns+y,T+7)

7



For triangular fuzzy numbers, subtraction is carried out as follows:

Y = (y,y,9)

X-Y=@—-yz+77+y)

For trapezoidal fuzzy numbers, subtraction is carried out as follows:

X = (xla Ty, 2, j)

Y = (yla yﬁga g)

X—Y=@—Y,0 Y,z + 7,7 +Yy)

Given a fuzzy number, X and a scalar k € R, the multiplication of a fuzzy

number and a scalar is carried out as follows:

W) k=0, k-

S

£0
(i) k£0, Z£k-X iff  pyz(z) = pa(

For triangular fuzzy numbers:

(kx,kz,kz), k>0

(kx,—kz,—kz), k<O

For trapezoidal fuzzy numbers:

X = (xla Ty L,y j)

(kxy, kx,, kx, kz) |, k>0
kX = 0 L k=0
(kxy, kx,, —kz,—kz) , k<0



1.2 Preliminaries of Fuzzy Linear Programming

A Linear Programming (LP) problem is a special case of a Mathematical Program-
ming problem. From an application perspective, mathematical (and therefore, lin-
ear) programming is an optimization tool, which allows the rationalization of many
managerial and/or technological decisions required by contemporary techno-socio-
economic applications. From an analytical perspective, a mathematical program
attempts to identify an extreme (minimum or maximum) point of a function, which
furthermore satisfies a set of constraints. Linear programming is the specialization
of the mathematical programming to the case where both the objective function

and the problem constraints are linear.

General formulation of a linear program is as follows:

Objective Function max / min cx
<
Technological Constraints s.t. Az | > | b,
>0
Sign Restrictions xr<0 |,
T urs

where ¢ is a vector (objective function coefficient vector) consisting of ¢;’s, j =
1,...,n, A is a matrix (left-hand side coefficients / technological coefficients matrix)
consisting of a;;’s, i = 1,...,m, j = 1,...,n; b is a vector (right-hand side value
vector) consisting of b;’s, i = 1,...,m, x is a vector consisting of z;’s, j = 1,...,n,

and wurs means unrestricted in sign.

An important factor for the applicability of the mathematical programming
methodology in various application contexts, is the computational tractability of
the resulting analytical models. This tractability requirement translates to the ex-
istence of effective and efficient algorithmic procedures to provide a systematic and
fast solution to these models. For linear programming problems, there are pow-
erful computational methods such as the simplex algorithm and the interior point

algorithms.



As stated above, linear programs allow us to rationalize decisions which can
truely be rationalized if the problem is stated as real as it behaves in the actual
world. Most of the time, vague, subjective and imprecise parameters are converted
to crisp numbers by several assumptions and then used in LP problems. In such
cases, fuzzy set theory is a very useful tool to state the problem more realistically.
The parameters of a linear programming problem can be stated as fuzzy numbers.
As well as parameters, inequalities can be given as fuzzy statements. Such a problem
is called a Fuzzy Linear Programming (FLP) problem. Of course, it is not necessary
to state every component as fuzzy. Depending on the problem, the fuzziness can
be only at the objective function, at the left-hand side, at the right-hand side, and
at the inequality relation or fuzziness can be at any combination of those. If there
is only fuzziness at the inequality relation or at the right-hand side, the model is

identified as flexible programming problem.

The general formulation of a fuzzy linear program is as follows:

Objective Function max / min ¢z
z
Technological Constraints s.t. Az > b,
>0
Sign Restrictions <0 |,
x urs

where ¢ is a vector consisting of ¢;’s with membership functions ¢, j = 1,...,n, Ais
a matrix consisting of a;;’s with membership functions pg,, 71 =1,....,m, j =1,...,n,
b is a vector consisting of b;’s with membership functions His © = 1,ym, x 18
vector consisting of z;’s, 7 = 1,...,n; and urs means unrestricted in sign. Due
to the complex structure of fuzzy numbers, the fuzzy linear programming (FLP)
problem cannot be solved by means of conventional algorithms. Special approaches
are needed. Optimization in a fuzzy environment has been first defined by Bellman
and Zadeh [4], and their work constitutes the main idea behind the most of the
approaches. According to the Bellman and Zadeh [4], the fuzzy decision set can be
defined as follows: Let X be the set of alternatives that contain the solution of a

given optimization problem; that is, the problem is feasible. Let C; be the fuzzy

10



domain defined by the i constraint, i = 1,...,m. Let G; be the fuzzy domain of

the j' goal, j =1, ..., J.

A fuzzy decision is the fuzzy set D on X defined by the following:
D = (NZ,C) N (N2 G)).

Let pup denote a membership function, for the fuzzy decision set membership func-

tion is defined as

pp(x) = {pe; (x), pa,(x),i=1,..,m,j=1,...,J} VoeX.

The final decision, z/, is chosen from the maximal decision set:
My = {a! |up(a’) > up(x)}.

The fuzzy decision set can be very complex due to the structure of the FLP
problem. First, the number of fuzzy components - -objective, left-hand side, right-
hand side and inequality- - used at time same time effects complexity. Then, the
types of membership functions - -linear, exponential, logarithmic- - and the types of
t-norms - -min, product- - effect the determination of fuzzy decision set. Yet, most
of the time it will not be possible to determine the fuzzy decision set. Because of
this difficulty, the studies in the literature focus on the specific cases of the FLP
problem. The applications of fuzzy linear program to many decision problems are

still untouched.

1.3 Outline

In this thesis, first an extensive literature survey of FLP is presented in Chapter
2. Then in Chapter 3, an improved solution methodology is proposed for a specific
FLP problem. Following that to show the applicability of the proposed solution
methodology Chapter 4 represented that fuzzy set theory can be used in analytical
hierachy process and that problem can be solved by the proposed solution method.

Finally, the conclusions and future research is represented in Chapter 5.

11



Chapter 2

Literature Review

Following the pioneering work of Zadeh [41] on fuzzy sets, many articles have ap-
peared in the literature. The first approach dealing with fuzzy mathematical pro-
gramming is proposed by Bellman and Zadeh [4]. Consequently, the fuzzy linear
programming became an attractive research area. If a simple categorization is made,
it is seen that the majority of the research is focused on the use of fuzzy sets in the
objective function and in the right-hand side values of constraints. As stated in Sec-
tion 1.2, this type of FLP models are called flexible programming models. Below,
there is a review of solution methods for FLP problems presented in the literature.
The solution methods are categorized according to three model types: models with
fuzzy objective, models with fuzzy right-hand side (or fuzzy inequality), and models
with various combination of fuzzy components. In the following sections we will
investigate each model in further detail. Finally, a section is dedicated to the review

and discussion of methodologies in the literature.

2.1 Models with Fuzzy Objectives

A FLP problem with a fuzzy objective is modelled as:

max czx
s.t. Az <b, (2.1)
x>0,

where A is an m X n matrix of real numbers, b is a vector of real numbers and ¢ is

a vector of fuzzy numbers, ¢; with the membership function pg;, j =1,...,n.

12



To solve (2.1), several approaches have been proposed in the literature. They

are discussed in the following subsections.

2.1.1 Multiobjective Approach

The multiobjective approach is orginally proposed by Verdegay et al. [33]. Since we
were not able to access the original paper we referred to the papers [31,36,37] which
have cited it. In [31,36,37] FLP problems in (2.1) with triangular fuzzy objective
function coefficients, ¢; = (c;, G, ¢;), are investigated. The membership function of

¢; is defined as follows:

0, if Cj+6j§t0rt§Cj—ﬁ,
pe(t) =9 hi(t), if ¢j—¢ <t <, j=1,..n,
g9i(t), if ¢ <t<¢+g
where h; and g; are assumed to be strictly increasing and decreasing continuous

functions, respectively, with h;(c;) = g,(¢;) =1,j =1,...,n.

For the solution of the considered problem, multiobjective approach first consid-

ers the (1 — a)-cut of ¢;, a € [0, 1],

VieR, p,(t)>21-—a &h'(l-a)<t<g '(1-a).

Later Verdegay et al. [33] proposes that a solution to the considered FLP problem
is the parametric solution of the following multiobjective parametric LP problem:

2™ $]

max [c'z,c?z, .., c
s.t. Az <D, x>0
*eE(l-a), k=1,.,2"

a € [0,1]

(2.2)

where E(1 — «), for each o € [0, 1], is the set of vectors in R™ such that each
set of its components is either in the upper bound, hj’l(l — «), or in the lower
bound, g;l(l — a), of the respective (1 — «)-cut, that is, Vk = 1,2,...,2".  To find
a parametric solution to the given LP, any classical multiobjective LP approach

(vector-maximum method, interactive techniques) can be used.

Hence, in multiobjective approach the decision variable,  is determined based on

an auxiliary mathematical programming problem in which all possible combinations

13



of the boundaries of the objective function coefficients (note that there are 2" such
combinations) are treated as objective functions. The auxiliary multiobjective LP
is solved for each a-cut parametrically. Note that obtained solution is parametric

not unique.

2.1.2 Interval Arithmetic Approach

The interval arithmetic approach is originally proposed by Tanaka et al. [30] and it
is also cited in papers [31,36,37]. Tanaka et al. [30] investigate FLP problems as in

(2.1) with triangular fuzzy objective function coefficients, ¢; = (¢;, ¢;, ¢;).

For the solution, Tanaka et al. [30] consider the a-cuts of the fuzzy numbers and
propose that the solution of the following biobjective parametric linear programming

problem is the solution of the considered FLP problem:

max z (a) = (2(z,a), 2°(z, @)
st Az <b,
(2.3)
x>0,
a € [0,1],
where z!(z, ) and 2¢(z, a) are defined by

n

a,) = (¢ — ac)x;

j=1 N

and
n

e, a) = 5 (26 +al - )

Note that, z°(z,a) corresponds to the center whenever the objective function
coefficients are symmetric fuzzy numbers. Also note that, the interval arithmetic
approach is also a multiobjective approach where the objective functions are deter-
mined by two special cases of objective function: the lower bound of coefficients and

the center value of the coefficients for the given a-cut.

2.1.3 Possibilistic Approach

The possibilistic approach is originally proposed by Tanaka et al. [27,29] and also
cited in [31,35]. Tanaka et al. [27,29] investigate FLP problems as in (2.1) with
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triangular fuzzy objective function coefficients, ¢, = (¢;, ¢;, ¢;).
For the solution the following two properties are used:

(i) The objective function value
Z=CT1 + CTo+ ...+ CrTy

is also a triangular fuzzy number with the following membership function

1= (2y = 2c = c+70)|z)/(c+ )z, = >0,
py) =19 1, r=0,y=0,
0, r =0, Y 7é 0,
where ¢ = (¢1, ..., ¢,), ¢ = (¢1, ..., ¢,) and € = (¢4, ..., ).

(ii) The maximization of a fuzzy set such as Z can be also be done by means of
max wlyU:L‘ + wzny

where w, +wy = 1, wi,wy € [0,1], y¥ =c+¢and y* =c—c.

Due to the properties stated above, it is proposed that the solution of the consid-

ered FLP problem is the solution of the following auxiliary conventional LP problem:

max wax + wchaj
s.t. Az <b,
z >0,

where (wy, ws) is a pair of values that the decision maker must choose according to

his wishes with wy, ws € [0, 1] and wy + wy = 1.

Solution idea of possibilistic approach is very similar to the multiobjective ap-
proach and interval arithmetic approach. Possibilistic approach considers the weighted

mean of the lower and upper bounds off the objective function coefficients.

2.1.4 Stratified Piecewise Reduction Approach

Stratified piecewise reduction approach is proposed by [17] and cited in [31, 35].
In [17,31,35] FLP problems as in (2.1) are considered with triangular fuzzy objective
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function coefficients, ¢; = (¢j,¢;j,¢;). Triangular fuzzy numbers are modelled by

means of nested intervals, defined by means of a set

;= {[c], ]] Jagi=1,..,m}, Vj=1,..,n,

where each having a membership degree o; € [0,1],i = 1,...,m, ¢ is the lower value

and c;] is the upper value of a;-cut, verifying

Vag,ap € [0,1], a3 > ay = [CJL, ;] 1C [C]L,C?]

For each «a;,7 = 1, ..., m, the following auxiliary problem is proposed as a solution

to the considered FLP problem:

Max A

st. fi[ckex] > A

(2.4)

where fi[ct®z] and fy[cV“x] are memberships formed as

filekea] = (clox — 2V9) /(218, — 2U2) if U8 < clag < 2

min min min “min = mm:
fQ[CUa:E] = (CUa:E - Zgl:x)/(Z;%x - Zglgx) if gl:x < CUax < Z;‘l();x

On the other hand, by definition

Zr*noi[n = CLa('r:nin) - maX{CLaJI|I S X}7 Zmln - CLa('r:nax)7
I = € (@) = max{c”zlz € X}; 200, = " (a,,),

with
X ={z € R"|Az < b,z > 0}.

The ultimate solution can be found by the intersection of the solutions obtained

by solving the auxiliary models (2.4) for each «;,7 = 1,...,m, and that can be done
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by the following model:

Max A

st (2%, — V)N — cleg < U
(2 = Zma) A — V% < =200 (2.5)
Az < b, '
x>0,
A>0.

It is evident that
fl[CLall*] — fQ[CUall*] — )\*

with (A", 2*) being the optimal solution of the auxiliary model (2.5).

Note that, in stratified piecewise reduction approach two objective functions that
are based on the lower and upper bounds of the coefficients that are obtained for a
specific a-cut is considered. The realization degrees of the objective functions are

maximized simultaneously.

2.1.5 Progressive Reduction Approach

In [17] FLP problems as in (2.1) are considered. For the solution, a very simi-

lar algorithm to the stratified piecewise reduction approach, called the progressive

reduction approach, is proposed. In this approach a-cuts are not used, but the

reduction idea is the same. The objective function ¢z is denoted by z(x). Objective
U

function coefficients are given as interval fuzzy numbers, ¢; = (ch ) C; ), where ch is

the lower value and c;J is the upper value of fuzzy number ¢;.

Author [17] proposes to reduce the many infinite objective functions by extreme
positioning to the two extreme objective functions zyi,(x) and zyay(x), where the
first one is the minimum value that an objective function can take and the latter,

maximum. Then objective function becomes:
Zmnin () oz
maxx€X< ) = maXgcy ( , ) (2.6)
Zmax (T) 'z
The complete solution set of problem (2.6) is a subset of complete solution of the

considered FLP problem. To determine a compromise solution of the problem (2.6),
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a procedure proposed by Zimmermann [43] is used. According to the procedure, at

first the maximum objective values z*. and 2’  are determined as solution of the

min max

conventional linear programming problems:

Zmin = Zmin(Tmin) = gg? Zmin(T),
Z:nax = Zmax(x;knax) = meaj? ZIH&X('T)'

If the optimal solutions x* . or z¥  are not determined unequivocally, the solution

min max

vectors which are most diverging should be chosen. Denoting Zmin = Zmin(2,.) and
Zmax = Zmax (T5,,), it can be assumed that a decision maker is only willing to accept
a solution = which has the properties zmin () > Zmin and zmax () > Zmax. From here

the following linear membership function can be formed:

W, with zp < z(z) < 2z k = {min, max}
fa(z) = %%

0, otherwise

Then a new problem is formed as follows:

frmin (T)
max
Zmax X
Fomax () @7
s.t.  Ax <b,
x>0

Actually the problem defined by the equation (2.7) has the same complete solution
as vector optimization problem defined by equation (2.6). To calculate a compromise
solution of the problem defined by the equation (2.7), the min operator is used as

t-norm:
A@) = min(fs,, (), frna ()

The value A(z) can be interpreted as an expression of total satisfaction on the part
of the decision maker, who intends to improve both objectives as well. Then a

compromise solution of (2.7) can be calculated by solving the LP problem

max A\

st. (285 = Zmin) A — 2(2) < —Zmin,
(2hax — Zmax)A — 2(2) < —Zmax,
Ax <b,
A >0,

x> 0.
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2.1.6 Compromise Objective Function Approach

In [17], a solution method to an FLP problem as in (2.1) with objective function
coefficients given as interval fuzzy number, ¢; = [c]L,cg]], j =1,...,n, is proposed.
The main idea of the approach is to transfer the infinitely many objective functions
into a single compromise objective function. The simplest way of doing this is to
choose a single representative, ¢; for each interval [c]L, cg»] ]. Then compromise solution
of the FLP problem (2.1) can be obtained by solving the LP problem:

max Y7, G

s.t. Az <b,

x>0,

where ¢; is assumed to be a value with the highest ’chance of realization’ in in-
terval [cf,cgj] To determine a representative of a interval, different approaches

have been proposed; such as, interval median, rule of Hurwicz, state of a nature as

representatives(propobability)-expected value, mode, and so on [17].

2.1.7 Comparison Approach

In [31] an FLP problem as in (2.1) is considered. For the solution, a comparison
approach based on the fuzzy ranking methods [5-8,37,39,40] is used. After applying
the comparison approach, the following conventional LP problem is obtained whose
solution is proposed as the solution of (2.1):
max Y7, g(¢;)]
st D i japry <b i=1,...,m
x; >0, j=1...,n
where ¢ is a ranking function. For example, if ¢ is defined by Average’s index
and objective function coefficients are given as trapezoidal fuzzy numbers, ¢; =

(ci;, ¢, €4, C5), the proposed LP becomes the following auxiliary problem:

. Gte
max 35 (ey = gy T MGy —ay) + )

s.t. Z?:l Qi T j < bz 1= 1,...,m
33_7'20, jzl,...,n

where A\ and ¢ fixed by the decision maker.
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2.1.8 Fuzzy Aspiration Level Approach

In [18] Rommelfanger considers an FLP problem as in (2.1). For the solution, an ap-
proach totally different from the ones decribed so far is proposed. The approach will
not be stated here in detail since additional knowledge about how to deal with fuzzy
left-hand side, fuzzy right-hand side and fuzzy inequality is necessary. However, the
basic idea behind the approach is to treat objective function as a constraint. In
order to do so, first a fuzzy aspiration level for the objective function is defined, N,
and then fuzzy objective is converted to a fuzzy constraint as N<Z (x). After that,
some assumptions are made to deal with constraints. Finally for the compromise

solution of (2.1) an LP problem is proposed.

2.2  Models with Fuzzy Right-Hand Side or Fuzzy Inequality

This section investigates the proposed solution methodologies for two FLP problems.

The first problem involves only fuzzy right-hand sides and is modeled as below:

max cx
sit. Az <b, (2.8)
x>0,

where ¢ is a vector of real numbers , A is a m X n matrix of real numbers, b is
a vector of fuzzy numbers consisting of b;,’s with membership functions p;. The
1

second problem involves only fuzzy inequalities and is modeled as below:

max cx
s.t.  Ax<b, (2.9)
x>0,

where ¢ is a vector of real numbers, A is a m x n matrix of real numbers, b is a

vector of real numbers and the inequality relation is given as fuzzy.

FLP problems with either fuzzy right-hand sides or fuzzy inequalities, but not
both, are nearly the same. To our knowledge, there is no special property that helps
to distinguish them.Therefore, the appropiate model is selected by the decision

maker’s preference. The case when the decision maker chooses to use both fuzzy
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right-hand sides and fuzzy ineuqalities is investigated in the next section. For the
FLP problems (2.9) and (2.8), different solution approaches have been proposed.

Some of them are listed below:

1. In [31], FLP problems (2.9) and (2.8) are considered which are originally stud-
ied by Zimmermann [42]. The solution of the FLP problems are found by
solving a proper LP problem. To obtain such an LP model, a fuzzy goal z, a
tolerance py for fuzzy goal and tolerances p; for each constraint are taken from
the decision maker. Constraints are evaluated between the given tolerance
limits to a degree, which shows the membership grade. The objective func-
tion is compared with the given fuzzy goal and then, treated as a constraint.
Finally to combine the constraints and derive a solution that satisfies all of
the constraints, min operator is used as t-norm. In other words, a minimum

membership functions is maximized. This approach leads to the following LP:

max A

sit. cx >z — (1= \)po,

Az < b+ (1 - N)p, (2.10)
z >0,
A€ [0,1],

where p is a vector consisting of p;’s, i = 1, ..., m. The optimal solution of the

LP problem(A*, z7) is also the optimal solution of considered FLP problem.

2. In [38] by Werners, the same problem and the solution approach in [42] (the
previous approach) is considered. To make the problem more realistic, deter-
mination of fuzzy goals and tolerances has been changed. The following LP

problem is proposed for the solution of (2.9) and (2.8):

max A

st. co>Z'— (1 -\ (Z' - 2%,
Az < b+ (1— \)p, (2.11)
z >0,
A€ 0,1,

where

0 __ : _ * _
Z° = 1nf(r£1€%?(cx) =7"(a=1)
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and

1_ (e —
Z —sup(r:?g?(cx)—Z (= 0),

with X = {z|Az < b+ (1 —a)p,z € [0,1]}, A € R™" b,p € R™, x € R".

Here, the a corresponds to the a-cut of fuzzy set associated with the relation

Ax<b.

3. In [32] Verdegay considers the problem (2.9). Tolerances for each constraint,
denoted by the vector p, are taken from the decision maker. Then for the

solution of (2.9) the following parametric LP problem is proposed:

max cx
st. Az <b+(1—a)p,
<b+(1—a)p (2.12)
z >0,
a€[0,1].

Note that the solution is a parametric solution and there is no unique solution.

4. In [36] fuzzy integer linear programming problem is studied. The considered

FILP problem is as follows:

Max cx
s.t.  Az<b,
(2.13)
x>0,
z N,

where ¢ is a vector of real numbers, A is a m X n matrix of real numbers, b is

a vector of real numbers and the inequality relation is given as fuzzy.

The solution of problem (2.13) can be found by implementing the same method-
ology as in previous approach and for the solution following ILP problem is

proposed:

max cx
st.  Azx <b+ (1 —a)p,
x>0,
a € [0,1],
zeN.
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2.3 Models with Various Combinations of Fuzzy Components

In [10] a penalty method is proposed to solve a FLP problem. All the coefficients

used in the solution methodology is assumed to be fuzzy numbers.

First the following crisp linear programming problem is considered:

max ¢z
s.t.  Ax <b,
x>0,

where ¢ and b are vectors, and A is a m X n matrix.

Secondly, constraints are removed and put into objective function by subtracting

the following penalty term from the objective function
dimaX(O, AZ.T — bz),

where each d; > 0 is the cost per unit of violation of the right-hand side values.

Then the objective function becomes
f(z) = c"z — d"max(0, Az — b).

Then every coefficient is replaced with a predetermined fuzzy number. Then every
fuzzy number is characterized by its a-cuts. The author of [10] makes the assump-
tion, “The expected midpoint of the fuzzy number as the basis of comparing two
fuzzy numbers makes sense for a decision maker whose utility for an interval of
possible values is the midpoint of the interval”. Then he states a new optimization
problem

max FA(f(z)) = EA(& z — d¥ max(0, Az — b)),

where “EA” means “expected average”. When the a-cuts of fuzzy numbers are

taken and the expected average is calculated, f(x) is written as:

fH@) = @) " — (d7) "max(0, Ajx — (b))
fo (@) = (&) @ = (df) max(0, ATz — (b))
Finally, the following optimization problem is formed:

max BAf() = 5 [z (@) + Fi @)do.
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The obtained problem is concave and solution to the problem can be found by the

gradient ascent algorithm.

Another combination is presented in [34]. In [34] the solution methodologies
for two types of problems (problem with fuzzy inequality, problem with fuzzy left-
hand side and fuzzy right-hand side) are investigated, and later by combining them a
general methodology is given. Given solution methodology for the FLP problem with
fuzzy left-hand side and fuzzy right-hand side is based on the study of Tanaka [29].

The model is given as:

max cx

s.t. b, (2.14)

IN

x
x>0,
where A is a m x n matrix and b is a vector consisting of fuzzy numbers a;; and b;,

respectively.

For triangular fuzzy numbers defined as a;; = (a;;, aij, a;;), the following auxiliary

LP is proposed to solve the problem (2.14):

S.t. Z?:l[(l - 1/2h) (az-j + C_Zij) + 1/2h(aij - Qij)]x
< (1—1/2h)(b; + b;) + 1/2h(b; — b;),
[1/2h(ai; + @ij) + (1 — 1/2h)(ai; — a;)]x
< 1/2h(b; + b;) + (1 — 1/2h)(b; — b,),
x>0,

where h € (0,1] is a level or degree of optimism being specified by the decision

maker a priori.

2.4 Summary and Discussion

An FLP problem with all components (except the decision variables) being fuzzy is

given below:

Max ¢z
st. Az < b (2.15)
x>0
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where ¢ is a vector, A is a m x n matrix and b is a vector consisting of fuzzy
numbers with the membership functions p, 5, and g respectively, and <is a

fuzzy inequality relation.

In the literature, a single solution methodology is not given for FLP problem
(2.15). Many solution approaches are provided showing how to deal with fuzziness
in different components. By combining two or more, a solution can be found to
the problem (2.15). This section summarizes the widely used methodologies that
are proposed to deal with fuzziness in different components. Moreover, by stating
the superiorities or deficiencies of the approaches given in the previous sections, a

general methodology for a compromise solution is discussed.

Flexible programming constraints are of type either

Az < b (2.16)

or

Az < b (2.17)

where in equation (2.16) only the inequality relation is fuzzy and in equation (2.17)
only the right-hand side is fuzzy. These two formulations have nearly the same
meaning from a decision maker’s point of view. Hence, the solution methodologies
proposed are nearly the same. Commonly there are two methods: the first one tries
to get unique solution by converting problem into a conventional linear programming
problem; the second, finds a solution by converting the problem into a parametric
linear programming problem. In the first method, the objective function is also
considered, and a tolerance level (fuzzy goal) is determined for it. By determining
membership grades for constraints and objective function, the models (2.10 and
2.11) are obtained for the unique solution. In the second method, only the soft
constraints are considered; the constraints are written according to their a-cuts and
parametric linear programming problem is obtained for the solution as presented in
equation (2.12). The first one’s advantage is that, it has a unique solution and there
is no need for a decision maker; however, the second one gives a set of solutions and

for the final solution decision maker is needed.

In an FLP model, fuzzy left-hand side, A is a m x n matrix consisting of fuzzy

numbers, a;;, ¢ = 1,...,m,5 = 1,...,n. Dealing with fuzzy left-hand also varies in
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literature, and does not have a unique method. There are three common methods to
deal with them: the first is a-cuts, the second is indexes (such as Yager’s, Adamo’s
[9]) (note that they are also names as ranking functions), and the third aggregating
them. Taking the a-cut produces one or two problems to solve. Using indexes helps
to reduce the fuzzy numbers to crisp ones. Aggregating (as rows) allows to treat
them as a single fuzzy number. In order to aggregate them, in each constraint every
fuzzy number is multiplied by the decision variable and then added. In the case of
triangular numbers such as @;; = (as, a;;, @45), the aggregated fuzzy number for each

constraint can be represented as follows:
n n n
i = (Y ayey, Yy g, Yy aia;).
Jj=1 Jj=1 Jj=1

Fuzzy relations is a well studied subject in literature to compare fuzzy sets.
The inequality relation, <, in the constraints, flxél;, has been studied in the papers
[6,14,18-21,28]. In most of these approaches fuzzy constraints A;(z)<b; are replaced
by one or two crisp linear constraints. However, this procedure has the disadvantage
that the fuzzy constraints turn to crisp constraints with no regard to the objectives
[18]. In [18,20,26], a more flexible interpretation, which considers the objective
function, is proposed. In FLP problems as in (2.15), fuzzy inequality relations can

be treated by one of the above approaches.

Fuzzy objectives is the most studied branch of fuzzy mathematical program-
ming. In Section 2.1 the approaches that are proposed to deal with fuzzy objec-
tives are listed: multiobjective approach, interval approach, possibilistic approach,
stratified piecewise reduction approach, progressive reduction approach, comparison
approach, compromise objective function approach, and fuzzy aspiration level. In
FLP problems as in (2.15), one of these approaches can be used. It cannot be said
that one of the approaches is superior to the other since each focuses on different
points and makes different assumptions. However, even intiutively, it can be under-
stood that some have shortfalls. For example, the compromise objective function
approach proposes to use a crisp number representing the fuzzy number. The solu-
tion method has nothing to do with FLP; solution method is related to deriving a

single value from an infinitely many alternatives.

So far this thesis discussed methods to deal with fuzziness when it is in one of
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the components of the model. A compromise solution to the FLP problem (2.15)
can be found by applying the appropriate alternatives together. For example, if
the membership function is used in one component, the other components should
also be represented by membership functions. Similarly, if indexes are used for one
component, in all components, indexes should be used. In the case when membership
functions are used, based on [4], the following model for the compromise solution of

the FLP problem (2.15) can be used:

max A

.6 po(x) > A,
po(x) > A, i=1,..,m,
x>0,
A€ 0,1]

where po(z) is the membership function of the objective function and pc,(x),1 =

1,...,m are the membership functions of the constraints.
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Chapter 3

Improved Solution Methodology

Although 40 years have passed since the launch of fuzzy set theory, there are many
problems that have not been answered yet in the application of fuzzy sets to prob-
lems. One of them is the solution of an FLP problem with all components are fuzzy.
There exists some solution methodologies in the literature but they neither exactly
state the solution, nor interpret the solution obtained. This chapter aims at inves-
tigating the solution methodologies that have been proposed so far and come up
with a thorough solution methodology. The following sections present the proposed

improved solution methodology.

3.1 Problem Statement

Mathematical programming (MP) models are used to determine the best alterna-
tive among others such that an objective function is optimized. Linear programming
models form a special class of MP models. In LP problems all the constraints and
the objective function are linear. The parameters in classical LP problems are given
as crisp numbers. However, it is neither easy nor realistic to define them exactly,
since most of the time real world parameters are vague, subjective, and imprecise.
Fuzzy set theory is an excellent tool in handling vagueness, subjectivity and im-
precision in the parameters and in the inequalities. Therefore, LP problems can
be modelled by fuzzy numbers and fuzzy inequalities. Such LP problems including
fuzzy components are called Fuzzy Linear Programming(FLP) problems. There are
various FLP problem types according to the combination of fuzzy components used.

Among these problems the ones which only include fuzzy-right hand side or fuzzy
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inequality or fuzzy objective is the most common ones [9,18,21,28,31,35-37,43,44|,
because they can be solved quite easily when compared to other combinations. While
FLP problems are superior to LP problems in representing the real world, an FLP

problem cannot be solved as easily as LP problems.

In this thesis we will deal with the most general form of the FLP problem which
has fuzzy objective, fuzzy left-hand side , fuzzy right-hand side and fuzzy inequali-

ties. The considered FLP problem can be modelled as follows:

Max ¢éx
st Ax<b, (3.1)
'r 7

where c is a vector consisting of ¢;’s with membership function pg,, j =1,...,n; Ais
a matrix consisting of a;;’s with membership function pg,., ¢ =1,....,m, j =1,...,n;
b is a vector consisting of b;’s with membership function p;, 1 = 1,....,m; z is a

vector consisting of x;’s, 7 = 1,...,n; and < is a fuzzy less than or equal to relation.

The proposed methodology will try to find out the x vector which maximizes the
satisfaction degree of the constraints and at the same time yields the best objective

function value. Note that, in this thesis, we will assume the following:

e The fuzzy numbers are given as normal triangular fuzzy numbers such as

@ = (u,u,u) where u,u, % and (u — u) are positive real numbers.

e Eventhough it is highly restrictive, we will deal with only ”addition” as the
linear operator in the objective function and the constraints. Note thatfor the
general case some manipulations are required which are actually not difficult
to determine. However, because of the time constraint we only dealt with the
restricted case. As an example of such manipulations, the readers may refer
to the Section 4.1, in which subtraction in a constraint is treated with special

care.

e For the intersection of fuzzy sets and inequality relations min operator is used

as t-norm.

Now, the proposed solution will be presented in the following sections.
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3.2  Aggregating Objective Function Coefficients and Left-Hand Side

Coefficients

In (3.1) each fuzzy objective function coefficient, ¢;, and each left-hand side coef-
ficient, a;; is given as fuzzy numbers, which are defined by membership functions.
As a first step, the membership functions for the objective function and for the left-
hand side are calculated by using fuzzy arithmetics. In other words, for each inner
product, a triangular fuzzy number is determined by using fuzzy multiplication and

addition respectively [18].

The decision variable, = is a vector consisting of positive crisp numbers; z;’s,
7 = 1,...,n; i.e., they can be treated as positive scalars for fuzzy multiplication.
With this property, each fuzzy number in the objective function and in the left-
hand side can be multiplied by its decision variable, z; and a new fuzzy number can
be obtained. Then the objective function and each row of the left-hand side can be
converted to a single fuzzy number by using fuzzy addition. After applying fuzzy
arithmetics, the fuzzy objective and the fuzzy left hand side can be represented as

a triangular fuzzy number as shown below, respectively:

C$:(01$1—|—"'+Cnl‘n ) Ql$1+"'+gn1‘n ) Elx1+"'+énxn)7
Az = (a;z) = ( ;11 + -+ ATy, QT+ + Ty, QT+ G2y, ) .

From now on, for simplicity, fuzzy objective and fuzzy left-hand side numbers

will be shown as follows, respectively:
cx = (cx, cx,cx), (3.2)

Their membership functions will also be formulated as follows, respectively:

;

0, if t<(cx—cx) and t > (cx +¢x),
%, if (cx—cx) <t<ca,
fen(t) = o o
1, if t=cux,
\ %, if cx <t < (cx+7eT),
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0, if < (aix—ax) and t> (a,x + @),
%, if (a;x —aix) <t < a;z,

Haiz(t) =
1, if t=a;r,

e85 g < t < (0@ 4 GT).

\ a; T
3.3 Comparison of Fuzzy Left-Hand Side with Fuzzy Right-Hand Side

After aggregating the objective function coefficients and the left-hand side coeffi-

cients, (3.1) becomes

max cr
st. @z<b, i=1,..,m, (3.4)
z >0,

where ¢x and a;z are triangular fuzzy numbers as defined in (3.2) and (3.3) re-
spectively, and b is a vector of triangular fuzzy numbers and each member can be
represented as follows:

by = (bi,biybi), i=1,..,m.

As seen in the model (3.4), both sides of the constraints are fuzzy numbers and
the inequality is also fuzzy. So two sides of the constraint can be compared via
the fuzzy inequality relation, and the membership function can be defined for it.
For comparing two fuzzy numbers, several relations have been defined in literature
[5,14,21,22,29]. Here for the comparison of fuzzy numbers via fuzzy less than or
equal to relation, a t-norm min function is used. Applying the min function for

each constraint of (3.4) the following membership function is obtained:

pz(aiw,bi) = sup{min(pgz(u), g5, (v)|u < v)}

1 if 0<uax,a,x <0,

bi I;i_ i L—04 . _
# it b < aiw, (0w — aiw) < b+ b,
0 otherwise.

The membership function for constraints can be illustrated as in Figure 3.1
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Figure 3.1: Membership function for constraints.

3.4 Feasible Solution

The feasible solution in a linear programming problem is formed by the intersection
of the constraints. For FLP problems, feasible solution can be defined by the same

manner.

Definition 3.4.1 Let pgz and py, ¢ = 1,...,m, be the membership functions de-
fined for the fuzzy quantities @z and b;, respectively. Let pz(ax, b;) be the mem-
bership function for the constraints. Let min function be used for intersection.

A fuzzy set X, defined for 2 vector by a membership function p <

pg(z) = .
0 otherwise,

is called the feasible solution of the FLP problem (3.1) [15].

3.5 Comparison of Fuzzy Objective with a Given Fuzzy Goal

Up to now it is shown that FLP problem (3.1) has a feasible solution which is
actually a fuzzy set with membership function p g, and it is also shown that fuzzy
objective function can be represented as fuzzy number, cx. To reach an optimal
solution, fuzzy set of the feasible region and fuzzy set of objective function have to
be aggregated. In order to do that, the objective function should be treated like a

fuzzy constraint. Since the right-hand side for the constraint formed by the objective
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function is not known unlike the constraints (as discussed in Section 3.3), a special
treatment is required. Here, a fuzzy goal is assumed to be given by a modeller or
the decision maker. Since FLP problem (3.1) is a maximization problem, the higher
objective function values are more desirable. So if a fuzzy goal such as d is assumed

to be given, the following comparison can be formed:

cx>d. (3.5)

The membership function for a fuzzy goal d = (d, d, o) is defined by a member-

ship function g j;:

0, if t<(d—d),
pa(t) = ¢ S i (d—d) <t <d, (3.6)
1, if t> d.

Determination of a fuzzy goal is a very important issue which will be investigated
thoroughly in Subsection 3.7.1. The membership function for the constraint (3.5)

can be obtained by applying the same procedure as in Section 3.3:

ps(cr,d) = sup{min(pa(u), pi(v)|u = v)}

1, if 0<uz,d<cx, (3.7)
— (cztcw)—(d—d) - '
= %, if cx <d, d—d<cx+cx,

0, otherwise.

The membership function (3.7) for the relation (3.5) can be illustrated as in Figure

3.2:
(cx+ci)—(d—d)

cr+d

cr —Ccx cx d—d cx+cx d

Figure 3.2: Membership function (3.7) for relation (3.5).
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3.6 Optimal Solution

The previous sections have indicated that an optimal solution can be found by the
intersection of fuzzy set of the feasible solution and fuzzy set of objective function.
It was also shown, how to obtain those fuzzy sets and define their membership

functions. Given these information, optimal solution can be defined as follows:

Definition 3.6.1 Let us(cz,d) and pg(x) be the membership functions for the
fuzzy set of the objective and the fuzzy set of the feasible solution, respectively.

A fuzzy set X* with the membership function p -+, defined for all z € R" by

p-(2) = min (ps (@, d). g (=)

is called the optimal solution of the FLP problem (3.1).

A vector z* € R™ with the property
pg-(2*) = Hgt(X")

is the max-optimal solution [15]. This max-optimal solution is the satisficing solution
of the FLP problem (3.1) with the highest degree of membership. A vector z* can
be found by solving the problem :

max min {ué(cﬁs,d),ug(cfﬁ,l;mx >0,i=1, ,m} . (3.8)

Problem (3.8) can be converted to an auxiliary optimization problem:

max A

s.t. ué(ch,cZ) > A,
px () 2 A, (3.9)
z >0,

A€ 0,1],

where A is an auxiliary variable defined to find the maximum membership degree that
satisfies all the constraints, i.e. membership functions of objective and constraints.

The optimal solution of (3.9) is (\*, x*).
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3.7 Further Discussions

[15,16] discuss how to reach max-optimal solution; however, some points, which
are crucial, are not studied. These are: the determination of the fuzzy goal and
the structure of the proposed auxiliary optimization problem (3.9) and the solution
method for the problem. Determination of a fuzzy goal is important for the proposed
solution methodology since many max-optimal solutions can be found according to
the fuzzy goal chosen. The structure of the proposed auxiliary optimization is also
important since it effects the solvability of the system; i.e., determination of the

max-optimal solution.

3.7.1 Determination of The Fuzzy Goal

To our knowledge, a detailed discussion about the determination of the fuzzy goal
is not given in the literature [15,16]. This section investigates the determination of

a suitable fuzzy goal.

In problem (3.9), the fuzzy goal d is the factor that restricts the model to a
single solution A*. A* cannot be increased more since it is the maximum value
where membership function of objective, ué(cﬁ:, CZ), coincides with one or more of
the membership function of the constraints, piz(a;, b;), and above this value, min
function defined for the fuzzy relations used in objective and constraints are not
satisfied anymore. Without fuzzy goal d, it would not be possible to find value such
as \*, since the constraint ps (cz, ci) cannot be formed. So the existence of a suitable
fuzzy goal d is crucial. Moreover, it is crucial to select an appropriate value. The

problem (3.9) will give different \ values for the different fuzzy goals d. So it is

useful to study the possible fuzzy goal values.

For the FLP problem (3.1) the following two cases give the minimum objective

function value and maximum objective function value:

e The minimum objective function value, zy,, is determined via the LP problem:

max Cr — Cr
s.t. a;x + a; T S bz — Q, 1= 1, e, M, (310)

x>0,
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e The maximum objective function value, z,.y, is determined via the LP prob-

lem:
max cxr -+ cx

st ar—ax <b+b, i=1,..,m, (3.11)

x> 0.

If a fuzzy goal d = (d, d, 00), is defined by a membership function such as (3.6),
d and d — d values chacterize it. d and d — d values can be named as upper limit
and lower limit, respectively. So fuzzy function values are spread between these
limits with different membership degrees. As defined in section 3.5, the fuzzy goal is
used to treat the fuzzy objective as a constrained. In the light of these observations
it is resonable to determine the upper limit of the fuzzy goal, d, as the maximum
objective function value, zmax, and the lower limit of the fuzzy goal, d — d, as the

minimum objective function value, zy;,.

It should be mentioned that the proposed limits for the fuzzy goal do not yield an
ultimate max-optimal solution. It serves as a useful starting point for the decision
maker. It is reasonable to use those limits. The following conclusions can be made

for those limits:

e [f the upper limit of the fuzzy goal is less than the minimum objective function

value, then A\ is always 1:

d < Zmm — d<cx — A=1.

e If the lower limit of the fuzzy goal is greater than the maximum objective

function value, then \ is always O:

d—d>zZmax — d—d>cx — A=0.

3.7.2 Auxiliary Optimization Model

In the solution methodology, the other important point is the auxiliary optimization
problem (3.9). In [15,16] no information is given about the solution methodology for

the cases except one-dimensional FLP problem. In this study, a multi-dimensional
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FLP problem as (3.1) is considered. For such a problem the auxiliary optimization

problem (3.9), in open form can be written as follows:

max A

s.t. % > A
M+ij“—x) >N i=1,...,m (3.12)
T 20_,
A€ [0,1].

This is a non-linear fractional programming problem where the numerator and
the denominator of each fraction are given by linear functions. Notice that for a
fixed A, (3.12) becomes a linear programming problem. To solve such a problem, A
is gradually increased and for each fixed A, an LP is solved. This process continues
until no feasible solution exists. The result of the last feasible solution (\*,z*), is

recorded as the max-optimal solution.

In the following section, the proposed improved solution methodology, deter-
mination of a fuzzy goal, and the solution of an auxiliary problem are studied on

numerical examples.

3.8 Numerical Examples

In this chapter, three FLP problems are considered and solved by the improved
solution methodology described in the previous sections. For the solutions, GAMS
solver is used [45]. Two GAMS codes are used. The first one is a general LP code
and used to calculate the results of (3.10) and (3.11). The second one consists of two
parts: the main code where the auxiliary model (3.12) is present and the data file
(.inc file) where the coefficients are written. The main code except from auxiliary
model contains the following algorithm to reach \*:

Step 1: € =0.01, A := €, set A* := \

Step 2: Solve model (3.12) for A. If there is no feasible solution stop, display Ax;
otherwise, set A* := X\ and go to Step 3

Step 3: A:= A+ ¢, check A < 1 if true go to Step 2.

The GAMS solver ran on a notebook with Celeron CPU 2.20 Ghz and 240 MB
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RAM. Run time is not recorded for the numerical examples given here since its € is
kept constant as 0.01 and for the considered small-sized problems the computation

times are negligible.

Example 3.8.1 This is the example 1 of [29]. The considered FLP problem is:

max 25z + 81

s.t. 15z + 3425<800,
= (3.13)
20371 + 10$2§430,

Z1,2T9 > 0,

where coefficients are ¢, = (25,2,2), é, = (8,1,1), a;; = (15,3,3), a1z = (34,2,2),
do1 = (20,1,1), @ = (10,3,3), by = (800, 50, 50) and by = (430, 50, 50).

For the solution, first, problems (3.10) and (3.11) are formed, and zp;, and zpax
values are calculated, respectively, by using the first GAMS code. Based on those
values, the fuzzy goal is derived and the data file of second GAMS code is filled.
Then the main code is executed. The results obtained during those steps are given
in Table 3.1. The result can be interpreted as: “The highest membership degree
where constraints and objective are satisfied at the same time is 0.64 if the fuzzy

goal is defined by (682.1,265.9,0) ”.

Zmin | Zmax d A* x} @y | cx*(A*)

416.2 | 682.1 | (682.1, 265.9, 0) | 0.64 | 22.798 | 0 | 586.365

Table 3.1: Results of (3.13).

The results of the example (3.13) cannot be compared with the results in [29]

since for the solution different approaches have been used.

Example 3.8.2 As a second example, the following FLP problem is considered:

max iam + Qajg

st. 2z + 1z ié,
T e (3.14)
1.171 + 3!L‘2§9,
x1, 22 2 0,

where coefficients are ¢; = a;s = ay = (1,0.5,0.5), ¢ = a;; = (2,1,1), agn =

(3,1,1), by = (6,2,2) and by = (9,3, 3).
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The solution procedure for problem (3.14) is the same as the one given for ex-
ample (3.13). Based on that solution procedure, the obtained results are given in

Table 3.2:

Zmin Zmax d A* xy xy | car(NY)

1.589 | 22.286 | (22.286, 20.697, 0) | 0.50 | 3.039 | 3.256 | 11.9368

Table 3.2: Results of (3.14).

For the different values of fuzzy goal, different results can be obtained. Some are

shown in Table 3.3:

d 2| zy | car (M)
(22.286, 14.286, 0) | 0.39 | 3.459 | 3.470 | 13.572
(22.286, 11.286, 0) | 0.33 | 3.682 | 3.674 | 14.724
(22.286, 8.286, 0) | 0.25 | 4.104 | 3.792 | 16.072
(22.286, 5.286, 0) | 0.17 | 4.513 | 4.068 | 17.899
(22.286, 2.286, 0) | 0.07 | 5.207 | 4.277 | 20.160

Table 3.3: Results of (3.14) for different fuzzy goals.

Table 3.3 indicates that, if the upper limit of fuzzy goal fixed at 2z, and lower
limit gradually decreased, the A* value and objective function value decreases. How-

ever, there is no guarantee.

If the lower limit of fuzzy goal is defined as greater than the z,.y, for example
d= (25,2,0), the result is A* = 0, which is the expected result as defined in Section
3.7.1.

If the upper limit of fuzzy goal is defined as lower than the z.;,, for example
d= (1,0.5,0), the result is A* = 1, which is the expected result as defined in section
3.7.1.
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Example 3.8.3 As a third example the following FLP problem is considered:

max 4.5z + 5.515 + 6.555 + Tay
st. 102, + 1225 + 823 + 1814<60000,
14z, + 11zy + 1025 4+ 172,<64500,
1321 + 1024 + 1125 4+ 2024<65000,
12, <825, (3.15)
125<1850,
125<1250,
124<1050,

X1,T2,T3,T4 Z 07

where coefficients are ¢; = (4.5,1,1), ¢co = (5.5,1,1), ¢3 = (6.5,1,1), ¢4 = (7,2,2),
aj1 = ag3 = aze = (10,2,3), a1z = (12,5,1), a1z = (8,3,4), a1y = (18,5,2), as; =
(14,3,3), az = azs = (11,4,3), ass = (17,3,4), az1 = (13,5,8), as = (20,5,6),
4 = asy = agz = arg = (1,0,0), by = (60000, 5000, 5000), by = (64500, 4500, 4500),

by = (65000, 3000, 3000), by = (825,175, 175), bs = (1850, 150, 150), b = (1250, 150, 150)
and b; = (1050, 250, 250).

The solution procedure for problem (3.15) is same as the one given for example

(3.13). Based on that solution procedure, the obtained results are given in Table

3.4:

Zmin

Zma,x

d A* x} xy x3 x; cx*(A*)

18411.538

40700

(40700, 22888.462, 0) | 0.66 | 884.5 | 1901 | 1301 | 1135 | 33517.923

Table 3.4: Results of (3.15).
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Chapter 4

Fuzzy AHP Problems

Analytical Hierarchy Process (AHP) is an approach developed by Saaty [23] for
dealing with complex multi-criteria decision problems. A major component of AHP
methodology is the priority structure which can be local or global [1]. This study
deals with local priorities - the priority of an element in a certain level with respect
to an element in a level immediately above it. To reach local priorities, AHP uses a

comparison scale and a pairwise comparison matrix such as A:

a1 Giz2 - Aip

Qg1 G2 ~*** Agp
A= ,

an1 Gp2 - App

where a;; ,i=1,...,n,j =1,...,n, a single value from comparison scale (usually 1-9
scale) showing the strength of alternative i to alternative j. Since the comparison is
also made between alternative j and alternative 7, the pairwise comparison matrix

can be written as:

- I a -+ an ]
g | Lo (4.1)
The relation between the local priority vector w’ = [w; ... w,] and comparison
matrix is as follows:
a;; = ;”—7 (4.2)

where Y77 w; = 1.
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The priority vector is the principle eigenvector of comparison matrix [1]. Also
the relation Aw = nw holds, where n is the number of elements being compared,
when the comparison matrix is perfectly consistent which means, all the elements

of comparison matrix satifies the condition [1]:

aij = aikak‘j Vl,j,k = 1, ey N

In literature, more information can be found about the consistency of matrix

[23-25].

The given relations above hold for the comparison matrix consisting of a;;’s which
are crisp numbers. However, as mentioned in the fuzzy set theory, determining
the parameters as a single value is not so easy and also does not reflect the real
world. In [1,2,11,12] authors consider the interval pairwise comparison judgements
to overcome this problem. In [1,2] the author proposes Preference Programming;
whereas in [11,12] the author proposes fuzzy linear programming to derive crisp

priority vector.

This study considers a comparison matrix, such as A, defined via using fuzzy

numbers in order to reflect the parameters more realisticly:

]- de Tt dln
1 ~
Ao |me Lo ) (13)
L L 1
| Q1n an?2 .

where a;; = (a;j, a;;,@;;) are normal symmetric triangular fuzzy numbers with the
following properties: a;; > 0, a;; = @;; > 0 and a;; — a;; > 0. This study also tries
to find out the crisp priority vector with the highest satisfaction degree. From now

on, the defined problem will be referred to as the fuzzy AHP problem.

To solve the fuzzy AHP problem, the following steps are applied. First the fuzzy
relations are defined for comparison matrix. Then the relations are stated as fuzzy
linear programming problem. Finally, the obtained FLP problem is solved by the

solution method discussed in Chapter 3.
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4.1 Defining Fuzzy Relations for Comparison Matrix

The relation (4.2) can be defined for the fuzzy AHP problem as follows:

.~ Wy
J

The fuzzy equality (4.4) can be written as two fuzzy inequalities:

C~LZ"’£U'—’£UZ' é (),
7 (4.5)

dijwj - wzz 0.

The right-hand side of the fuzzy inequality is defined by a fuzzy value 0 = (0,0, 0).

4.2 Stating The Relations as Fuzzy Linear Programming Problem

In [1] the author discusses that priority vector can be derived if $n(n — 1) entries
of comparison matrix (4.1) is known. Here the upper triangle of comparison matrix
is used. For each element of the upper triangle, the fuzzy inequality relation as in
(4.5) can be written. So n(n — 1) fuzzy constraints are obtained. Besides these
constraints there are two additional ones based on the structure of the problem.
First one derives from the fact that the sum of the priorities must add up to 1;
and second, each priority must be greater than or equal to 0, i.e., decision variables
must be greater than or equal to 0. When the constraints are written, the obtained

problem is a linear programming problem without the objective function as follows:

dijwj—wi é (), i<j,

dl]wj — W;> 07 =1, "'7n7j =1, e My

) (4.6)
Do wi =1,
wy 2 0.
The crisp numbers in coeffients, i.e., (=1, —1, ..., —1), can be represented as fuzzy

numbers with spreads being equal to 0. Then the obtained problem is a FLP problem
with fuzzy left-hand sides, fuzzy right-hand sides and fuzzy inequalities:
> o1 kjw; < 0, i=1,..,n,
Y wi =1, (4.7)
w; > 0,

where k;; corresponds to the left-hand side coefficients in (4.6).
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4.3 Solving The Obtained Fuzzy Linear Programming Problem

The obtained problem is a FLP linear programming problem without an objective
function. It can be solved based on the solution methodology defined in Section 3.

The solution for problem (4.7) can be obtained by applying the following steps:

e The fuzzy left-hand side of the the constraints are aggregated to a single fuzzy

number by using fuzzy arithmetics. The crisp constraint remains untouched.

e For the comparison of the fuzzy left-hand side and the fuzzy right-hand side
by fuzzy less than or equal to relation, min function is used and membership
function is formed:

pz(kpw < 0).

e A new problem is formed:
pz(kpw < 0),
Z?:l w; =1,
wy Z 0.

e The obtained problem is rewritten by defining an artificial variable, A:

max A

s.t. Mé(l/f—i\'l; <0)>)\ i=1,..,n,
Z?:l w; =1, (4.8)
wj > 0,

A€ 0,1].

e The resulting problem (4.8) is a non-linear fractional programming problem

and it can be solved by the same approach discussed in Section 3.7.2.

e The solution of (4.8) is (A*, w*), where A\* is the maximum degree of member-

ship that satisfies all the constraint and w* is the resulting priority vector.

The solution, (A*,w*), of the fuzzy AHP problem (4.3) can be interpreted as
follows: the given fuzzy comparison matrix is consistent to a degree \* with w*

being its priority vector. In other words, two important results are obtained: one,
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the priority vector, w* is determined, second, it is determined that the given fuzzy

comparison matrix is consistent to a degree \*.

Although the solution methodologies are similar, FLLP problems and fuzzy AHP
problems differ. The main difference comes from the absence of the objective func-
tion in fuzzy AHP; second, the structure of fuzzy relations. In fuzzy AHP problem,
fuzzy relations are self-restricting since the same constraint is defined both by a
greater than or equal to and less than or equal to relations. The third difference

comes from the crisp constraint which also restricts the solution.

In the next section a numerical example is represented to show the application

of the proposed solution methodology.

4.4 Numerical Example

To show the result of proposed solution methodology, the two examples in [1] are
choosen by making the assumption that given intervals in [1] are symmetric trian-

gular fuzzy numbers.

The solutions are carried out by the same solver and conditions defined in Section
3.8. Also the code for the auxiliary problem very similar to the one used in Section

3.8.

Example 4.4.1 The fuzzy comparison matrix (upper triangle) is given as:

1 15 4 1 (1.5,05,05)  (4,2,2)
1 (2.5,0.5,0.5) | - (4.9)

0
0 0 1

When problem (4.9) is solved by the proposed algorithm, the following results

are obtained.

The results in Table (4.1) indicate that given problem (4.9) is consistent to a

degree 0.93, which shows a considerably high satisfaction level.

Example 4.4.2 The fuzzy comparison matrix (upper triangle) is given as:
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A 093
wy | 0.542

we | 0.341

ws | 0.315

Table 4.1: Results of (4.9).

1 (1.5,0.5,0.5) (8,0.5,0.5)
25| = |0 1 (2.5,0.5,0.5) | - (4.10)
0 0 1

When problem (4.10) is solved by the proposed algorithm, the \* value becomes
0. This result indicates that given problem (4.9) is inconsistent and the given fuzzy

pairwise comparison matrix should be revised.
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Chapter 5

Conclusion and Future Research

Fuzzy set theory is developed to express vague, imprecise, subjective parameters
more acurately and realistically. In other words, fuzzy set theory can cope with
the natural expressions better than the bivalent (conventional) set theory. The
superiority of fuzzy set theory lies in the fact that it does not only see objects as
black and white but also greys between. This speciality thus attracts reasearchers to
use fuzzy sets in their problems. Linear programming problems are such problems.
The linear programming problems whose coefficients, inequality relations are defined
by fuzzy sets are called as Fuzzy Linear Programming problems. Since fuzzy linear
programming is a new concept when compared to linear programming, no unified

solution methodology exists.

Deriving from that knowledge, this study, first aims to review the literature
and combine the solution methodologies proposed so far. Secondly, it detect the
deficiencies in proposed solution methodologies and over come those deficiencies,
make propositions that improves the solution. Thirdly, as an application, analytical
hierarchy process is chosen since the nature of this process is very appropriate to

fuzzy set theory and has not been solved by means of a proposed algorithm before.

As a future research the proposed solution methodology will tried to be applied
to fuzzy numbers whose membership functions are not defined linearly. Also as a
future research the restrictive case, just use of “addition” operator, will tried to be

relaxed.
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