

PERFORMANCE EVALUATION OF WTLS HANDSHAKE PROTOCOL USING

RSA AND ELLIPTIC CURVE CRYPTOSYSTEMS

by

BURAK BAYOGLU

Submitted to the Graduate School of Engineering and Natural Sciences

 in partial fulfillment of

the requirements for the degree of

Master of Science

Sabanci University

Spring 2004

PERFORMANCE EVALUATION OF WTLS HANDSHAKE PROTOCOL USING

RSA AND ELLIPTIC CURVE CRYPTOSYSTEMS

APPROVED BY:

Asst. Prof. Albert Levi ………………………….

(Thesis Supervisor)

Asst. Prof. Erkay Savas ………………………….

Asst. Prof. Özgür Gürbüz ………………………….

DATE OF APPROVAL: ………………………….

© Burak Bayoglu 2004

All Rights Reserved

iv

ABSTRACT

WTLS (Wireless Transport Layer Security) is the security protocol designed for

WAP (Wireless Application Protocol) protocol stack. Negotiation of the security
parameters and authentication of the peers require using public key cryptosystems.
Public key operations are generally slow. Thus, use of these cryptosystems in resource
constrained handheld devices becomes a significant problem. Server (WAP Gateway)
waiting time and handshake data transmission time may also be bottlenecks that occur
during the WTLS handshake.

In this study, WTLS Handshake Protocol is implemented using C++ and
performance measurements are done using Nokia 7650 as client and open source
Kannel gateway as the WAP Gateway. GSM CSD (Global System for Mobile
Communication - Circuit Switched Data) data bearer with 9600 bps data rate has been
used during the tests. Networking time has also been measured using GPRS bearer.
Mutual authenticated and Server Authenticated WTLS full handshake performance with
RSA (Rivest-Shamir-Adleman) and ECDH_ECDSA (Elliptic Curve Diffie-Hellman
Elliptic Curve Digital Signature Algorithm) key exchange suites has been compared for
three different categories. Each category contains four groups: three of these groups use
certificates with ECC (Elliptic Curve Cryptography) curve parameters and the fourth
group uses RSA certificates. All of the groups in each category are assumed to provide
the same level of security. Three groups of ECC certificates are composed of prime,
Koblitz and random curve parameters.

Client and server processing times have been measured for each handshake

message of the test cases. These values have been used to analyze the processing load of
the corresponding key exchange suite, overall handshake time and server queue delay.

Server has been modeled as an M/G/1 queue and the average waiting time in the

server queue has been modeled based on the well-known Pollaczek-Khincin (P-K)
formula. Queue delay model has been implemented in Matlab 6.0 and queue delay
characteristics of the considered test cases have been analyzed using the measured
server processing times.

Data transmission time model includes two components. The first component is

the amount of time necessary to transmit the measured size of data with specified
channel transmission rate. The second component is the traversal delay of the network
that is added to the data transmission time regardless of how much data is sent.

Simulation results show that ECC has better processing time performance than

RSA. Server queue delay does not seem to be bottleneck for mutual authenticated
WTLS handshake us ing ECC certificates with prime curve parameters. Server
authenticated WTLS handshake using any of the three ECC certificate types also has a
good queue delay characteristic. However, there exists a practical upper limit of
handshake requests per second for other key exchange suites. Traversal delay of the
network is much more effective on the overall handshake time when using GSM CSD
or GPRS bearer.

v

ÖZET

WTLS (Kablosuz Tasima Katmani Güvenligi – Wireless Transport Layer

Security), WAP(Kablosuz Uygulama Protokolü – Wireless Application Protocol)
protokol yigini için tasarlanmis güvenlik protokolüdür. Güvenlik parametreleri üzerinde
anlasilabilmesi ve kimlik dogrulamasinin yapilabilmesi için açik anahtar kripto
sistemlerinin kullanilmasi gerekmektedir. Açik anahtar islemleri genel olarak yavastir
ve bu islemlerin kisitli kaynaklari olan mobil el cihazlarinda yürütülmesi daha büyük bir
problem olarak karsimiza çikmaktadir. Sunucu (WAP Aggeçidi) bekleme süresi ve el
sikisma verisinin gönderilmesi için gerekli süre de WTLS el sikisma protokolü için bir
darbogaz olusturabilir.

Bu çalismada WTLS El Sikisma Protokolü, C++ programlama dili ile

gerçeklenmistir. Istemci ola rak Nokia 7650 cep telefonu, WAP Aggeçidi olarak da açik
kaynak kodlu Kannel kullanilmistir. Testler sirasinda, 9600 bps iletim hizina sahip
GSM CSD tasiyicisi kullanilmistir. Veri iletim süresi ayrica GPRS tasiyici için de
ölçülmüstür. Karsilikli-Dogrulanmis ve Sunucu-Dogrulanmis WTLS tam el sikisma
performansi, RSA ve ECDH_ECDSA anahtar degisim takimlari için üç kategori altinda
karsilastirilmistir. Her kategoride dört grup bulunmaktadir. Gruplardan üç tanesi, ECC
egri parametrelerine sahip sertifikalar, dördüncü grup ise RSA sertifikalarindan
olusmaktadir. Bir kategori içindeki tüm gruplarin esit seviyede güvenlik sagladigi kabul
edilmektedir. Ele alinan üç ECC grubu, asal, Koblitz ve rasgele egri parametrelerine
sahiptir.

Tüm test durumlari için istemci ve sunucu islem süreleri, her bir el sikisma mesaji

için ölçülmüstür. Ölçülen degerler, ele alinan anahtar degistirme takimi için islem
süresini, el sikisma süresini ve sunucu kuyruk bekleme süresini degerlendirmek
amaciyla kullanilmistir.

Sunucu, M/G/1 kuyruk yapisinda varsayilmistir ve sunucu kuyrugunda ortalama

bekleme süresi Pollaczek-Khincin (P-K) formülüne dayali olarak modellenmistir.
Kuyruk bekleme süresi için ortaya koyulan model, Matlab 6.0 ortaminda
gerçeklenmistir ve ölçülen sunucu islem süreleri kullanilarak test durumlarinin kuyrukta
bekleme karakteristikleri analiz edilmistir.

Veri iletim süresi modeli, testler sirasinda tespit edilen veri boyutunun mevcut

veri iletim hiziyla gönderilmesi için gerekli sürenin yaninda veri boyutundan bagimsiz
olarak iletim süresine eklenen agdan geçis süresini de göz önünde bulundurmaktadir.

Simülasyon sonuçlari, ECC islem süresi performansinin RSA’dan daha iyi

oldugunu göstermistir. Sunucu kuyrugunda bekleme süresinin asal egriler için ihmal
edilebilecek mertebede olmasina karsin diger alternatiflerde saniyedeki el sikisma istegi
sayisinin pratik bir üst sinirinin oldugu görülmüstür. GSM CSD veya GPRS tasiyicisi
kullanilmasi durumunda veri iletim süresi, iletim hizindan daha çok agdan geçis süresi
tarafindan belirlenmektedir.

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Asst. Prof. Albert Levi for the suggestions,

ideas, and advices during the development of this thesis. Especially, I thank him for his

consistent guidance and encouragement throughout my graduate experience. I would

also like to thank Asst. Prof. Erkay Savas for his advices, focus, and discussions to help

implement ing crypto primitives for both Symbian and Win32 environments. Special

thanks to Asst. Prof. Özgür Gürbüz, and Asst. Prof. Özgür Erçetin for their consultation

on the queue delay performance model.

I am indebted to Sabanci University for tuition waiver and Faculty of Engineering

and Natural Sciences members for valuable courses during my graduate education.

Special thanks to TÜBITAK UEKAE for letting me spend working hours on my

graduate study.

Finally, I would like to thank my family and all of my friends who still remember

me although not seeing each other for more than a year during the hard work of this

thesis.

vii

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. WAP BACKGROUND AND LITERATURE SURVEY............................ 4

2.1. WAP Access Model.. 4

2.2. WAP Protocol Stack Components .. 5

2.2.1. Wireless Application Environment (WAE) 6

2.2.2. Wireless Session Protocol (WSP) ... 6

2.2.3. Wireless Transaction Protocol (WTP) .. 7

2.2.4. Wireless Transport Layer Security (WTLS) 7

2.2.5. Wireless Datagram Protocol (WDP)... 8

2.2.6. Bearers .. 8

2.3. Public Key Cryptosystems .. 11

2.3.1. RSA Cryptosystems .. 12

2.3.2. Elliptic Curve Cryptosystems ... 14

2.3.3. Cryptographic Strength Level Comparison of RSA and Elliptic

Curve Cryptosystems .. 16

2.4. WTLS Handshake Protocol .. 17

2.4.1. Full Handshake ... 19

2.4.1.1. Mutual Authenticated WTLS Full Handshake.......................... 19

2.4.1.2. Server Authenticated WTLS Full Handshake 22

2.4.2. Abbreviated Handshake .. 24

2.4.3. Optimized Handshake ... 24

2.5. Master Secret Computation in WTLS Handshake Protocol 25

2.6. Previous Work on WTLS and SSL/TLS Performance Analysis 27

3. WTLS PERFORMANCE EVALUATION.. 30

3.1. Processing Time Model .. 34

3.1.1. Mutual Authenticated WTLS Full Handshake 34

3.1.2. Server Authenticated WTLS Full Handshake................................. 40

3.2. Queue Delay Model .. 45

3.2.1. Category#3-Group#1 – Mutual Authentication.............................. 52

3.2.2. Category#3-Group#1 – Server Authentication............................... 54

3.2.3. Category#3-Group#2 – Mutual Authentication.............................. 55

3.2.4. Category#3-Group#2 – Server Authentication............................... 56

viii

3.2.5. Category#3-Group#3 – Mutual Authentication.............................. 57

3.2.6. Category#3-Group#3 – Server Authentication............................... 59

3.2.7. Category#3-Group#4 – Mutual Authentication.............................. 60

3.2.8. Category#3-Group#4 – Server Authentication............................... 61

3.3. Transmission Time Model .. 62

4. IMPLEMENTATION RESULTS .. 68

4.1. Processing Time Analysis ... 69

4.2. Queue Delay Analysis... 90

4.3. Data Transmission Time Analysis .. 99

4.3.1. Data Transmission Time Analysis for GSM CSD Bearer 101

4.3.2. Data Transmission Time Analysis for GPRS Bearer.................... 103

4.3.3. Comparison of GSM CSD and GPRS Data Transmission Times 110

4.4. Overall Handshake Time Analysis ... 111

5. CONCLUSIONS AND FUTURE WORK ... 122

ix

LIST OF FIGURES

Figure 1.1 Network participants of a typ ical WAP access ... 2

Figure 2.1 WAP access model.. 5

Figure 2.2 WAP protocol stack components .. 5

Figure 2.3 WDP structure ... 8

Figure 2.4 Public key cryptosystems signature issuance and verification models 12

Figure 2.5 Public key cryptosystems encryption and decryption models....................... 12

Figure 2.6 ECDH key exchange mechanism.. 16

Figure 2.7 WTLS protocol components.. 18

Figure 2.8 Mutual authenticated WTLS full handshake message flow.......................... 22

Figure 2.9 Server authenticated WTLS full handshake message flow........................... 23

Figure 2.10 WTLS abbreviated handshake message flow.. 24

Figure 2.11 WTLS optimized handshake message flow .. 25

Figure 3.1 Server queue delay components .. 46

Figure 3.2 Evolution of the unfinished work in the server ... 47

Figure 3.3 GSM CSD network architecture.. 65

Figure 3.4 GPRS network architecture ... 66

Figure 4.1 Category#1 client processing times ... 73

Figure 4.2 Category#1 server processing times .. 74

Figure 4.3 Category#2 client processing times ... 75

Figure 4.4 Category#2 server processing times .. 75

Figure 4.5 Category#3 client processing times ... 76

Figure 4.6 Category#3 server processing times .. 77

Figure 4.7 Client processing time percentages of mutual authenticated ECDH key

exchange.. 80

Figure 4.8 Client processing time percentages of mutual authenticated RSA key

exchange.. 81

Figure 4.9 Server processing time percentages of mutual authenticated ECDH key

exchange.. 83

Figure 4.10 Server processing time percentages of mutual authenticated RSA key

exchange.. 84

Figure 4.11 Client processing time percentages of server authenticated ECDH key

exchange.. 85

x

Figure 4.12 Client processing time percentages of mutual authenticated RSA key

exchange.. 86

Figure 4.13 Category#3-Group#1 server queue delays(mutual authentication) 91

Figure 4.14 Category#3-Group#2 server queue delays(mutual authentication) 92

Figure 4.15 Category#3-Group#3 server queue delays(mutual authentication) 92

Figure 4.16 Category#3-Group#4 server queue delays(mutual authentication) 93

Figure 4.17 Category#3 groups server queue delays-1 (mutual authentication) 95

Figure 4.18 Category#3 groups server queue delays-2 (mutual authentication) 95

Figure 4.19 Category#3 groups server queue delays-3 (mutual authentication) 96

Figure 4.20 Category#3-Group#1 server queue delays(server authentication) 97

Figure 4.21 Category#3-Group#2 server queue delays(server authentication) 97

Figure 4.22 Category#3-Group#3 server queue delays(server authentication) 98

Figure 4.23 Category#3-Group#4 server queue delays(server authentication) 99

Figure 4.24 GPRS performance evaluation testbed .. 104

Figure 4.25 RTT values measured at 12 PM (average = 761.8 ms) 106

Figure 4.26 RTT values measured at 2 PM (average = 737.3 ms) 106

Figure 4.27 RTT values measured at 4 PM (average = 805.9 ms) 106

Figure 4.28 RTT values measured at 6 PM (average = 778.9 ms) 106

Figure 4.29 RTT values measured at 8 PM (average = 805.9 ms) 107

Figure 4.30 RTT values measured at 10 PM (average = 743.1 ms) 107

Figure 4.31 RTT values measured at 12 AM (average = 710.1 ms)............................. 107

Figure 4.32 Traversal Delays measured at 12 PM (average = 376.1 ms) 109

Figure 4.33 Traversal Delays measured at 2 PM (average = 364.1 ms) 109

Figure 4.34 Traversal Delays measured at 4 PM (average = 397.0 ms) 109

Figure 4.35 Traversal Delays measured at 6 PM (average = 384.5 ms) 109

Figure 4.36 Traversal Delays measured at 8 PM (average = 398.4 ms) 110

Figure 4.37 Traversal Delays measured at 10 PM (average = 367.9 ms) 110

Figure 4.38 Traversal Delays measured at 12 AM (average = 351.4 ms) 110

Figure 4.39 Category#1 WTLS handshake overall handshake times 113

Figure 4.40 Category#2 WTLS handshake overall handshake times 114

Figure 4.41 Category#3 WTLS handshake overall handshake times 115

Figure 4.42 Mutual authenticated WTLS handshake overall times for GSM CSD and

GPRS... 116

xi

Figure 4.43 Server authenticated WTL handshake overall times for GSM CSD and

GPRS... 117

Figure 4.44 Mutual authenticated handshake times with queue delay-1 (category#3). 119

Figure 4.45 Mutual authenticated handshake times with queue delay-2 (category#3). 120

Figure 4.46 Mutual authenticated handshake times with queue delay-3 (category#3). 121

xii

LIST OF TABLES

Table 2.1 WAP network bearer types ... 10

Table 2.2 RSA and Elliptic Curve Cryptosystems cryptographic strength level

comparison.. 17

Table 3.1 Overall handshake duration notations ... 31

Table 3.2 Public key parameter specifiers .. 32

Table 3.3 Performance model categories and groups ... 33

Table 3.4 Mutual authenticated WTLS full handshake performance model notations .. 36

Table 3.5 Mutual authenticated WTLS full handshake message flow........................... 37

Table 3.6 Server authenticated WTLS full handshake performance model notations ... 42

Table 3.7 Server authenticated WTLS full handshake message flow 43

Table 3.8 Mutual authenticated handshake message flow for queue delay analysis 49

Table 3.9 Server authenticated handshake message flow for queue delay analysis 50

Table 3.10 Average service time formula notations ... 52

Table 3.11 Category#3-Group#1 .. 53

Table 3.12 Category#3-Group#1 .. 54

Table 3.13 Category#3-Group#2 .. 55

Table 3.14 Category#3-Group#2 .. 56

Table 3.15 Category#3-Group#3 .. 58

Table 3.16 Category#3-Group#3 .. 59

Table 3.17 Category#3-Group#4 .. 60

Table 3.18 Category#3-Group#4 .. 61

Table 3.19 Transmission delay modeling formula notations .. 64

Table 4.1 Mutual authenticated WTLS handshake overall processing times 70

Table 4.2 Server authenticated WTLS handshake overall processing times 71

Table 4.3 Mutual authenticated WTLS handshake ECDH_ECDSA key exchange suites

client processing time percentages.. 79

Table 4.4 Mutual authenticated WTLS handshake RSA key exchange suites client

processing time percentages.. 79

Table 4.5 Mutual authenticated WTLS handshake ECDH_ECDSA key exchange suites

server processing time percentages... 82

Table 4.6 Mutual authenticated WTLS handshake RSA key exchange suites server

processing time percentages.. 84

xiii

Table 4.7 Server authenticated WTLS handshake ECDH_ECDSA key exchange suites

client processing time percentages.. 87

Table 4.8 Server authenticated WTLS handshake RSA key exchange suites client

processing time percentages.. 87

Table 4.9 Server authenticated WTLS handshake ECDH_ECDSA key exchange suites

server processing time percentages... 89

Table 4.10 Server authenticated WTLS handshake RSA key exchange suites client

processing time percentages.. 90

Table 4.11 Total data sizes for selected test cases (bytes).. 100

Table 4.12 Transmission delays for GSM CSD bearer (ms) .. 102

Table 4.13 Data rates for selected cases ... 105

Table 4.14 Traversal delay characteristics for test cases .. 108

Table 4.15 Comparison of traversal delays for GSM CSD and GPRS bearers 111

xiv

LIST OF SYMBOLS

L Total data length (in bits) including all the handshake messages and

their corresponding ACK packets

acp , Ratio of the key exchange suite with the smallest public key size in a

group.

bcp , Ratio of the key exchange suite with the intermediate public key size

in a group.

ccp , Ratio of the key exchange suite with the highest public key size in a

group.

R Channel transmission rate (bit/s)

HT Overall handshake duration

CHCMT __ Client processing time for generating the Client.Hello message

SHCMT __ Client processing time for processing Server.Hello message

SCERTCMT __ Client processing time for processing the server certificate

CERTREQCMT __ Client processing time for processing the CertificateRequest message

SHDCMT __ Client processing time for processing the ServerHelloDone message

CCERTCMT __ Client processing time for generating the Client.Certificate message

CKXCMT __ Client processing time for generating the ClientKeyExchange message

(message is sent iff RSA key exchange suite is used)

CERTVRFYCMT __ Client processing time for generating the CertificateVerify message

(applicable if RSA key exchange suite is used)

CCCSCMT __ Client processing time for generating the Client ChangeCipherSpec

message

CFINCMT __ Client processing time for generating the Client.Finished message

SCCSCMT __ Client processing time for processing the Server ChangeCipherSpec

message

SFINCMT __ Client processing time for processing the Server.Finished message

ECDHCMT __ Client processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSCMT __ Client processing time for computing the master secret from the

xv

premaster secret

RSAENCCMT __ Client processing time for encryption operation using the Server’s

public key (applicable if RSA key exchange suite is used)

CHSMT __ Server processing time for processing the Client.Hello message

SHSMT __ Server processing time for generating the Server.Hello message

SCERTSMT __ Server processing time for generating the Server.Certificate message

CERTREQSMT __ Server processing time for generating the CertificateRequest message

SHDSMT __ Server processing time for generating the ServerHelloDone message

CCERTSMT __ Server processing time for processing the client certificate

CKXSMT __ Server processing time for processing the ClientKeyExchange

message

CERTVRFYSMT __ Server processing time for processing the CertificateVerify message

(applicable if RSA key exchange suite is used)

CCCSSMT __ Server processing time for processing the Client ChangeCipherSpec

message

CFINSMT __ Server processing time for processing the Client.Finished message

SCCSSMT __ Server processing time for generating the Server ChangeCipherSpec

message

SFINSMT __ Server processing time for generating the Server.Finished message

ECDHSMT __ Server processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSSMT __ Server processing time for computing the master secret from the

premaster secret

RSADECSMT __ Server processing time for decryption operation using its own private

key (applicable if RSA key exchange suite is used)

PDT Total processing delay of handshake messages

CPDT _ Overall processing time for the client side

SPDT _ Overall processing time for the server side

QDT Server queue delay

CHCST __ Average client processing time for generating the Client.Hello

xvi

message

SHCST __ Average client processing time for processing Server.Hello message

SCERTCST __ Average client processing time for processing the server certificate

CERTREQCST __ Average client processing time for processing the CertificateRequest

message

SHDCST __ Average client processing time for processing the ServerHelloDone

message

CCERTCST __ Average client processing time for generating the Client.Certificate

message

CKXCST __ Average client processing time for generating the ClientKeyExchange

message

CCCSCST __ Average client processing time for generating the Client

ChangeCipherSpec message

CFINCST __ Average client processing time for generating the Client.Finished

message

SCCSCST __ Average client processing time for processing the Server

ChangeCipherSpec message

SFINCST __ Average client processing time for processing the Server.Finished

message

ECDHCST __ Average client processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSCST __ Average client processing time for computing the master secret from

the premaster secret

RSAENCCST __ Average client processing time for encryption operation using the

Server’s public key (applicable if RSA key exchange suite is used)

CHSST __ Average server processing time for processing the Client.Hello

message

SHSST __ Average server processing time for generating the Server.Hello

message

SCERTSST __ Average server processing time for generating the Server.Certificate

message

CERTREQSST __ Average server processing time for generating the CertificateRequest

message

xvii

SHDSST __ Average server processing time for generating the ServerHelloDone

message

CCERTSST __ Average server processing time for processing the client certificate

CKXSST __ Average server processing time for processing the

ClientKeyExchange message

CCCSSST __ Average server processing time for processing the Client

ChangeCipherSpec message

CFINSST __ Average server processing time for processing the Client.Finished

message

SCCSSST __ Average server processing time for generating the Server

ChangeCipherSpec message

SFINSST __ Average server processing time for generating the Server.Finished

message

ECDHSST __ Average server processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSSST __ Average server processing time for computing the master secret from

the premaster secret

RSADECSST __ Average server processing time for decryption operation using its own

private key (applicable if RSA key exchange suite is used)

TDT Data transmission time (s)

traversalT One way traversal delay of the GSM network specific to the data

bearer and GSM service provider

XT Average service time for any of the applicable handshake messages

for a given group

acXT ,, Average service time for any of the applicable handshake messages

for the key exchange suite with the smallest public key size in a

group.

bcXT ,, Average service time for any of the applicable handshake messages

for the key exchange suite with the intermediate public key size in a

group.

ccXT ,, Average service time for any of the applicable handshake messages

for the key exchange suite with the highest public key size in a group.

xviii

LIST OF ABBREVIATIONS

BSC Base Station Controller

BTS Base Transceiver Station

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDH_ECDSA Elliptic Curve Diffie-Hellman Elliptic Curve Digital Signature

Algorithm

AMPS Advanced Mobile Phone Service

CA Certification Authority

CDMA Code Division Multiple Access

CDPD Cellular Digital Packet Data

CSD Circuit Switched Data

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDEN Integrated Digital Enhanced Network

IPv4 Internet Protocol version 4

ISO/OSI International Organization for Standardization/Open System

Interconnection

ITSI Individual TETRA Subscriber Identity

LAN Local Area Network

MAN Metropolitan Area Network

MSC Mobile Switching Center

MSISDN Mobile Station International ISDN Number

OMA Open Mobile Alliance

OS Operating System

PC Personal Computer

PDC Personal Digital Communications

PRF Pseudo Random Function

QoS Quality of Service

RAS Remote Access Server

xix

RSA Rivest Shamir Adleman

RTT Round Trip Time

SHA Secure Hash Algorithm

SMS Short Message Service

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol / Internet Protocol

TLS Transport Layer Security

USSD Unstructured Supplementary Services Data

WAE Wireless Application Environment

WAP Wireless Application Protocol

WDP Wireless Datagram Protocol

WML Wireless Markup Language

WSP Wireless Session Protocol

WTA Wireless Telephony Application

WTLS Wireless Transport Layer Security

WTP Wireless Transaction Protocol

WWW World Wide Web

XML Extensible Markup Language

PERFORMANCE EVALUATION OF WTLS HANDSHAKE PROTOCOL USING

RSA AND ELLIPTIC CURVE CRYPTOSYSTEMS

by

BURAK BAYOGLU

Submitted to the Graduate School of Engineering and Natural Sciences

 in partial fulfillment of

the requirements for the degree of

Master of Science

Sabanci University

Spring 2004

PERFORMANCE EVALUATION OF WTLS HANDSHAKE PROTOCOL USING

RSA AND ELLIPTIC CURVE CRYPTOSYSTEMS

APPROVED BY:

Asst. Prof. Albert Levi ………………………….

(Thesis Supervisor)

Asst. Prof. Erkay Savas ………………………….

Asst. Prof. Özgür Gürbüz ………………………….

DATE OF APPROVAL: ………………………….

© Burak Bayoglu 2004

All Rights Reserved

iv

ABSTRACT

WTLS (Wireless Transport Layer Security) is the security protocol designed for

WAP (Wireless Application Protocol) protocol stack. Negotiation of the security
parameters and authentication of the peers require using public key cryptosystems.
Public key operations are generally slow. Thus, use of these cryptosystems in resource
constrained handheld devices becomes a significant problem. Server (WAP Gateway)
waiting time and handshake data transmission time may also be bottlenecks that occur
during the WTLS handshake.

In this study, WTLS Handshake Protocol is implemented using C++ and
performance measurements are done using Nokia 7650 as client and open source
Kannel gateway as the WAP Gateway. GSM CSD (Global System for Mobile
Communication - Circuit Switched Data) data bearer with 9600 bps data rate has been
used during the tests. Networking time has also been measured using GPRS bearer.
Mutual authenticated and Server Authenticated WTLS full handshake performance with
RSA (Rivest-Shamir-Adleman) and ECDH_ECDSA (Elliptic Curve Diffie-Hellman
Elliptic Curve Digital Signature Algorithm) key exchange suites has been compared for
three different categories. Each category contains four groups: three of these groups use
certificates with ECC (Elliptic Curve Cryptography) curve parameters and the fourth
group uses RSA certificates. All of the groups in each category are assumed to provide
the same level of security. Three groups of ECC certificates are composed of prime,
Koblitz and random curve parameters.

Client and server processing times have been measured for each handshake

message of the test cases. These values have been used to analyze the processing load of
the corresponding key exchange suite, overall handshake time and server queue delay.

Server has been modeled as an M/G/1 queue and the average waiting time in the

server queue has been modeled based on the well-known Pollaczek-Khincin (P-K)
formula. Queue delay model has been implemented in Matlab 6.0 and queue delay
characteristics of the considered test cases have been analyzed using the measured
server processing times.

Data transmission time model includes two components. The first component is

the amount of time necessary to transmit the measured size of data with specified
channel transmission rate. The second component is the traversal delay of the network
that is added to the data transmission time regardless of how much data is sent.

Simulation results show that ECC has better processing time performance than

RSA. Server queue delay does not seem to be bottleneck for mutual authenticated
WTLS handshake us ing ECC certificates with prime curve parameters. Server
authenticated WTLS handshake using any of the three ECC certificate types also has a
good queue delay characteristic. However, there exists a practical upper limit of
handshake requests per second for other key exchange suites. Traversal delay of the
network is much more effective on the overall handshake time when using GSM CSD
or GPRS bearer.

v

ÖZET

WTLS (Kablosuz Tasima Katmani Güvenligi – Wireless Transport Layer

Security), WAP(Kablosuz Uygulama Protokolü – Wireless Application Protocol)
protokol yigini için tasarlanmis güvenlik protokolüdür. Güvenlik parametreleri üzerinde
anlasilabilmesi ve kimlik dogrulamasinin yapilabilmesi için açik anahtar kripto
sistemlerinin kullanilmasi gerekmektedir. Açik anahtar islemleri genel olarak yavastir
ve bu islemlerin kisitli kaynaklari olan mobil el cihazlarinda yürütülmesi daha büyük bir
problem olarak karsimiza çikmaktadir. Sunucu (WAP Aggeçidi) bekleme süresi ve el
sikisma verisinin gönderilmesi için gerekli süre de WTLS el sikisma protokolü için bir
darbogaz olusturabilir.

Bu çalismada WTLS El Sikisma Protokolü, C++ programlama dili ile

gerçeklenmistir. Istemci ola rak Nokia 7650 cep telefonu, WAP Aggeçidi olarak da açik
kaynak kodlu Kannel kullanilmistir. Testler sirasinda, 9600 bps iletim hizina sahip
GSM CSD tasiyicisi kullanilmistir. Veri iletim süresi ayrica GPRS tasiyici için de
ölçülmüstür. Karsilikli-Dogrulanmis ve Sunucu-Dogrulanmis WTLS tam el sikisma
performansi, RSA ve ECDH_ECDSA anahtar degisim takimlari için üç kategori altinda
karsilastirilmistir. Her kategoride dört grup bulunmaktadir. Gruplardan üç tanesi, ECC
egri parametrelerine sahip sertifikalar, dördüncü grup ise RSA sertifikalarindan
olusmaktadir. Bir kategori içindeki tüm gruplarin esit seviyede güvenlik sagladigi kabul
edilmektedir. Ele alinan üç ECC grubu, asal, Koblitz ve rasgele egri parametrelerine
sahiptir.

Tüm test durumlari için istemci ve sunucu islem süreleri, her bir el sikisma mesaji

için ölçülmüstür. Ölçülen degerler, ele alinan anahtar degistirme takimi için islem
süresini, el sikisma süresini ve sunucu kuyruk bekleme süresini degerlendirmek
amaciyla kullanilmistir.

Sunucu, M/G/1 kuyruk yapisinda varsayilmistir ve sunucu kuyrugunda ortalama

bekleme süresi Pollaczek-Khincin (P-K) formülüne dayali olarak modellenmistir.
Kuyruk bekleme süresi için ortaya koyulan model, Matlab 6.0 ortaminda
gerçeklenmistir ve ölçülen sunucu islem süreleri kullanilarak test durumlarinin kuyrukta
bekleme karakteristikleri analiz edilmistir.

Veri iletim süresi modeli, testler sirasinda tespit edilen veri boyutunun mevcut

veri iletim hiziyla gönderilmesi için gerekli sürenin yaninda veri boyutundan bagimsiz
olarak iletim süresine eklenen agdan geçis süresini de göz önünde bulundurmaktadir.

Simülasyon sonuçlari, ECC islem süresi performansinin RSA’dan daha iyi

oldugunu göstermistir. Sunucu kuyrugunda bekleme süresinin asal egriler için ihmal
edilebilecek mertebede olmasina karsin diger alternatiflerde saniyedeki el sikisma istegi
sayisinin pratik bir üst sinirinin oldugu görülmüstür. GSM CSD veya GPRS tasiyicisi
kullanilmasi durumunda veri iletim süresi, iletim hizindan daha çok agdan geçis süresi
tarafindan belirlenmektedir.

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Asst. Prof. Albert Levi for the suggestions,

ideas, and advices during the development of this thesis. Especially, I thank him for his

consistent guidance and encouragement throughout my graduate experience. I would

also like to thank Asst. Prof. Erkay Savas for his advices, focus, and discussions to help

implement ing crypto primitives for both Symbian and Win32 environments. Special

thanks to Asst. Prof. Özgür Gürbüz, and Asst. Prof. Özgür Erçetin for their consultation

on the queue delay performance model.

I am indebted to Sabanci University for tuition waiver and Faculty of Engineering

and Natural Sciences members for valuable courses during my graduate education.

Special thanks to TÜBITAK UEKAE for letting me spend working hours on my

graduate study.

Finally, I would like to thank my family and all of my friends who still remember

me although not seeing each other for more than a year during the hard work of this

thesis.

vii

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. WAP BACKGROUND AND LITERATURE SURVEY............................ 4

2.1. WAP Access Model.. 4

2.2. WAP Protocol Stack Components .. 5

2.2.1. Wireless Application Environment (WAE) 6

2.2.2. Wireless Session Protocol (WSP) ... 6

2.2.3. Wireless Transaction Protocol (WTP) .. 7

2.2.4. Wireless Transport Layer Security (WTLS) 7

2.2.5. Wireless Datagram Protocol (WDP)... 8

2.2.6. Bearers .. 8

2.3. Public Key Cryptosystems .. 11

2.3.1. RSA Cryptosystems .. 12

2.3.2. Elliptic Curve Cryptosystems ... 14

2.3.3. Cryptographic Strength Level Comparison of RSA and Elliptic

Curve Cryptosystems .. 16

2.4. WTLS Handshake Protocol .. 17

2.4.1. Full Handshake ... 19

2.4.1.1. Mutual Authenticated WTLS Full Handshake.......................... 19

2.4.1.2. Server Authenticated WTLS Full Handshake 22

2.4.2. Abbreviated Handshake .. 24

2.4.3. Optimized Handshake ... 24

2.5. Master Secret Computation in WTLS Handshake Protocol 25

2.6. Previous Work on WTLS and SSL/TLS Performance Analysis 27

3. WTLS PERFORMANCE EVALUATION.. 30

3.1. Processing Time Model .. 34

3.1.1. Mutual Authenticated WTLS Full Handshake 34

3.1.2. Server Authenticated WTLS Full Handshake................................. 40

3.2. Queue Delay Model .. 45

3.2.1. Category#3-Group#1 – Mutual Authentication.............................. 52

3.2.2. Category#3-Group#1 – Server Authentication............................... 54

3.2.3. Category#3-Group#2 – Mutual Authentication.............................. 55

3.2.4. Category#3-Group#2 – Server Authentication............................... 56

viii

3.2.5. Category#3-Group#3 – Mutual Authentication.............................. 57

3.2.6. Category#3-Group#3 – Server Authentication............................... 59

3.2.7. Category#3-Group#4 – Mutual Authentication.............................. 60

3.2.8. Category#3-Group#4 – Server Authentication............................... 61

3.3. Transmission Time Model .. 62

4. IMPLEMENTATION RESULTS .. 68

4.1. Processing Time Analysis ... 69

4.2. Queue Delay Analysis... 90

4.3. Data Transmission Time Analysis .. 99

4.3.1. Data Transmission Time Analysis for GSM CSD Bearer 101

4.3.2. Data Transmission Time Analysis for GPRS Bearer.................... 103

4.3.3. Comparison of GSM CSD and GPRS Data Transmission Times 110

4.4. Overall Handshake Time Analysis ... 111

5. CONCLUSIONS AND FUTURE WORK ... 122

ix

LIST OF FIGURES

Figure 1.1 Network participants of a typ ical WAP access ... 2

Figure 2.1 WAP access model.. 5

Figure 2.2 WAP protocol stack components .. 5

Figure 2.3 WDP structure ... 8

Figure 2.4 Public key cryptosystems signature issuance and verification models 12

Figure 2.5 Public key cryptosystems encryption and decryption models....................... 12

Figure 2.6 ECDH key exchange mechanism.. 16

Figure 2.7 WTLS protocol components.. 18

Figure 2.8 Mutual authenticated WTLS full handshake message flow.......................... 22

Figure 2.9 Server authenticated WTLS full handshake message flow........................... 23

Figure 2.10 WTLS abbreviated handshake message flow.. 24

Figure 2.11 WTLS optimized handshake message flow .. 25

Figure 3.1 Server queue delay components .. 46

Figure 3.2 Evolution of the unfinished work in the server ... 47

Figure 3.3 GSM CSD network architecture.. 65

Figure 3.4 GPRS network architecture ... 66

Figure 4.1 Category#1 client processing times ... 73

Figure 4.2 Category#1 server processing times .. 74

Figure 4.3 Category#2 client processing times ... 75

Figure 4.4 Category#2 server processing times .. 75

Figure 4.5 Category#3 client processing times ... 76

Figure 4.6 Category#3 server processing times .. 77

Figure 4.7 Client processing time percentages of mutual authenticated ECDH key

exchange.. 80

Figure 4.8 Client processing time percentages of mutual authenticated RSA key

exchange.. 81

Figure 4.9 Server processing time percentages of mutual authenticated ECDH key

exchange.. 83

Figure 4.10 Server processing time percentages of mutual authenticated RSA key

exchange.. 84

Figure 4.11 Client processing time percentages of server authenticated ECDH key

exchange.. 85

x

Figure 4.12 Client processing time percentages of mutual authenticated RSA key

exchange.. 86

Figure 4.13 Category#3-Group#1 server queue delays(mutual authentication) 91

Figure 4.14 Category#3-Group#2 server queue delays(mutual authentication) 92

Figure 4.15 Category#3-Group#3 server queue delays(mutual authentication) 92

Figure 4.16 Category#3-Group#4 server queue delays(mutual authentication) 93

Figure 4.17 Category#3 groups server queue delays-1 (mutual authentication) 95

Figure 4.18 Category#3 groups server queue delays-2 (mutual authentication) 95

Figure 4.19 Category#3 groups server queue delays-3 (mutual authentication) 96

Figure 4.20 Category#3-Group#1 server queue delays(server authentication) 97

Figure 4.21 Category#3-Group#2 server queue delays(server authentication) 97

Figure 4.22 Category#3-Group#3 server queue delays(server authentication) 98

Figure 4.23 Category#3-Group#4 server queue delays(server authentication) 99

Figure 4.24 GPRS performance evaluation testbed .. 104

Figure 4.25 RTT values measured at 12 PM (average = 761.8 ms) 106

Figure 4.26 RTT values measured at 2 PM (average = 737.3 ms) 106

Figure 4.27 RTT values measured at 4 PM (average = 805.9 ms) 106

Figure 4.28 RTT values measured at 6 PM (average = 778.9 ms) 106

Figure 4.29 RTT values measured at 8 PM (average = 805.9 ms) 107

Figure 4.30 RTT values measured at 10 PM (average = 743.1 ms) 107

Figure 4.31 RTT values measured at 12 AM (average = 710.1 ms)............................. 107

Figure 4.32 Traversal Delays measured at 12 PM (average = 376.1 ms) 109

Figure 4.33 Traversal Delays measured at 2 PM (average = 364.1 ms) 109

Figure 4.34 Traversal Delays measured at 4 PM (average = 397.0 ms) 109

Figure 4.35 Traversal Delays measured at 6 PM (average = 384.5 ms) 109

Figure 4.36 Traversal Delays measured at 8 PM (average = 398.4 ms) 110

Figure 4.37 Traversal Delays measured at 10 PM (average = 367.9 ms) 110

Figure 4.38 Traversal Delays measured at 12 AM (average = 351.4 ms) 110

Figure 4.39 Category#1 WTLS handshake overall handshake times 113

Figure 4.40 Category#2 WTLS handshake overall handshake times 114

Figure 4.41 Category#3 WTLS handshake overall handshake times 115

Figure 4.42 Mutual authenticated WTLS handshake overall times for GSM CSD and

GPRS... 116

xi

Figure 4.43 Server authenticated WTL handshake overall times for GSM CSD and

GPRS... 117

Figure 4.44 Mutual authenticated handshake times with queue delay-1 (category#3). 119

Figure 4.45 Mutual authenticated handshake times with queue delay-2 (category#3). 120

Figure 4.46 Mutual authenticated handshake times with queue delay-3 (category#3). 121

xii

LIST OF TABLES

Table 2.1 WAP network bearer types ... 10

Table 2.2 RSA and Elliptic Curve Cryptosystems cryptographic strength level

comparison.. 17

Table 3.1 Overall handshake duration notations ... 31

Table 3.2 Public key parameter specifiers .. 32

Table 3.3 Performance model categories and groups ... 33

Table 3.4 Mutual authenticated WTLS full handshake performance model notations .. 36

Table 3.5 Mutual authenticated WTLS full handshake message flow........................... 37

Table 3.6 Server authenticated WTLS full handshake performance model notations ... 42

Table 3.7 Server authenticated WTLS full handshake message flow 43

Table 3.8 Mutual authenticated handshake message flow for queue delay analysis 49

Table 3.9 Server authenticated handshake message flow for queue delay analysis 50

Table 3.10 Average service time formula notations ... 52

Table 3.11 Category#3-Group#1 .. 53

Table 3.12 Category#3-Group#1 .. 54

Table 3.13 Category#3-Group#2 .. 55

Table 3.14 Category#3-Group#2 .. 56

Table 3.15 Category#3-Group#3 .. 58

Table 3.16 Category#3-Group#3 .. 59

Table 3.17 Category#3-Group#4 .. 60

Table 3.18 Category#3-Group#4 .. 61

Table 3.19 Transmission delay modeling formula notations .. 64

Table 4.1 Mutual authenticated WTLS handshake overall processing times 70

Table 4.2 Server authenticated WTLS handshake overall processing times 71

Table 4.3 Mutual authenticated WTLS handshake ECDH_ECDSA key exchange suites

client processing time percentages.. 79

Table 4.4 Mutual authenticated WTLS handshake RSA key exchange suites client

processing time percentages.. 79

Table 4.5 Mutual authenticated WTLS handshake ECDH_ECDSA key exchange suites

server processing time percentages... 82

Table 4.6 Mutual authenticated WTLS handshake RSA key exchange suites server

processing time percentages.. 84

xiii

Table 4.7 Server authenticated WTLS handshake ECDH_ECDSA key exchange suites

client processing time percentages.. 87

Table 4.8 Server authenticated WTLS handshake RSA key exchange suites client

processing time percentages.. 87

Table 4.9 Server authenticated WTLS handshake ECDH_ECDSA key exchange suites

server processing time percentages... 89

Table 4.10 Server authenticated WTLS handshake RSA key exchange suites client

processing time percentages.. 90

Table 4.11 Total data sizes for selected test cases (bytes).. 100

Table 4.12 Transmission delays for GSM CSD bearer (ms) .. 102

Table 4.13 Data rates for selected cases ... 105

Table 4.14 Traversal delay characteristics for test cases .. 108

Table 4.15 Comparison of traversal delays for GSM CSD and GPRS bearers 111

xiv

LIST OF SYMBOLS

L Total data length (in bits) including all the handshake messages and

their corresponding ACK packets

acp , Ratio of the key exchange suite with the smallest public key size in a

group.

bcp , Ratio of the key exchange suite with the intermediate public key size

in a group.

ccp , Ratio of the key exchange suite with the highest public key size in a

group.

R Channel transmission rate (bit/s)

HT Overall handshake duration

CHCMT __ Client processing time for generating the Client.Hello message

SHCMT __ Client processing time for processing Server.Hello message

SCERTCMT __ Client processing time for processing the server certificate

CERTREQCMT __ Client processing time for processing the CertificateRequest message

SHDCMT __ Client processing time for processing the ServerHelloDone message

CCERTCMT __ Client processing time for generating the Client.Certificate message

CKXCMT __ Client processing time for generating the ClientKeyExchange message

(message is sent iff RSA key exchange suite is used)

CERTVRFYCMT __ Client processing time for generating the CertificateVerify message

(applicable if RSA key exchange suite is used)

CCCSCMT __ Client processing time for generating the Client ChangeCipherSpec

message

CFINCMT __ Client processing time for generating the Client.Finished message

SCCSCMT __ Client processing time for processing the Server ChangeCipherSpec

message

SFINCMT __ Client processing time for processing the Server.Finished message

ECDHCMT __ Client processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSCMT __ Client processing time for computing the master secret from the

xv

premaster secret

RSAENCCMT __ Client processing time for encryption operation using the Server’s

public key (applicable if RSA key exchange suite is used)

CHSMT __ Server processing time for processing the Client.Hello message

SHSMT __ Server processing time for generating the Server.Hello message

SCERTSMT __ Server processing time for generating the Server.Certificate message

CERTREQSMT __ Server processing time for generating the CertificateRequest message

SHDSMT __ Server processing time for generating the ServerHelloDone message

CCERTSMT __ Server processing time for processing the client certificate

CKXSMT __ Server processing time for processing the ClientKeyExchange

message

CERTVRFYSMT __ Server processing time for processing the CertificateVerify message

(applicable if RSA key exchange suite is used)

CCCSSMT __ Server processing time for processing the Client ChangeCipherSpec

message

CFINSMT __ Server processing time for processing the Client.Finished message

SCCSSMT __ Server processing time for generating the Server ChangeCipherSpec

message

SFINSMT __ Server processing time for generating the Server.Finished message

ECDHSMT __ Server processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSSMT __ Server processing time for computing the master secret from the

premaster secret

RSADECSMT __ Server processing time for decryption operation using its own private

key (applicable if RSA key exchange suite is used)

PDT Total processing delay of handshake messages

CPDT _ Overall processing time for the client side

SPDT _ Overall processing time for the server side

QDT Server queue delay

CHCST __ Average client processing time for generating the Client.Hello

xvi

message

SHCST __ Average client processing time for processing Server.Hello message

SCERTCST __ Average client processing time for processing the server certificate

CERTREQCST __ Average client processing time for processing the CertificateRequest

message

SHDCST __ Average client processing time for processing the ServerHelloDone

message

CCERTCST __ Average client processing time for generating the Client.Certificate

message

CKXCST __ Average client processing time for generating the ClientKeyExchange

message

CCCSCST __ Average client processing time for generating the Client

ChangeCipherSpec message

CFINCST __ Average client processing time for generating the Client.Finished

message

SCCSCST __ Average client processing time for processing the Server

ChangeCipherSpec message

SFINCST __ Average client processing time for processing the Server.Finished

message

ECDHCST __ Average client processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSCST __ Average client processing time for computing the master secret from

the premaster secret

RSAENCCST __ Average client processing time for encryption operation using the

Server’s public key (applicable if RSA key exchange suite is used)

CHSST __ Average server processing time for processing the Client.Hello

message

SHSST __ Average server processing time for generating the Server.Hello

message

SCERTSST __ Average server processing time for generating the Server.Certificate

message

CERTREQSST __ Average server processing time for generating the CertificateRequest

message

xvii

SHDSST __ Average server processing time for generating the ServerHelloDone

message

CCERTSST __ Average server processing time for processing the client certificate

CKXSST __ Average server processing time for processing the

ClientKeyExchange message

CCCSSST __ Average server processing time for processing the Client

ChangeCipherSpec message

CFINSST __ Average server processing time for processing the Client.Finished

message

SCCSSST __ Average server processing time for generating the Server

ChangeCipherSpec message

SFINSST __ Average server processing time for generating the Server.Finished

message

ECDHSST __ Average server processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSSST __ Average server processing time for computing the master secret from

the premaster secret

RSADECSST __ Average server processing time for decryption operation using its own

private key (applicable if RSA key exchange suite is used)

TDT Data transmission time (s)

traversalT One way traversal delay of the GSM network specific to the data

bearer and GSM service provider

XT Average service time for any of the applicable handshake messages

for a given group

acXT ,, Average service time for any of the applicable handshake messages

for the key exchange suite with the smallest public key size in a

group.

bcXT ,, Average service time for any of the applicable handshake messages

for the key exchange suite with the intermediate public key size in a

group.

ccXT ,, Average service time for any of the applicable handshake messages

for the key exchange suite with the highest public key size in a group.

xviii

LIST OF ABBREVIATIONS

BSC Base Station Controller

BTS Base Transceiver Station

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDH_ECDSA Elliptic Curve Diffie-Hellman Elliptic Curve Digital Signature

Algorithm

AMPS Advanced Mobile Phone Service

CA Certification Authority

CDMA Code Division Multiple Access

CDPD Cellular Digital Packet Data

CSD Circuit Switched Data

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDEN Integrated Digital Enhanced Network

IPv4 Internet Protocol version 4

ISO/OSI International Organization for Standardization/Open System

Interconnection

ITSI Individual TETRA Subscriber Identity

LAN Local Area Network

MAN Metropolitan Area Network

MSC Mobile Switching Center

MSISDN Mobile Station International ISDN Number

OMA Open Mobile Alliance

OS Operating System

PC Personal Computer

PDC Personal Digital Communications

PRF Pseudo Random Function

QoS Quality of Service

RAS Remote Access Server

xix

RSA Rivest Shamir Adleman

RTT Round Trip Time

SHA Secure Hash Algorithm

SMS Short Message Service

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol / Internet Protocol

TLS Transport Layer Security

USSD Unstructured Supplementary Services Data

WAE Wireless Application Environment

WAP Wireless Application Protocol

WDP Wireless Datagram Protocol

WML Wireless Markup Language

WSP Wireless Session Protocol

WTA Wireless Telephony Application

WTLS Wireless Transport Layer Security

WTP Wireless Transaction Protocol

WWW World Wide Web

XML Extensible Markup Language

1

1. INTRODUCTION

Emerging growth of the mobility requirements for today’s daily life has brought

up an increasing demand on the use of WAP (Wireless Application Protocol) [1]

applications. WAP is an enabling techno logy for mobile Internet access using resource

constrained handheld devices. WAP standards have been developed by an international

industry-wide organization WAP Forum. However, WAP Forum no longer exists as an

independent organization since June 2002. The WAP Forum has consolidated into the

Open Mobile Alliance (OMA) and the specification work continues within OMA since

2002. Latest version announced is WAP 2.0 but most handheld devices still support the

preceding version WAP 1.2.

The number of mobile handheld devices accessing Internet increased rapidly for

the last four years. Percentage of wireless Internet users was 16% of the overall Internet

users by the year 2001, where it is 41.5% for year 2004 and expected to be 60% by the

year 2007 according to the recent researches in [2] and [3]. Global m-commerce

revenue was approximately 3 billion USD for year 2001, where it is predicted to be 19

billion USD by the year 2005 as stated in [4]. Therefore, security of WAP transactions

becomes one of the biggest security concerns for the future Internet use. Considering

today’s available value-added WAP services like Mobile Internet Banking, M-

commerce, etc., we can say that security requirements of WAP applications are not that

different from the traditional wired Internet.

WTLS (Wireless Transport Layer Security) [5] is the security protocol designed

for WAP protocol stack. WTLS is built on the Internet standard TLS v1.0 [6] which is

based on the SSL v3.0 [7] protocol developed by Netscape Corp. WTLS operates

between the mobile client and the server, which is also called as WAP Gateway. It

2

addresses confidentiality, integrity and authentication of the information flow between

the mobile client and the server. WAP gateway retrieves the requested WAP content

from the external web servers using the regular TCP/IP protocol suite and sends the

content back to the client. It is obvious that there is no end-to-end security means

between the client and the content server for WAP applications. Although WTLS is

used to secure the communication between WAP Gateway and client, there is no

guarantee that the WAP Gateway communicates over SSL with the content server.

Network participant s of a typical WAP access are given in Figure 1.1.

Figure 1.1 Network participants of a typical WAP access

WTLS provides all the security related parameters to the upper layer protocols.

WTLS Handshake Protocol is used to negotiate on the cryptographic algorithms to be

used, exchange secret keys and digital certificates.

Although there are anonymous key exchange suites that are offered by the WTLS

standard [5], they are not considered secure. Neither client nor the server is

authenticated at the anonymous key exchange suites. WTLS uses digital certificates for

authentication of the peers and authenticated key exchange between them. Digital

certificates are issued by trusted Certification Authorities (CA). They contain identity

information of the peer together with the public key to be used during the handshake.

Authentication of the peer requires verification of its certificate using the public key

retrieved from the CA certificate. Handshake mechanism varies depending on the

cryptosystem used.

3

Public key cryptosystems are used to verify the certificates and exchange secret

keys between the peers. Public key cryptosystem operations are generally slow and the

processing time significantly increases as the larger key sizes are used. Public key

cryptosystems key sizes offered by the WTLS standard are not strong enough to meet

today’s WAP applications’ security requirements. Considering the low processing

power of the handheld devices, it may be reasonable to restrict the key sizes. However,

WAP Forum does not seem to stand on a serious cryptographic research while

recommending the key sizes at the WTLS standard [5]. Therefore, a performance

evaluation of the WTLS Handshake Protocol for different key exchange suites is

valuable. Especially a feasibility study on the use of stronger key sizes that has not been

offered by the standard yet will put a light on the future progress of the WTLS standard.

In this thesis work, performance evaluation of the WTLS Handshake Protocol has

been performed. Performance model considers the client and server processing times,

server queue delay and the data transmission time over the channel as bottleneck

candidates of the handshake operation. Processing times and data transmission times

have been measured by performing the tests over a real GSM service provider. Test

client is a Nokia 7650 phone with Symbian operating system. Symbian OS is widely

used at today’s smart phones. It has a flexible programming interface that supports

many programming languages like C/C++, Java, etc. Crypto primitives and the WTLS

Handshake Protocol have been implemented in C++. Queue delay performance was

modeled analytically. However, measured server processing times have been used in

that analytical model to analyze the effects of server waiting time. WTLS handshake

protocol simulations have been performed over the GSM CSD data bearer, and another

performance test methodology has been followed to predict the data transmission time

characteristics for GPRS bearer. Timing measurements have been used together with

the performance model to analyze the effects of the bottleneck candidates on the WTLS

handshake protocol.

In Section 2, background information on WAP protocol and public key

cryptography is given. Previous works on WTLS performance evaluation are also

summarized in this section. Section 3 dwells upon the proposed performance model.

Performance data gathered from implementation results are evaluated in Section 4.

Section 5 gives the conclusions and the future work.

4

2. WAP BACKGROUND AND LITERATURE SURVEY

Before going into details of the WTLS handshake protocol, it is worth mentioning

how clients access to WAP content and what are the WAP protocol stack components.

Section 2.1 explains the basic operations when accessing WAP content. WAP protocol

stack components are briefly defined in Section 2.2, where WTLS handshake protocol

is considered in more detail in Section 2.4. Section 2.3 gives background information on

public key cryptosystems that are used in the WTLS Handshake Protocol.

Cryptographic functions which are used to compute the master secret are defined in

Section 2.5. Discussion of previous works on WTLS/SSL performance is also given at

the end of this chapter.

2.1. WAP Access Model

The most widely used WAP content access model is the one that uses mobile

service provider’s WAP gateway. WAP content format is WML (Wireless Markup

Language) [8] which is based on the familiar WWW (World Wide Web) content format

HTML (HyperText Markup Language) [9]. WML is a structured content type designed

using XML (Extensible Markup Language) [10]. WAP gateway is responsible for

handling client requests. Clients send the WAP request to the gateway, gateway

communicates with the content provider and gets the HTML reply then applying the

necessary binary WML format conversion the gateway sends the WAP content to the

client. Generally the WAP gateway has two main functionalities as stated in [1]. These

are:

• Protocol Gateway: Translates the WAP protocol stack to the WWW protocol

stack (HTTP [11]and TCP/IP)

5

• Content Encoders and Decoders: Translate WAP content to the channel

optimized encoded format.

Typical WAP access message flow between client, gateway and content provider

is visualized in Figure 2.1.

Figure 2.1 WAP access model

2.2. WAP Protocol Stack Components

WAP protocol stack is designed taking the ISO/OSI Layered Structure [12] as a

reference. It is composed of 6 protocol layers. A brief description of each protocol layer

is given in the following parts.

Figure 2.2 WAP protocol stack components

6

2.2.1. Wireless Application Environment (WAE)

WAE [13] layer includes all the specification about WAP application

specification and execution especially the client side. WAE is based on both WWW and

Mobile Telephony technologies. Its main purpose is to establish an interoperable

environment that will allow operators, service providers and developers to build

applications and services for mobile WAP clients. WAE has following functionalities:

• WML (Wireless Markup Language): Special markup language designed for

resource constrained hand-held WAP clients. WAP pages are presented in WML

and microbrowsers in the WAP clients know how to render WML pages. WML

is similar to HTML which is used to present web pages of WWW technology.

• WMLScript [14]: A lightweight scripting language designed for WAP clients.

WMLScript is especially useful to add client side logic to WAP browsing.

• WTA (Wireless Telephony Application) [15]: Telephony services and

programming interfaces.

2.2.2. Wireless Session Protocol (WSP)

WSP [16] provides a means for exchange of data between client and servers by

establishing a reliable session and releasing the session in an orderly manner. General

features of WSP are:

• Establishing/releasing session between client and server

• Capability negotiation to agree on a common level of protocol functionality

• Exchange content between client and server

• Suspend and resume the session

7

WSP offers two protocols one of which is connection oriented transaction service

and the second one is connectionless services over a datagram transport service.

2.2.3. Wireless Transaction Protocol (WTP)

WTP [17] is the transaction protocol defined for WAP access. WTP provides the

necessary services for browsing WAP pages; actually it serves for WAP transactions. A

transaction for WAP is defined as the duo of request and response. WTP lays on top of

WAP datagram service WDP (Wireless Datagram Protocol) [18] and optionally the

security layer WTLS (Wireless Transport Layer Security) [5] if used.

2.2.4. Wireless Transport Layer Security (WTLS)

WTLS [5] is the security protocol defined for the WAP protocol stack. Use of

WTLS is not mandatory, it is optional to enable or disable WTLS protocol. WTLS is

based on well known Internet standard TLS v1.0 [6] (formerly known as SSL v3 [7])

and it is optimized for use over narrow-band communication channels. WTLS provides

the following basic security services for WAP applications:

• Authentication

• Integrity

• Confidentiality

Section 2.4 deals with WTLS and its sub-protocols in more detail.

8

2.2.5. Wireless Datagram Protocol (WDP)

WDP [18] is the transport layer protocol in the WAP architecture and it operates

over data bearer services as GSM, CDMA etc. WDP offers a consistent service to upper

layer protocols of WAP by communicating with different bearer services transparently.

Figure 2.3 WDP structure

Figure 2.3 shows the underlying structure of the WDP layer. The adaptation layer

is the part of WDP that maps the WDP functions to the underlying bearer service. The

wireless data gateway forwards the WDP packets to a WAP proxy via a tunneling

protocol. The sub-network may be one of the networking technologies that provide

communication between peers, like LANs (Local Area Networks) operating TCP/IP

over Ethernet etc. [18] The WAP proxy may directly provide the content or it may

retrieve the content from the wired Internet to send it back to the client.

2.2.6. Bearers

WAP protocols can operate over various bearer services which can be grouped as

Short Message Service (SMS), circuit-switched data, and packet data. WDP protocol

provides the means to operate transparently over different bearer services for the upper

9

layer WAP protocols. Different bearer services offer different QoS (Quality of Service),

throughput, error rate, and delays. New bearers may be adapted to the WAP protocol

family as the mobile market evolves and better bearer services are designed for WAP

use. Table 2.1 gives the available bearers from WAP 1.2.1 (June 200) standard [18],

with network and address type specification.

10

Network Bearer type Address type

Any Any IPv4

Any Any IPv6

GSM USSD Any

GSM SMS GSM_MSISDN

ANSI-136 GUTS/R-Data ANSI_136_MSISDN

IS-95 CDMA SMS IS_637_MSISDN

IS-95 CDMA CSD IPv4

IS-95 CDMA Packet Data IPv4

ANSI-136 CSD IPv4

ANSI-136 Packet Data IPv4

GSM CSD IPv4 CSD IPv4

GSM GPRS IPv4 GPRS IPv4

GSM USSD USSD IPv4

AMPS CDPD CDPD IPv4

PDC CSD CSD IPv4

PDC Packet Data IPv4

IDEN SMS iDEN_MSISDN

IDEN CSD IPv4

IDEN Packet Data IPv4

Paging network FLEXTM FLEX_MSISDN

PHS SMS PHS_MSISDN

PHS CSD IPv4

GSM USSD GSM_Service_Code

TETRA SDS TETRA_ITSI

TETRA SDS TETRA_MSISDN

TETRA Packet Data IPv4

Paging Network ReFLEXTM ReFLEX_MSIDDN

GSM USSD GSM_MSISDN

Mobitex MPAK MAN

ANSI-136 GHOST/R_DATA GSM_MSISDN

Table 2.1 WAP network bearer types

11

2.3. Public Key Cryptosystems

Public key cryptosystems have been the most appropriate solution to some major

security problems like integrity, authentication and non-repudiation. Main security goals

are defined below.

• Integrity: Making sure that it will be notified if the message has been

altered since the last checkpoint.

• Authentication: Making sure of a communicating party’s identity

• Confidentiality: Only the intended parties can see the content of a message

• Non-repudiation: The sender cannot claim that he/she did not send the

message

In the public key cryptosystems, each user holds a key pair. One of the keys is the

private key, must be kept secret and only the owner can access it. The second key is the

public key that can be accessed by any party needing it for encryption and signature

validation.

Public key cryptosystems can be used for all of the security goals mentioned

above. Integrity, authentication and non-repudiation can be ensured by digitally signing

the message with the private key. The recipients can verify the signature by using the

publicly available public key of the sender. The public key cannot decrypt the message

that it encrypted, also the private cannot easily be derived from the public key. Figure

2.4 shows the signature issuance and signature verification models for public key

cryptosystems in general.

12

Figure 2.4 Public key cryptosystems signature issuance and verification models

Public key cryptosystems have encryption/decryption features to ensure

confidentiality but it is not feasible to use public key cryptosystems for confidentiality

issues directly. Symmetric algorithms are faster than public key algorithms and they are

used for encryption/decryp tion purposes. The biggest problem of communicating

securely via symmetric encryption is that the peers must agree on a secret key that only

they know and no one else can capture/generate. Fortunately, public key cryptosystems

contribute to the confidentiality by providing means of securely exchanging such secrets

between the peers. Figure 2.5 shows the public key cryptosystems encryption and

decryption models in general.

Figure 2.5 Public key cryptosystems encryption and decryption models

RSA (Rivest-Shamir-Adleman) [19] and ECC (Elliptic Curve Cryptography) [20]

are the most widely used public key cryptosystems in WTLS Handshake Protocol.

These cryptosystems and basic cryptographic operations are briefly defined in the

following parts of this section.

2.3.1. RSA Cryptosystems

RSA was proposed by Rivest, Shamir, and Adleman in 1977. It is based on the

idea that factorization of large integers into their prime factors is a hard problem. Thus,

the difficulty of obtaining the private key using the public key is the one-way function

that has the equivalent difficulty of finding the prime factors of a large integer.

13

In RSA, public and private keys are generated as follows:

• Choose two large prime numbers, p and q, compute the public modulus

qpn ×=

• Choose a random public key, e, where e and)1()1(−×− qp are relatively

prime

• Compute the private key d as, [])1)(1(mod1 −−= − qped

Encryption mechanism

The plaintext P, is thus encrypted to generate ciphertext C as follows:

nPC e mod=

Decryption mechanism

and C is decrypted to recover the plaintext ,P, as:

nCP d mod=

RSA key exchange mechanism

RSA key exchange is performed by using the encryption and decryption

properties of the RSA algorithm. A premaster secret is encrypted by using the public

key of the other communicating party and the encrypted premaster secret is sent to the

owner of the public key. Encrypted premaster secret can only be decrypted by the owner

of the private key that is related to the public key which was used to encrypt the

premaster secret. After the decryption operation, both parties know the same premaster

secret. Therefore, they can compute the master secret from this shared secret.

14

2.3.2. Elliptic Curve Cryptosystems

ECC was proposed by Koblitz [20] in 1987 and by V.S. Miller [21] in 1985

separately and it is now the strongest rival against the RSA cryptosystems because of

several advantages. Each elliptic curve is a different cryptosystem. The security of ECC

stems from the hardness of the ECDLP (Elliptic Curve Discrete Logarithm Problem).

ECDLP is defined as below:

ECDLP Definition: Given an elliptic curve E defined over a finite field qF , a point

)(qFEP ∈ of order n, and a point lPQ = where 10 −≤≤ nl , determine l.

Smaller modulus values can be used in ECC to achieve the same level of security

as compared to larger RSA modulus values. This brings the advantages of easier and

cheaper implementations, transmitting less data. Moreover, ECC is faster as well.

ECC cryptosystems use ECDSA (Elliptic Curve Digital Signature Algorithm) [24]

for signature issuance and signature verification. ECDSA is the elliptic curve analogue

of the DSA [25] (Digital Signature Algorithm).

ECDSA signature generation mechanism

To generate the ECDSA signature of a message m, an entity Alice with domain

parameters),,,,,,(hnGbaFRqD = and key pair (d,Q) performs the following

operations:

1. Select a random integer k, 11 −≤≤ nk .

2. Compute),(11 yxkG = and nxr mod1= . If 0=r then go to step 1.

3. Compute nk mod1− .

4. Compute)(1 mSHAe −= .

5. Compute ndreks mod)(1 += − . If 0=s then go to step 1.

6. Signature of the message m is, (r,s).

15

ECDSA signature verification mechanism

To verify Alice’s ECDSA signature (r,s) of the message m, an entity Bob should

first obtain Alice’s domain parameters),,,,,,(hnGbaFRqD = and public key Q, and

perform the following operations:

1. Verify that r and s satisfy the condition, 1,1 −≤≤ nsr .

2. Compute)(1 mSHAe −= .

3. Compute nsw mod1−= .

4. Compute newu mod1 = and nrwu mod2 = .

5. Compute QuGuX 21 += . If 0=X , signature is rejected. Otherwise,

compute nxv mod1= where),(11 yxX = .

6. Signature is accepted iff rv = .

ECDH key exchange mechanism

ECDH (Elliptic Curve Diffie-Hellman) [22] key exchange is performed to

securely share a secret between two communicating parties in ECC cryptosystems.

ECDH is the elliptic curve version of the DH (Diffie-Hellman) [23] key exchange.

Suppose that Alice and Bob want to securely exchange a secret value (premaster

secret key), and they are using ECC cryptosystems. Therefore, they will perform ECDH

key exchange as defined below. ECDH key exchange mechanism is shown in Figure 2.6.

1. Alice and Bob agree on an elliptic curve E, and a large prime number P.

2. Alice and Bob agree on a point (x,y) on E over GF(P).

3. Both peers separately performs:

a. Alice secretly chooses a positive integer m, and computes

),(*),(yxmvu = .

b. Bob secretly chooses a positive integer n, and computes

),(*),(yxnsr = .

4. Both peers separately performs:

16

a. Alice sends (u,v) to Bob.

b. Bob sends (r,s) to Alice.

5. Alice and Bob computes the secret point (g,h):

a. Alice secretly computes),(*),(srmhg = .

b. Bob secretly computes),(*),(vunhg = .

Figure 2.6 ECDH key exchange mechanism

2.3.3. Cryptographic Strength Level Comparison of RSA and Elliptic
Curve Cryptosystems

Lenstra and Verheul have compared the cryptographic key sizes of RSA and ECC

cryptosystems in [26]. Table 2.2 gives the equivalent ECC and RSA key sizes taken

from [26], for three cryptographic strength levels considered in this study. Three

different types of ECC curves have been considered, these are prime, Koblitz, and

random curves. ECC curves that are used in this study, are the recommended curves by

the US NIST (United States National Institute of Standards and Technologies) in [27].

17

Cryptographic

Strength Level

ECC

RSA

1

160 bit Prime, 163 bit Koblitz, 163 bit

Random

1024 bit

2

224 bit Prime, 233 bit Koblitz, 233 bit

Random

2048 bit

Stronger

3

256 bit Prime, 283 bit Koblitz, 283 bit

Random

3072 bit

Table 2.2 RSA and Elliptic Curve Cryptosystems cryptographic strength level comparison

2.4. WTLS Handshake Protocol

WTLS Handshake Protocol [5] is one of the four clients of the WTLS Record

protocol [5]. The WTLS Record Protocol is a layered protocol that optionally

compresses data, applies MAC, encryption and transmits the data. The other clients of

the WTLS Record Layer are Change Cipher Spec Protocol, and Alert Protocol.

WTLS Handshake Protocol [5] is used to allow WAP client and gateways to agree

upon security parameters for the record layer, authenticate themselves and report error

conditions to each other. Change Cipher Spec Protocol, Alert Protocol and Handshake

Protocol are the sub-protocols of the WTLS Handshake protocol. Figure 2.7 gives the

relation between the WTLS Record Protocol, WTLS Handshake Protocol and its sub-

protocols.

18

Figure 2.7 WTLS protocol components

Change Cipher Spec Protocol may be used either by the client or the gateway. It

notifies the other party that the security negotiation has been completed. The following

messages are protected by the agreed security parameters. The first messages that will

be protected after the Change Cipher Spec message are client finished and server

finished messages.

Alert Protocol is used to inform the peers about handshake errors. Alert messages

convey the severity of the message and a description of the alert. Alert levels are

specified as warning, critical and fatal in the standard [5]. Critical alert messages result

in the immediate termination of the current connection, where the connection may

continue in the case of other levels of alert messages.

Use of WTLS for WAP sessions is optional and the peers must negotiate on the

security parameters before starting the secure session. WTLS Handshake Protocol is the

sub-protocol that provides the necessary security parameters to the upper layer Record

Protocol. The WTLS Handshake Protocol’s main features are listed below:

• Exchanging the client hello messages

• Exchanging the random values

• Exchanging the authentication information (certificates, cryptographic

information etc.)

• Provide means to generate a master secret from the pre-master secret and the

previously exchanged random values

• Providing the security parameters to the Record Protocol

19

WTLS supports RSA [19] and ECC [20] cryptosystems. If the key exchange is

performed using RSA cryptosystems, encryption and decryption features of RSA is

used. ECDH (Elliptic Curve Diffie-Hellman) [22] key exchange method is performed if

ECC is used. The standard [5] also offers anonymous key exchange suites, DH (Diffie-

Hellman) [23], RSA_anon, and ECDH_anon. Anonymous key exchange suites do not

authenticate any of the peers, so they are not considered as secure and not in the scope

of this thesis work.

WTLS provides authentication by means of the digital certificates. Verification of

the digital certificates requires public-key operations. RSA has its own verification

feature. ECDSA (Elliptic Curve Digital Signature Algorithm) [24] is used for signature

verification purposes if ECC is to be used.

WTLS Handshake Protocol may be performed in three basic type, these are Full

Handshake, Abbreviated Handshake and Optimized Handshake.

2.4.1. Full Handshake

There exist three different types of WTLF Full Handshake. These are Mutual

Authenticated, Server Authenticated and Anonymous WTLS Full Handshake.

Anonymous key exchange suites are not secure because neither the client nor the server

is authenticated. Also, it is possible to perform MIM (Man In the Middle) attacks if

anonymous key exchange suites are used. Mutual Authenticated WTLS Full Handshake

and Server Authenticated WTLS Full Handshake will be considered in this section.

2.4.1.1. Mutual Authenticated WTLS Full Handshake

Mutual Authenticated WTLS Full Handshake requires both the client and the

server have a valid certificate appropriate to the selected key exchange suite. These

digital certificates are used through the key exchange process to compute the premaster

20

secret. RSA or ECDH_ECDSA key exchange suites can be used in mutual authenticated

WTLS full handshake.

The first handshake message to be sent by the client is the client hello message.

Critical information that the client hello message includes are the client’s random value,

key exchange suites supported by the client with the client’s first preference first, list of

trusted certificates known by the client, and list of the cryptographic options supported

by the client. Version of the WTLS protocol, session id, compression methods, and key

refresh period are also presented in the client hello message. After sending the client

hello message, the client waits for the server hello message.

If the server can not find an acceptable set of algorithms after receiving the client

hello message, it sends a handshake failure alert. Otherwise, the server responds with

the server hello message. Server hello message includes the server random value,

session id, selected key exchange suite, selected cipher suite, compression method and

key refresh period information.

Server sends its certificate after the server hello message. WTLS supports use of

X509v3, X9.68 or WTLS certificates. It is most suitable to use the WTLS certificates

because they are optimized for size. Server certificate must be verified by the client

upon receiving. Verification of a certificate requires the verification of the digital

signature using the CA (Certification Authority) public key retrieved from the CA

certificate. The client must also verify the subject, issuer, and the validity time interval

of the certificate. Authenticated server certificate will be used to compute the premaster

secret.

The server requests a certificate from the client by sending the certificate request

message. The next message that will be sent by the server is server hello done message

which indicates that all necessary server messages have been sent by the server and it is

waiting for the client response.

The client must send a valid certificate to the server after receiving the server

hello done message. Even if the client does not have a valid certificate, it must send an

21

empty certificate message to the server. Then the server may continue to the handshake

or it may terminate the handshake and send a critical error message to the client.

The client key exchange message is sent by the client if RSA key exchange suite

is used. The certificate sent by the client has the enough information to compute the

premaster secret if ECDH_ECDSA key exchange suite is used, so the client key

exchange message is omitted if ECDH_ECDSA key exchange suite is used. Client key

exchange message contains the encrypted premaster secret when RSA is used.

Premaster secret decided by the client is encrypted using the server public key retrieved

from the server certificate. The server decrypts the encrypted premaster secret using its

private key.

The client must also send the certificate verify message to explicitly verify its

certificate if RSA key exchange method is used. Certificate verify message includes

signature of the all previous handshake messages’ hash value. Server must be able to

verify the signature using the public key retrieved from the client certificate.

After this point the client sends the change cipher spec message and immediately

sends the client finished message. All the messages sent after the change cipher spec

message is protected by the security parameters that have been agreed upon. When the

server receives the change cipher spec message sent by the client, it will send server

change cipher spec message to the client and all the messages that will be sent by the

server will also be protected by the same security parameters. The first server message

under agreed parameters will be the server finished message and the peers can start to

exchange application data after sending the finished messages. Mutual Authenticated

WTLS Full Handshake message flow is given at Figure 2.8.

22

Figure 2.8 Mutual authenticated WTLS full handshake message flow

2.4.1.2. Server Authenticated WTLS Full Handshake

Server Authenticated WTLS Full Handshake requires only the server to have a

valid certificate appropriate to the selected key exchange suite. RSA or ECDH_ECDSA

key exchange suites can be used in server authenticated WTLS full handshake.

The first handshake message to be sent by the client is the client hello message.

Client hello message includes client’s random value, key exchange suites supported by

the client with the client’s first preference first, list of trusted certificates known by the

client, list of the cryptographic options supported by the client, version of the WTLS

protocol, session id, compression methods, and key refresh period. After sending the

client hello message, the client waits for the server hello message.

The server sends the server hello message to the client after receiving the client

hello message. Server hello message includes the server random value, session id,

selected key exchange suite, selected cipher suite, compression method and key refresh

period information.

Server sends its certificate after the server hello message. Server certificate must

be verified by the client upon receiving. After the certificate message, server sends the

23

server hello done message which indicates that all necessary server messages have been

sent by the server and it is waiting for the client response.

The client key exchange message is sent by the client after receiving the server

hello done message. Premaster secret is set with the client key exchange message. The

client encrypts the premaster secret using the server’s public key and sends the

encrypted premaster secret in the client key exchange message. The server then decrypts

the RSA encrypted premaster secret using its private key. The client must send its EC

Diffie-Hellman public key in the client key exchange message to the server. Server uses

its private key and client’s public key to compute the premaster secret. Similarly, client

uses its private key and server’s public key to compute the premaster secret.

Client sends the change cipher spec message and the client finished message after

the client key exchange message. All the messages sent after the change cipher spec

message is protected by the security parameters that have been agreed upon. When the

server receives the change cipher spec message sent by the client, it will send server

change cipher spec message to the client and all the messages that will be sent by the

server will also be protected by the same security parameters. Server Authenticated

WTLS Full Handshake message flow is given at Figure 2.9.

Figure 2.9 Server authenticated WTLS full handshake message flow

24

2.4.2. Abbreviated Handshake

The client may resume a previously established secure session with the server

instead of performing a full handshake. In the case of resuming an old secure session,

the client sends a Client Hello message with the Session ID of the session to be resumed.

The server checks its secure session cache. If a match is found, the server sends Server

Change Cipher Spec message and Server Finished message. The client must respond

with Client Change Cipher Spec message and Client Finished message and peers start to

exchange application data in a secure manner. If the server can not find the secure

Session ID in the Client Hello message, it can not resume the previous session and a

new full handshake is initiated. WTLS Abbreviated Handshake Protocol message flow

is given at Figure 2.10.

Figure 2.10 WTLS abbreviated handshake message flow

2.4.3. Optimized Handshake

When the server receives the Client Hello message, it can retrieve the client’s

certificate from a distribution center or its own certificate store. For example when the

client certificate contains the ECDH [22] (Elliptic Curve Diffie-Hellman) parameters,

the server can directly compute the premaster secret and master secret by using the

certificate retrieved from the store. In this case the server sends its certificate to the

client, then Server Change Cipher Spec message and Server Finished message. The

client sends Client Change Cipher Spec message and Client Finished message. After all

25

these messages, application data can be exchanged between the peers. WTLS Optimized

Handshake Protocol message flow is given at Figure 2.11.

Figure 2.11 WTLS optimized handshake message flow

2.5. Master Secret Computation in WTLS Handshake Protocol

Regardless of the key exchange suite used, peers must compute the master secret

for using in the bulk encryption process after agreeing on the premaster secret. The

same algorithm is used to convert the premaster secret into the master secret for all

types of key exchange suites. It is recommended that the premaster secret is deleted

from memory after computing the master secret.

mastersecret = PRF (premastersecret, “master secret”,Client.random+Server.random) (2.1)

The “+” operation stands for the concatenation of two random values generating a

new random value as an input to the function. The premaster secret key length may vary

depending on the key exchange suite selected but the master secret will always be 20

bytes in length. PRF is the pseudo-random function defined in [5].

If the RSA key exchange suite is used, premaster secret is determined by the

client. Client encrypts the premaster secret using the server’s RSA public key and sends

it to the server in Client Key Exchange Message. The server decrypts the premaster

secret using its own private key and continues to compute the master secret.

26

If the ECDH_ECDSA key exchange suite is used, the ECDH computation is

performed and the negotiated key (Z) is used as the premaster secret to compute the

master secret.

(.)PRF is defined as:

PRF(secret, label, seed) = P_hash(secret, label+seed) (2.2)

),(sec_ datarethashP is defined as the data expansion function using a single

hash function. (.)_ hashP function can be iterated as many times as needed, at each

iteration it generates additional 20 bytes of output.

P_hash(secret, data) = HMAC_hash(secret, A(0)+data) +

 HMAC_hash(secret, A(1)+data) +

 HMAC_hash(secret, A(2)+data) + …

(2.3)

Where;

A(0) = data

A (i) = HMAC_hash(secret, A(i-1))

(.)_ hashHMAC is defined as below:

))((),(_ dataipadKHopadKHdataKhashHMAC +⊕+⊕= (2.4)

Where;

timesrepeatedxbytetheipad 64360=

timesrepeatedCxbytetheopad 6450=

27

(.)H is one of the allowed cryptographic hash functions in the standard [5].

Available hash functions defined in the standard are SHA-1 [28] and MD5 [29].

It is enough to iterate the (.)_ hashP function once to generate the 20 byte master

secret if we use SHA-1 as the cryptographic hash function.

2.6. Previous Work on WTLS and SSL/TLS Performance Analysis

Levi and Savas have proposed an analytical performance model for WTLS

handshake protocol in [30]. WTLS handshake performance was considered as three

sub-problems which are client and server processing time, server queue delay and

transmission time over the network. Three groups of cryptosystems with equal level of

security using RSA and ECC were compared in the paper. The first group contains RSA

1024 bit, ECC 160p (prime), ECC 163k (Koblitz), ECC 163r (random) curves. The

second group contains RSA 2048 bit, ECC 224p, ECC 233k, and ECC 233r curves. The

last group contains RSA 3072 bit, ECC 256p, ECC 283k, and ECC 283r curves. The

first two groups of the same security level contain the ECC curves and RSA key lengths

that are offered by the WTLS standard [5]. The third group is composed of the curves

that are not in the WTLS standard but offers the level of security that might be needed

for today’s WAP applications. Public key operations, namely encryption and signature

verification with public key, decryption and signature generation with private key were

implemented using state of the art techniques and timing measurements, were done to

use in the performance model. Overall processing time is significantly lower when

using ECC public key cryptosystems for both server authenticated and mutual

authenticated WTLS Full Handshake. They model the server as an M/M/1 queue, so the

queue delay is computed by using the well known formula)1/(ρρ −sT , where sT is the

average server processing time and ρ is the utilization factor. The data transmission

time is computed as RLTdata /8= , where R is the data transmission rate in bits and L

is the overall data size transmitted in bytes. The performance model proposed is

successfully considering the necessary terms that may be a bottleneck of the WTLS

handshake. Practically M/M/1 model is not well suited for computing the queue delay

28

because the average processing time of each intermediate handshake messages must be

considered separately (not the overall handshake processing time) and also the model

does not include the extra networking time that may come out when using different

types of data bearers.

Apostolopoulos et. al. take a close look at the SSL protocol, the ancestor of

WTLS, with an eye on performance in [31] and [32]. They benchmark the performance

of industry wide web servers Netscape and Apache, and quantify the overheads of

different components of SSL protocol using SPECWeb96 [33] benchmark tool. They

vary the degree of session reuse from 0 to 100 percent. SSL performance improves as

the ratio of session reuse increases. Protocol overhead is analyzed associated with the

SSL handshake protocol, encryption and authentication during data transfer.

Performance analysis of SSL handshake protocol is affected by an increase in data

volume due to additional data items and computational overhead for crypto functions.

Server authenticated WTLS full handshake measurements were done using 512 bit, 768

bit and 1024 bit RSA public keys, ECDH key agreement is not in the analysis scope.

They conclude the performance analysis with the finding that the crypto operation

bottleneck comes from private key operation performed at the server for server

authenticated WTLS handshake using RSA key exchange scheme.

Herwono and Liebhardt have done simulation-based performance measurements

of the WTLS protocol in [34]. They simulate the relevant protocols WTP [17], WTLS

[5] and WDP [18]. The benchmark software was coded using C/C++. Handshake

durations for four types of full handshake and one optimized handshake were compared.

The key exchange schemes considered are RSA, ECDH_ECDSA, ECDH_ECDSA

(optimized), RSA_anon and ECDH_anon. The key length of RSA types was chosen

1024 bit and ECC key length was chosen 160 bit respectively. They vary the effective

mean channel throughput from 1 kbit/s to 20 kbit/s. Handshake duration decreases up to

a point as the network throughput increases. Increase in the network throughput does

not affect the handshake duration after approximately 8-10 kbit/s. Systems with higher

network throughputs have the crypto operations processing time as an upper bound for

the handshake. On the other hand, the crypto operations processing time become

negligible for network throughputs lower than 5 kbit/s. The transmission time is

seriously a bottleneck for those types of systems.

29

Herwono and Liebhardt has a similar work that compares RSA_anon (2048 bit),

ECDH_anon (224 bit), RSA_anon (1024 bit), and ECDH_anon (160 bit) in [35]. As an

expected result, ECDH key agreement overall handshake durations are lower then RSA

equivalent ones.

Krishna et. al. [36] analyze the performance and architectural impact of SSL in

terms of throughput, number of processors, handshake frequency etc. Server public key

used is RSA 512 bit and private key encryption used is 128 bit RC4. They consider

three different cases for the SSL handshake. The first case is the SSL handshake

followed by a very small data transfer. The second case is the SSL handshake followed

by encrypted transfer of a huge size web page. The last case is the SSL handshake

followed by 36 KB(determined average web page size) web page transfer. Results of

the simulations show that the overall handshake duration is significantly higher for the

first case which shows that the number of handshake operations is a key factor for SSL

handshake performance.

Gupta et. al. present an estimation of the performance improvements that can be

expected in SSL protocol by adding ECC support in [37]. They modify the OpenSSL

[38] cryptographic library OpenSSL0.9.6.b to support ECDH, ECDSA and X.509

certificates with ECC parameters. The analytical model especially considers the

handshake crypto latency and server crypto throughput however they are also aware of

the extra delays due to message parsing, hashing and network latency. RSA (1024-2048

bit) and ECDH_ECDSA (163-193 bit) handshakes are compared in three cases. One of

these three cases is a client talking to an Ultra 80 server simulating a wireless web

scenario. They measure the performance of public key algorithms for RSA encrypt,

verify, decrypt and sign, ECDSA verify and sign operations and use these values at their

analytical model. The results show that 1024 bit RSA performs better than 163 bit ECC

curve while 193 bit ECC curve is faster then 2048 bit RSA for server authenticated SSL

handshake. ECDH key agreement is faster for both key sizes when mutual authenticated

SSL handshake is performed.

30

3. WTLS PERFORMANCE EVALUATION

The performance evaluation model includes three main factors that may be

bottleneck for the WTLS handshake protocol:

i. Processing time for all cryptographic operations and message parsing

operations performed during the handshake

ii. Queue delay due to the load on the WAP gateway

iii. Transmission time of the handshake messages

There are also some other sources of delay like parallel processes at the server or

client etc. that may effect the handshake duration but these are thought to be negligible

when considering the above three factors.

Mutual Authenticated WTLS Full Handshake and Server Authenticated WTLS

Full Handshake performance was considered separately and two different performance

models were proposed although the models conceptually have the same properties.

The overall handshake duration is modeled as:

 QDTDPDH TTTT ++= (3.1)

The notation used in Eq. (3.1) is defined in Table 3.1.

31

Symbol Meaning

HT Overall handshake duration

PDT Total processing delay of handshake messages

TDT Transmission delay of handshake messages

QDT Server queue delay

Table 3.1 Overall handshake duration notations

Performance model includes 48 cases, 24 of which is Mutual Authenticated and

the remaining 24 cases are Server Authenticated WTLS handshake. Three categories of

different security level have been considered. Each category includes four groups of the

same level of security. Cryptosystems that have the same level of security have been

given in Table 2.2. Three of the four groups in a category are ECDH_ECDSA key

exchange suites that use prime, Koblitz and random ECC curve parameters. The last

group contains the RSA key exchange suites that offer the same level of security

compared to the ECC curves in the same category. These categories and groups will be

referred wherever necessary in the performance model and analysis. CA certificate

public key parameter specifier and the corresponding client/server certificate public key

parameter specifier uniquely specify a key exchange suite. Available parameter

specifiers that will be used in the model are given in Table 3.2. Three categories and

corresponding four groups of each category are given in Table 3.3.

32

Public Key Type Parameter Specifier

ECC 1 (wtls7_160)

ECC 2 (nist163k)

ECC 3 (nist163r)

RSA 20 (RSA1024)

ECC 5 (nist224p)

ECC 6 (nist233k)

ECC 7 (nist233r)

RSA 21 (RSA2048)

ECC 8 (nist256p)

ECC 9 (nist283k)

ECC 10 (nist283r)

RSA 22 (RSA3072)

Table 3.2 Public key parameter specifiers

33

Category #

Group #

CA Certificate

parameter specifier

Client/Server

Certificate parameter

specifier

1 1 (wtls7_160) 1 (wtls7_160)

2 2 (nist163k) 2 (nist163k)

3 3 (nist163r) 3 (nist163r)

1

4 20 (RSA1024) 20 (RSA1024)

5 (nist224p) 1 (wtls7_160)

1 5 (nist224p) 5 (nist224p)

6 (nist233k) 2 (nist163k)

2 6 (nist233k) 6 (nist233k)

7 (nist233r) 3 (nist163r)

3 7 (nist233r) 7 (nist233r)

21 (RSA2048) 20 (RSA1024)

2

4 21 (RSA2048) 21 (RSA2048)

8 (nist256p) 1 (wtls7_160)

8 (nist256p) 5 (nist224p)

1

8 (nist256p) 8 (nist256p)

9 (nist283k) 2 (nist163k)

9 (nist283k) 6 (nist233k)

2

9 (nist283k) 9 (nist283k)

10 (nist283r) 3 (nist163r)

10 (nist283r) 7 (nist233r)

3

10 (nist283r) 10 (nist283r)

22 (RSA3072) 20 (RSA1024)

22 (RSA3072) 21 (RSA2048)

3

4

22 (RSA3072) 22 (RSA3072)

Table 3.3 Performance model categories and groups

The following three sections give the performance model for Mutual

Authenticated and Server Authenticated WTLS Full Handshake.

34

3.1. Processing Time Model

The performance model does not exclude the handshake messages that do not

contain any public key operation. Processing delays for both generating the message at

the client or server and processing of the message at the opposite side are considered.

Some of the handshake messages’ processing delays are expected to be almost

independent of the key exchange suite selected because of using the same algorithm for

any of the key exchange suite or messages do not contain any cryptography related

operations at all.

Depending on the key exchange suite selected, applicable handshake messages

will be different and processing time for those not applicable messages will be accepted

as 0 in the model to be able to give a common formula for RSA and ECDH_ECDSA

key exchange suites. Regardless of which one of the performance model categories or

groups are used, the processing time model is only based on whether it is mutual or

server authenticated WTLS handshake.

3.1.1. Mutual Authenticated WTLS Full Handshake

Mutual Authenticated WTLS Full Handshake time interval notations for each

handshake message are given in Table 3.4.

35

Symbol Meaning

CHCMT __ Client processing time for generating the Client.Hello message

SHCMT __ Client processing time for processing Server.Hello message

SCERTCMT __ Client processing time for processing the server certificate

CERTREQCMT __ Client processing time for processing the CertificateRequest

message

SHDCMT __ Client processing time for processing the ServerHelloDone

message

CCERTCMT __ Client processing time for generating the Client.Certificate

message

CKXCMT __ Client processing time for generating the ClientKeyExchange

message (message is sent iff RSA key exchange suite is used)

CERTVRFYCMT __ Client processing time for generating the CertificateVerify

message (applicable if RSA key exchange suite is used)

CCCSCMT __ Client processing time for generating the Client

ChangeCipherSpec message

CFINCMT __ Client processing time for generating the Client.Finished

message

SCCSCMT __ Client processing time for processing the Server

ChangeCipherSpec message

SFINCMT __ Client processing time for processing the Server.Finished

message

ECDHCMT __ Client processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSCMT __ Client processing time for computing the master secret from the

premaster secret

RSAENCCMT __ Client processing time for encryption operation using the

Server’s public key (applicable if RSA key exchange suite is

used)

CPDT _ Overall processing time for the client side

CHSMT __ Server processing time for processing the Client.Hello message

36

Symbol Meaning

SHSMT __ Server processing time for generating the Server.Hello message

SCERTSMT __ Server processing time for generating the Server.Certificate

message

CERTREQSMT __ Server processing time for generating the CertificateRequest

message

SHDSMT __ Server processing time for generating the ServerHelloDone

message

CCERTSMT __ Server processing time for processing the client certificate

CKXSMT __ Server processing time for processing the ClientKeyExchange

message

CERTVRFYSMT __ Server processing time for processing the CertificateVerify

message (applicable if RSA key exchange suite is used)

CCCSSMT __ Server processing time for processing the Client

ChangeCipherSpec message

CFINSMT __ Server processing time for processing the Client.Finished

message

SCCSSMT __ Server processing time for generating the Server

ChangeCipherSpec message

SFINSMT __ Server processing time for generating the Server.Finished

message

ECDHSMT __ Server processing time for ECDH operation (applicable if

ECDH_ECDSA key exchange suite is used)

MSSMT __ Server processing time for computing the master secret from

the premaster secret

RSADECSMT __ Server processing time for decryption operation using its own

private key (applicable if RSA key exchange suite is used)

SPDT _ Overall processing time for the server side

Table 3.4 Mutual authenticated WTLS full handshake performance model notations

Mutual Authenticated WTLS Full Handshake message flow is given in Table 3.5.

37

Client

Processing

Time

Message(Client)

Message(Server)

Server

Processing

Time

CHCMT __ ClientHello à
CHSMT __

SHCMT __ ß ServerHello
SHSMT __

SCERTCMT __ ß Certificate
SCERTSMT __

CERTREQCMT __ ß CertificateReq
CERTREQSMT __

SHDCMT __ ß ServerHelloDone
SHDSMT __

CCERTCMT __ Certificate à
CCERTSMT __

CKXCMT __ ClientKeyExchange

(if RSA)

à
CKXSMT __

CERTVRFYCMT __ CertificateVerify

(if RSA)

à
CERTVRFYSMT __

CCCSCMT __ ChangeCipherSpec à
CCCSSMT __

CFINCMT __ Finished à
CFINSMT __

SCCSCMT __ ß ChangeCipherSpec
SCCSSMT __

SFINCMT __ ß Finished
SFINSMT __

Table 3.5 Mutual authenticated WTLS full handshake message flow

Using the notation given up to here, the total processing delay of handshake

messages for Mutual Authenticated WTLS Handshake Protocol PDT can be given as the

sum of client side processing time and the server side processing time.

Client side processing time CPDT _ ;

38

CPDT _ = CHCMT __ + SHCMT __ + SCERTCMT __ + CERTREQCMT __ + SHDCMT __ + CCERTCMT __ +

CKXCMT __ + CERTVRFYCMT __ + CCCSCMT __ + CFINCMT __ + SCCSCMT __ +

SFINCMT __ + CHSMT __ (3.2)

Server side processing time SPDT _ ;

SPDT _ = SHSMT __ + SCERTSMT __ + CERTREQSMT __ + SHDSMT __ + CCERTSMT __ + CKXSMT __ +

CERTVRFYSMT __ + CCCSSMT __ + CFINSMT __ + SCCSSMT __ + SFINSMT __ (3.3)

Overall processing time PDT ;

PDT = SPDT _ + CPDT _ (3.4)

Although the model includes 24 additive components of the handshake processing

delays, some of these processing delays are expected to be more affective on the total

processing time. Those messages and operations that need special care are defined

below.

SCERTCMT __ : This is the client processing time for verifying the received server

certificate. Certificate verification operation is not bounded with the certificate signature

verification using the CA public key. Correctness and validity of the information in the

certificate must also be checked for. Subject of the certificate must match with the

previously known gateway identity, the issuer of the certificate must be the same with

the CA certificate’s subject, the certificate must not be used for any time interval that it

is not valid etc.

CCERTSMT __ : This is the server processing time for verifying the received client

certificate. Certificate verification process is the same as described for SCERTCMT __ .

39

CKXCMT __ : This message is sent only when the RSA key exchange scheme is used.

The premaster secret is set during preparation of this message so the master secret is

computed following this message regardless of the key exchange suite selected. If RSA

key exchange suite is used, premaster secret is encrypted using the gateway’s public key

derived from the gateway certificate(RSAENCCMT __).ECDH operation is performed to

compute the premaster secret (ECDHCMT __) if ECDH_ECDSA key exchange is used.

After computing the premaster secret, the client computes the master secret (MSCMT __)

as described in Section 2.5.

CKXSMT __ : If ECDH_ECDSA key exchange suite is used, all the computation is

identical with described for the client side CKXCMT __ . If RSA key exchange suite is used,

the server must perform a private key operation to decrypt the premaster secret which

was encrypted by the client using gateway’s RSA public key.

CERTVRFYCMT __ : Only performed when RSA key exchange suite is used.

CertificateVerify message’s objective is to explicitly verify the certificate of the client.

The client generates a hash value of all of the handshake messages prior to this one and

signs the hash value using its RSA private key with signing capability.

CERTVRFYSMT __ : This is the server processing time to verify the signature sent by

the client to the gateway in the CertificateVerify message. This operation includes a

public key signature verification operation.

CFINCMT __ , CFINSMT __ , SFINCMT __ , SFINSMT __ : These are the processing times

related to the generation and verification of the finished messages. Similar to the

CertificateVerify message, finished messages are also performed on the hash value of

all handshake messages prior to the corresponding message together with a finished

label and master secret. The (.)PRF described in Section 2.5 is used to generate and

verify the finish messages.

40

Typically due to the low computational power of the mobile clients, the

cryptographic operations performed at the client side are also expected to be much more

point of interest when considering the overall processing delay for Mutual

Authenticated WTLS Handshake. Especially CERTVRFYCMT __ is willing to be on the top

of the list because of the high cost private key operation performed on the resource

constrained client environment.

3.1.2. Server Authenticated WTLS Full Handshake

Server Authenticated WTLS Full Handshake time interval notations for each

handshake message are given in Table 3.6.

41

Symbol Meaning

CHCST __ Average client processing time for generating the Client.Hello

message

SHCST __ Average client processing time for processing Server.Hello

message

SCERTCST __ Average client processing time for processing the server

certificate

CERTREQCST __ Average client processing time for processing the

CertificateRequest message

SHDCST __ Average client processing time for processing the

ServerHelloDone message

CCERTCST __ Average client processing time for generating the

Client.Certificate message

CKXCST __ Average client processing time for generating the

ClientKeyExchange message

CCCSCST __ Average client processing time for generating the Client

ChangeCipherSpec message

CFINCST __ Average client processing time for generating the

Client.Finished message

SCCSCST __ Average client processing time for processing the Server

ChangeCipherSpec message

SFINCST __ Average client processing time for processing the

Server.Finished message

ECDHCST __ Average client processing time for ECDH operation (applicable

if ECDH_ECDSA key exchange suite is used)

MSCST __ Average client processing time for computing the master secret

from the premaster secret

RSAENCCST __ Average client processing time for encryption operation using

the Server’s public key (applicable if RSA key exchange suite

is used)

CHSST __ Average server processing time for processing the Client.Hello

message

SHSST __ Average server processing time for generating the Server.Hello

42

Symbol Meaning

message

SCERTSST __ Average server processing time for generating the

Server.Certificate message

CERTREQSST __ Average server processing time for generating the

CertificateRequest message

SHDSST __ Average server processing time for generating the

ServerHelloDone message

CCERTSST __ Average server processing time for processing the client

certificate

CKXSST __ Average server processing time for processing the

ClientKeyExchange message

CCCSSST __ Average server processing time for processing the Client

ChangeCipherSpec message

CFINSST __ Average server processing time for processing the

Client.Finished message

SCCSSST __ Average server processing time for generating the Server

ChangeCipherSpec message

SFINSST __ Average server processing time for generating the

Server.Finished message

ECDHSST __ Average server processing time for ECDH operation

(applicable if ECDH_ECDSA key exchange suite is used)

MSSST __ Average server processing time for computing the master secret

from the premaster secret

RSADECSST __ Average server processing time for decryption operation using

its own private key (applicable if RSA key exchange suite is

used)

Table 3.6 Server authenticated WTLS full handshake performance model notations

Server Authenticated WTLS Full Handshake message flow is given in Table 3.7.

43

Client

Processing

Time

Message(Client) Message(Server) Server

Processing

Time

CHCST __ ClientHello à
CHSST __

SHCST __ ß ServerHello
SHSST __

SCERTCST __ ß Certificate
SCERTSST __

CERTREQCST __ ß CertificateReq
CERTREQSST __

SHDCST __ ß ServerHelloDone
SHDSST __

CCERTCST __

Certificate

(includes no

certificate)

à

CCERTSST __

CKXCST __ ClientKeyExchange à
CKXSST __

CCCSCST __ ChangeCipherSpec à
CCCSSST __

CFINCST __ Finished à
CFINSST __

SCCSCST __ ß ChangeCipherSpec
SCCSSST __

SFINCST __ ß Finished
SFINSST __

Table 3.7 Server authenticated WTLS full handshake message flow

The total processing delay of handshake messages for Server Authenticated

WTLS Handshake Protocol PDT can be given as the sum of client side processing time

and the server side processing time.

Client side processing time CPDT _ ;

CPDT _ = CHCST __ + SHCST __ + SCERTCST __ + CERTREQCST __ + SHDCST __ + CCERTCST __ +

CKXCST __ + CCCSCST __ + CFINCST __ + SCCSCST __ + SFINCST __ (3.5)

Server side processing time SPDT _ ;

44

SPDT _ = CHSST __ + SHSST __ + SCERTSST __ + CERTREQSST __ + SHDSST __ + CCERTSST __ +

CKXSST __ + CCCSSST __ + CFINSST __ + SCCSSST __ + SFINSST __ (3.6)

Overall processing time PDT ;

PDT = SPDT _ + CPDT _ (3.7)

The model includes 22 additive components of the handshake processing delays.

Some of these processing delays are expected to be more affective on the total

processing time.

SCERTCST __ : This is the client processing time for verifying the received server

certificate. Certificate verification operation is not bounded with the certificate signature

verification using the CA public key. Correctness and validity of the information in the

certificate must also be checked for. Subject of the certificate must match with the

previously known gateway identity, the issuer of the certificate must be the same with

the CA certificate’s subject, the certificate must not be used for any time interval that it

is not valid etc.

CKXCST __ : This message is sent for both RSA and ECDH_ECDSA key exchange

suites. The premaster secret is set during preparation of this message so the master

secret is computed following this message regardless of the key exchange suite selected.

If RSA key exchange suite is used, premaster secret is encrypted using the gateway’s

public key derived from the gateway certificate (RSAENCCST __). ECDH operation is

performed to compute the premaster secret (ECDHCST __) If ECDH_ECDSA key

exchange suite is used. After computing the premaster secret, the client computes the

master secret (MSCST __) as described in Section 2.5.

CKXSST __ : If ECDH_ECDSA key exchange suite is used, all the computation is

identical with described for the client side CKXCST __ . If RSA key exchange suite is used,

45

the server must perform a private key operation to decrypt the premaster secret which

was encrypted by the client using gateway’s RSA public key.

CFINCST __ , CFINSST __ , SFINCST __ , SFINSST __ : These are the processing times

related to the generation and verification of the finished messages. Finished messages

are generated by using the hash value of all handshake messages prior to the

corresponding message together with a finished label and master secret. The (.)PRF

described in Section 2.5 is used to generate and verify the finish messages.

Typically due to the low computational power of the mobile clients, the

cryptographic operations performed at the client side are also expected to be much more

point of interest when considering the overall processing delay for Server Authenticated

WTLS Handshake.

3.2. Queue Delay Model

Queue delay is the time that a WTLS handshake message has to wait for the

service. Generally the queue delay depends on the number of servers, average service

time, and arrival rate. The server is modeled as an M/G/1 queue with the assumptions

given below:

1
)(

)(

generalG

memorylessM

:

:
:

[]
()1,

1,

,

<=

==

ρλρ

µ

λ

hasonequeuestableainXloadserverSingle

XxEmeanondistributitimeserviceGeneral

ratearrivalprocessarrivalPoisson

A simple representation of the queue delay components is given in Figure 3.1.

46

Figure 3.1 Server queue delay components

Server waiting time for a handshake message is the sum of mean time needed to

serve the customers ahead in the queue and unfinished work in the server. Eq. (3.8)

gives a general representation of the server waiting time. [39]

 [] [] []{ []{
serverthein

workunfinished

queuetheinaheadcustomers
theservetoneededtimemean

timeservicemean
customerswaiting

ofnumber

REXENqEWE +×=

44444 344444 21

321

(3.8)

We can express the mean queue length []NqE in terms of the waiting time []WE

as given in Eq. (3.9).

 [] []WENqE λ= (3.9)

Substituting Eq. (3.9)in Eq. (3.8);

[] [] [] []

[] []() []RExEWE

REXEWEWE

=−

+×=

λ

λ

1

We find:

 [] []
[]

[]
)1()1(ρλ −

=
−

=
RE

xE

RE
WE

(3.10)

47

Therefore, it remains to determine the unfinished work in the server []RE , to

represent the server waiting time []WE .

The residual service time []RE can be deduced by using Figure 3.2 which

represents the evolution of the unfinished work in the server, as a function of time.

Figure 3.2 Evolution of the unfinished work in the server

Consider a long interval of time t. The average value of the sawtooth curve in

Figure 3.2 can be calculated by dividing the sum of the areas of the triangles by the

length of the interva l.

 []
{

[]

[]
22

11
2
11

)(
1 2

2
1

1

2

1

2

2

XE
X

nt
n

X
t

tdtR
t

RE

XE

n

i
i

n

i
i

t

o

λ

λ

=××==′′= ∑∑∫
== 4 34 21

(3.11)

Substituting (3.11) in (3.10), we can derive the final function for the server

waiting time as given below.

 [] []
)1(2

2

ρ
λ

−
==

XE
WETQD

(3.12)

Where;

48

λ : Arrival rate

[] 22 XXE = : Second moment of service time

[]XEλρ = : Utilization (load) of the server

[] XXE = : Average service time

Eq. (3.12) which is in fact the P-K (Pollaczek-Khinchin) formula [39], will be

used to model the queue delay. Regarding which type of client/server certificate and CA

certificate has been used, average service time X and second moment of service time

2X changes. I will consider these values for different cases and interpret the queuing

delay as a function of arrival rate λ .

Queue delay is affected by only the messages which the server (WAP Gateway)

accepts. This is because the messages waiting to be served in the queue are the reason

for queue delay and those messages are only the incoming handshake messages coming

form the clients.

Processing time intervals that need to be considered for a mutual authenticated

WTLS handshake are given in Table 3.8.

49

Message(Client) Message(Server) Server Processing

Time

ClientHello à
CHSMT __

 ß ServerHello

 ß Certificate

 ß CertificateReq

 ß ServerHelloDone

Certificate à
CCERTSMT __

ClientKeyExchange

(if RSA)

à
CKXSMT __

CertificateVerify

(if RSA)

à
CERTVRFYSMT __

ChangeCipherSpec à
CCCSSMT __

Finished à
CFINSMT __

 ß ChangeCipherSpec

 ß Finished

Table 3.8 Mutual authenticated handshake message flow for queue delay analysis

Processing time intervals that need to be considered for a server authenticated

WTLS handshake are given in Table 3.9.

50

Message(Client) Message(Server) Server Processing

Time

ClientHello à
CHSST __

 ß ServerHello

 ß Certificate

 ß CertificateReq

 ß ServerHelloDone

Certificate

(includes no

certificate)

à

CCERTSST __

ClientKeyExchange à
CKXSST __

ChangeCipherSpec à
CCCSSST __

Finished à
CFINSST __

 ß ChangeCipherSpec

 ß Finished

Table 3.9 Server authenticated handshake message flow for queue delay analysis

Average service time X and the second moment of the service time 2X will be

presented as a function of the available handshake messages processing times for both

mutual authenticated and server authenticated WTLS full handshake.

For the mutual authenticated case,

()

)(

messagesapplicableofnumber

TTTTTT
X CFINSMCCCSSMCERTVRFYSMCKXSMCCERTSMCHSM +++++

=
(3.13)

()
)(

__
2

__
2

__
2

__
2

__
2

__
2

2

messagesapplicableofnumber
TTTTTT

X CFINSMCCCSSMCERTVRFYSMCKXSMCCERTSMCHSM +++++
=

(3.14)

=
4
6

)(messagesapplicableofnumber
if
if

ECDSAECDH

RSA
_

(3.15)

51

For the server authenticated case,

()
)(

messagesapplicableofnumber

TTTTT
X CFINSSCCCSSSCKXSSCCERTSSCHSS ++++

=
(3.16)

()
)(

__
2

__
2

__
2

__
2

__
2

2

messagesapplicableofnumber
TTTTT

X CFINSSCCCSSSCKXSSCCERTSSCHSS ++++
=

(3.17)

=
5
5

)(messagesapplicableofnumber
if
if

ECDSAECDH

RSA
_

(3.18)

The average service times will be presented in the terms of three possible service

times that may be used for a given group. Handshake messages processing times for

each one of the three possible key exchange suites specified by public key parameters

specifiers given in Table 3.3 will affect the average service time for the corresponding

handshake message depending on its ratio p .

Queue delay model will be proposed for category#3. The same logic applies for

the other categories with a slight change in the notation. Further analysis needs to

introduce new formulations :

 ccXccbcXbcacXacX TpTpTpT ,,,,,,,,, ++= (3.19)

 1,,, =++ ccbcac ppp (3.20)

Meanings of the symbols used in the above formulas are given in Table 3.10.

52

Symbol Meaning

XT Average service time for any of the applicable handshake messages for a

given group

acXT ,, Average service time for any of the applicable handshake messages for the

key exchange suite with the smallest public key size in a group.

bcXT ,, Average service time for any of the applicable handshake messages for the

key exchange suite with the intermediate public key size in a group.

ccXT ,, Average service time for any of the applicable handshake messages for the

key exchange suite with the highest public key size in a group.

acp , Ratio of the key exchange suite with the smallest public key size in a

group where ‘c’ represents the CA certificate public key parameter

specifier, and ‘a’ represents the client/server certificate public key

parameter specifier.

bcp , Ratio of the key exchange suite with the intermediate public key size in a

group where ‘c’ represents the CA certificate public key parameter

specifier, and ‘b’ represents the client/server certificate public key

parameter specifier.

ccp , Ratio of the key exchange suite with the highest public key size in a group

where ‘c’ represents the CA certificate public key parameter specifier and,

client/server certificate public key parameter specifier.

Table 3.10 Average service time formula notations

All the notation and formulas have been defined to present the queue delay

modeling. The next step will be to define the individual queue delay models for all

groups regarding mutual authenticated and server authenticated WTLS full handshake.

3.2.1. Category#3-Group#1 – Mutual Authentication

Queue delay model for category#3-group#1 mutual authenticated WTLS full

handshake will be given in this section.

53

CA certificate public key

parameter specifier

Client/Server certificate public

key parameter specifier

Expected Ratio

8 (nist256p) 1 (wtls7_160)
1,8p

8 (nist256p) 5 (nist224p)
5,8p

8 (nist256p) 8 (nist256p)
8,8p

Table 3.11 Category#3-Group#1

Using Eq. (3.13), Eq. (3.14) and Eq. (3.15), average services time and the

second moment of the service time can be interpreted as:

()

4
________ CFINSMCCCSSMCCERTSMCHSM TTTT

X
+++

=
(3.21)

 ()
4

__
2

__
2

__
2

__
2

2 CFINSMCCCSSMCCERTSMCHSM TTTT
X

+++
= (3.22)

Eq. (3.19) and Eq. (3.20) states that:

 8,8,__8,85,8,__5,81,8,__1,8__ CHSMCHSMCHSMCHSM TpTpTpT ++= (3.23)

 8,8,__8,85,8,__5,81,8,__1,8__ CCERTSMCCERTSMCCERTSMCCERTSM TpTpTpT ++= (3.24)

 8,8,__8,85,8,__5,81,8,__1,8__ CCCSSMCCCSSMCCCSSMCCCSSM TpTpTpT ++= (3.25)

 8,8,__8,85,8,__5,81,8,__1,8__ CFINSMCFINSMCFINSMCFINSM TpTpTpT ++= (3.26)

 18,85,81,8 =++ ppp (3.27)

QDT is computed using Eq. (3.12).

54

3.2.2. Category#3-Group#1 – Server Authentication

Queue delay model for category#3-group#1 server authenticated WTLS full

handshake will be given in this section.

CA certificate public key

parameter specifier

Server certificate public key

parameter specifier

Expected Ratio

8 (nist256p) 1 (wtls7_160)
1,8p

8 (nist256p) 5 (nist224p)
5,8p

8 (nist256p) 8 (nist256p)
8,8p

Table 3.12 Category#3-Group#1

Using Eq. (3.16), Eq. (3.17) and Eq. (3.18), average services time and the

second moment of the service time can be interpreted as:

()

5
__________ CFINSMCCCSSMCKXSSCCERTSSCHSS TTTTT

X
++++

=
(3.28)

()

5
__

2
__

2
__

2
__

2
__

2
2 CFINSMCCCSSMCKXSSCCERTSSCHSS TTTTT

X
++++

=
(3.29)

Eq. (3.19) and Eq. (3.20) states that:

 8,8,__8,85,8,__5,81,8,__1,8__ CHSSCHSSCHSSCHSS TpTpTpT ++= (3.30)

 8,8,__8,85,8,__5,81,8,__1,8__ CCERTSSCCERTSSCCERTSSCCERTSS TpTpTpT ++= (3.31)

 8,8,__8,85,8,__5,81,8,__1,8__ CKXSSCKXSSCKXSSCKXSS TpTpTpT ++= (3.32)

 8,8,__8,85,8,__5,81,8,__1,8__ CCCSSSCCCSSSCCCSSSCCCSSS TpTpTpT ++= (3.33)

55

 8,8,__8,85,8,__5,81,8,__1,8__ CFINSSCFINSSCFINSSCFINSS TpTpTpT ++= (3.34)

 18,85,81,8 =++ ppp (3.35)

QDT is computed using Eq. (3.12).

3.2.3. Category#3-Group#2 – Mutual Authentication

Queue delay model for category#3-group#2 mutual authenticated WTLS full

handshake will be given in this section.

CA certificate public key

parameter specifier

Client/Server certificate public

key parameter specifier

Expected Ratio

9 (nist283k) 2 (nist163k)
2,9p

9 (nist283k) 6 (nist233k)
6,9p

9 (nist283k) 9 (nist283k)
9,9p

Table 3.13 Category#3-Group#2

Using Eq. (3.13), Eq. (3.14) and Eq. (3.15), average services time and the

second moment of the service time can be interpreted as:

()

4
________ CFINSMCCCSSMCCERTSMCHSM TTTT

X
+++

=
(3.36)

 ()
4

__
2

__
2

__
2

__
2

2 CFINSMCCCSSMCCERTSMCHSM TTTT
X

+++
= (3.37)

Eq. (3.19) and Eq. (3.20) states that:

 9,9,__9,96,9,__6,92,9,__2,9__ CHSMCHSMCHSMCHSM TpTpTpT ++= (3.38)

56

 9,9,__9,96,9,__6,92,9,__2,9__ CCERTSMCCERTSMCCERTSMCCERTSM TpTpTpT ++= (3.39)

 9,9,__9,96,9,__6,92,9,__2,9__ CCCSSMCCCSSMCCCSSMCCCSSM TpTpTpT ++= (3.40)

 9,9,__9,96,9,__6,92,9,__2,9__ CFINSMCFINSMCFINSMCFINSM TpTpTpT ++= (3.41)

 19,96,92,9 =++ ppp (3.42)

QDT is computed using Eq. (3.12).

3.2.4. Category#3-Group#2 – Server Authentication

Queue delay model for category#3-group#2 server authenticated WTLS full

handshake will be given in this section.

CA certificate public key

parameter specifier

Server certificate public key

parameter specifier

Expected Ratio

9 (nist283k) 2 (nist163k)
2,9p

9 (nist283k) 6 (nist233k)
6,9p

9 (nist283k) 9 (nist283k)
9,9p

Table 3.14 Category#3-Group#2

Using Eq. (3.16), Eq. (3.17) and Eq. (3.18), average services time and the

second moment of the service time can be interpreted as:

()

5
__________ CFINSMCCCSSMCKXSSCCERTSSCHSS TTTTT

X
++++

=
(3.43)

57

 ()
5

__
2

__
2

__
2

__
2

__
2

2 CFINSMCCCSSMCKXSSCCERTSSCHSS TTTTTX ++++=
(3.44)

Eq. (3.19) and Eq. (3.20) states that:

 9,9,__9,96,9,__6,92,9,__2,9__ CHSSCHSSCHSSCHSS TpTpTpT ++= (3.45)

 9,9,__9,96,9,__6,92,9,__2,9__ CCERTSSCCERTSSCCERTSSCCERTSS TpTpTpT ++= (3.46)

 9,9,__9,96,9,__6,92,9,__2,9__ CKXSSCKXSSCKXSSCKXSS TpTpTpT ++= (3.47)

 9,9,__9,96,9,__6,92,9,__2,9__ CCCSSSCCCSSSCCCSSSCCCSSS TpTpTpT ++= (3.48)

 9,9,__9,96,9,__6,92,9,__2,9__ CFINSSCFINSSCFINSSCFINSS TpTpTpT ++= (3.49)

 19,96,92,9 =++ ppp (3.50)

QDT is computed using Eq. (3.12).

3.2.5. Category#3-Group#3 – Mutual Authentication

Queue delay model for category#3-group#3 mutual authenticated WTLS full

handshake will be given in this section.

58

CA certificate public key

parameter specifier

Client/Server certificate public

key parameter specifier

Expected Ratio

10 (nist283r) 3 (nist163r)
3,10p

10 (nist283r) 7 (nist233r)
7,10p

10 (nist283r) 10 (nist283r)
10,10p

Table 3.15 Category#3-Group#3

Using Eq. (3.13), Eq. (3.14) and Eq. (3.15), average services time and the

second moment of the service time can be interpreted as:

()

4
________ CFINSMCCCSSMCCERTSMCHSM TTTT

X
+++

=
(3.51)

 ()
4

__
2

__
2

__
2

__
2

2 CFINSMCCCSSMCCERTSMCHSM TTTT
X

+++
= (3.52)

Eq. (3.19) and Eq. (3.20) states that:

 10,10,__10,107,10,__7,103,10,__3,10__ CHSMCHSMCHSMCHSM TpTpTpT ++= (3.53)

 10,10,__10,107,10,__7,103,10,__3,10__ CCERTSMCCERTSMCCERTSMCCERTSM TpTpTpT ++= (3.54)

 10,10,__10,107,10,__7,103,10,__3,10__ CCCSSMCCCSSMCCCSSMCCCSSM TpTpTpT ++= (3.55)

 10,10,__10,107,10,__7,103,10,__3,10__ CFINSMCFINSMCFINSMCFINSM TpTpTpT ++= (3.56)

 110,107,103,10 =++ ppp (3.57)

QDT is computed using Eq. (3.12).

59

3.2.6. Category#3-Group#3 – Server Authentication

Queue delay model for category#3-group#3 server authenticated WTLS full

handshake will be given in this section.

CA certificate public key

parameter specifier

Server certificate public key

parameter specifier

Expected Ratio

10 (nist283r) 3 (nist163r)
3,10p

10 (nist283r) 7 (nist233r)
7,10p

10 (nist283r) 10 (nist283r)
10,10p

Table 3.16 Category#3-Group#3

Using Eq. (3.16), Eq. (3.17) and Eq. (3.18), average services time and the

second moment of the service time can be interpreted as:

()

5
__________ CFINSMCCCSSMCKXSSCCERTSSCHSS TTTTT

X
++++

=
(3.58)

 ()
5

__
2

__
2

__
2

__
2

__
2

2 CFINSMCCCSSMCKXSSCCERTSSCHSS TTTTTX ++++=
(3.59)

Eq. (3.19) and Eq. (3.20) states that:

 10,10,__10,107,10,__7,103,10,__3,10__ CHSSCHSSCHSSCHSS TpTpTpT ++= (3.60)

 10,10,__10,107,10,__7,103,10,__3,10__ CCERTSSCCERTSSCCERTSSCCERTSS TpTpTpT ++= (3.61)

 10,10,__10,107,10,__7,103,10,__3,10__ CKXSSCKXSSCKXSSCKXSS TpTpTpT ++= (3.62)

 10,10,__10,107,10,__7,103,10,__3,10__ CCCSSSCCCSSSCCCSSSCCCSSS TpTpTpT ++= (3.63)

60

 10,10,__10,107,10,__7,103,10,__3,10__ CFINSSCFINSSCFINSSCFINSS TpTpTpT ++= (3.64)

 110,107,103,10 =++ ppp (3.65)

QDT is computed using Eq. (3.12).

3.2.7. Category#3-Group#4 – Mutual Authentication

Queue delay model for category#3-group#4 mutual authenticated WTLS full

handshake will be given in this section.

CA certificate public key

parameter specifier

Client/Server certificate public

key parameter specifier

Expected Ratio

22 (RSA3072) 20 (RSA1024)
20,22p

22 (RSA3072) 21 (RSA2048)
21,22p

22 (RSA3072) 22 (RSA3072)
22,22p

Table 3.17 Category#3-Group#4

Using Eq. (3.13), Eq. (3.14) and Eq. (3.15), average services time and the

second moment of the service time can be interpreted as:

()
6

____________ CFINSMCCCSSMCERTVRFYSMCKXSMCCERTSMCHSM TTTTTT
X

+++++
=

(3.66)

 ()
6

__
2

__
2

__
2

__
2

__
2

__
2

2 CFINSMCCCSSMCERTVRFYSMCKXSMCCERTSMCHSM TTTTTT
X

+++++
= (3.67)

Eq. (3.19) and Eq. (3.20) states that:

 22,22,__22,2221,22,__21,2220,22,__20,22__ CHSMCHSMCHSMCHSM TpTpTpT ++= (3.68)

61

22,__22,2221,22,__21,2220,22,__20,22__ CCERTSMCCERTSMCCERTSMCCERTSM TpTpTpT ++=

(3.69)

 22,22,__22,2221,22,__21,2220,22,__20,22__ CKXSMCKXSMCKXSMCKXSM TpTpTpT ++= (3.70)

,__22,2221,22,__21,2220,22,__20,22__ CERTVRFYSMCERTVRFYSMCERTVRFYSMCERTVRFYSM TpTpTpT ++=

(3.71)

 22,22,__22,2221,22,__21,2220,22,__20,22__ CCCSSMCCCSSMCCCSSMCCCSSM TpTpTpT ++= (3.72)

22,22,__22,2221,22,__21,2220,22,__20,22__ CFINSMCFINSMCFINSMCFINSM TpTpTpT ++= (3.73)

 122,2221,2220,22 =++ ppp (3.74)

QDT is computed using Eq. (3.12).

3.2.8. Category#3-Group#4 – Server Authentication

Queue delay model for category#3-group#4 server authenticated WTLS full

handshake will be given in this section.

CA certificate public key

parameter specifier

Server certificate public key

parameter specifier

Expected Ratio

22 (RSA3072) 20 (RSA1024)
20,22p

22 (RSA3072) 21 (RSA2048)
21,22p

22 (RSA3072) 22 (RSA3072)
22,22p

Table 3.18 Category#3-Group#4

62

Using Eq. (3.16), Eq. (3.17) and Eq. (3.18), average services time and the

second moment of the service time can be interpreted as:

()

5
__________ CFINSMCCCSSMCKXSSCCERTSSCHSS TTTTT

X
++++

=
(3.75)

 ()
5

__
2

__
2

__
2

__
2

__
2

2 CFINSMCCCSSMCKXSSCCERTSSCHSS TTTTTX ++++=
(3.76)

Eq. (3.19) and Eq. (3.20) states that:

 22,22,__22,2221,22,__21,2220,22,__20,22__ CHSSCHSSCHSSCHSS TpTpTpT ++= (3.77)

 22,22,__22,2221,22,__21,2220,22,__20,22__ CCERTSSCCERTSSCCERTSSCCERTSS TpTpTpT ++= (3.78)

 22,22,__22,2221,22,__21,2220,22,__20,22__ CKXSSCKXSSCKXSSCKXSS TpTpTpT ++= (3.79)

 22,22,__22,2221,22,__21,2220,22,__20,22__ CCCSSSCCCSSSCCCSSSCCCSSS TpTpTpT ++= (3.80)

 22,22,__22,2221,22,__21,2220,22,__20,22__ CFINSSCFINSSCFINSSCFINSS TpTpTpT ++= (3.81)

 122,2221,2220,22 =++ ppp (3.82)

QDT is computed using Eq. (3.12).

3.3. Transmission Time Model

Data transmission time is a really complex part of the WTLS handshake protocol

performance modeling due to the different characteristics of available data bearer types

and existing of intermediate systems like BTS (Base Transceiver Station), BSC (Base

63

Station Controller), MSC (Mobile Services Switching Center), SGSN (Serving GPRS

Support Node), GGSN (Gateway GPRS Support Node) etc. servicing between the WAP

gateway and client.

Typically the data transmission time TDT can be computed by a simple formula

given below:

R
L

TTD =
(3.83)

Where;

L : Data length (in bits)

R : Channel transmission rate (bit/s)

TDT : Data transmission time

Eq. (3.83) is not sufficient for the WAP access transmission time computation

because it does not consider the extra time cost reasoning from the data bearer type.

Several works on WTP performance over the wireless channel ([40], [41], [42], [43])

has shown that the traversal delay of the GSM network is very affective on data

transmission time.

The WAP architecture requires sending an ACK (acknowledgement) packet to the

sending peer after receiving a WTP data packet. The time duration between the

transmission of the data packet and receipt of the ACK packet is defined as RTT

(Round Trip Time). The RTT value is the most important parameter that must be the

main consideration of the transmission time modeling.

The RTT value contains the data transmission time in addition to the traversal

delay of the GSM network. The data transmission time can easily be computed using Eq.

(3.83). The traversal delay varies for different data bearer types. It may also vary for

different GSM network providers, traffic load in the current GSM cell, etc. even using

the same data bearer as stated in [40].

64

Therefore, overall transmission delay for all of the groups of three categories can

be modeled as below:

 () traversalTD Tmessagesapplicableofnumber
R
L

T ××+= 2
(3.84)

The meaning of the symbols used in Eq. (3.84) is given in Table 3.19.

Symbol Meaning

L Total data length (in bits) including all the handshake messages and their

corresponding ACK packets

R Channel transmission rate (bit/s)

TDT Data transmission time (s)

traversalT One way traversal delay of the GSM network specific to the data bearer

and GSM service provider

Table 3.19 Transmission delay modeling formula notations

Two different data bearers have been considered in the data transmission time

model. These are GSM CSD and GPRS. It is necessary to grasp the architectural

components that cause the traversal delay in order to clearly understand the reasons of

this extra cost. Therefore, system architecture for WAP access using GSM CSD, and

GPRS is discussed below.

A typical GSM CSD network architecture has been given in Figure 3.4. There are

many GSM network components between the mobile station and the WAP Gateway.

GSM CSD is a circuit switched data bearer. The mobile station initiates a data call to a

specified GSM number which is connected to a dial-up modem. This is theoretically the

same way that a client connects to a RAS (Remote Access Server). Modem pool is

connected to the WAP Gateway. Therefore, there are many other interfaces between the

mobile station and the WAP Gateway. Each component’s function is briefly defined

next.

65

Figure 3.3 GSM CSD network architecture

MS: Mobile station is typically a cellular phone or PDA with GSM capabilities

BTS: The Base Transceiver Station handles the radio interface to the mobile

station by the means of transceiver and antennas. BTS defines a cell and communicates

with the clients within its cell.

BSC: The Base Station Controller manages the radio resources for one or more

BTSs. The BSC establishes the connection between the mobile stations and the Mobile

Switching Center (MSC).

MSC: The Mobile Services Switching Center manages the telephony switching

functions. It also handles the mobility management operations. Toll ticketing, network

interfacing, common channel signaling are other tasks of MSCs.

66

GMSC: The Gateway Mobile Services Switching Center is used to interconnect

MSCs.

Home Location Register (HLR), Visitor Location Register (VLR), Authentication

Center (AUC), and Equipment Identity Register (EIR) are the databases that are used for

the purpose of call control and network management.

Figure 3.4 gives a typical GPRS network system architecture. There are some

common components with the GSM CSD network like BTS, BSC, MSC and the

operational databases. Two new components specific to the GPRS network are Serving

GPRS Support Node (SGSN), and Gateway GPRS Support Node (GGSN).

Figure 3.4 GPRS network architecture

67

SGSN: The Serving GPRS Support Node routes the packet switched data to and

from the mobile station. It also performs mobility management, location management,

logical link management, authentication and charging for calls.

GGSN: The Gateway GPRS Support Node converts the GPRS packets coming

from the SGSNs into packet data protocol appropriate to the outside data network. Data

protocol used is usually IP or X.25. Similarly it converts the outside data network

packets to the GPRS packet format and forwards it to the corresponding SGSN which is

communicating with the Mobile Station.

System architectures for both GSM CSD and GPRS data bearer types have been

discussed up to here. It is obvious that there is no direct interface between the mobile

station and the WAP gateway. WAP architecture requires many format conversions to

be performed between the architectural components. This is the main reason for the

network traversal delay.

68

4. IMPLEMENTATION RESULTS

Timing measurements were performed using a Nokia Symbian 6.1 [44] phone,

Nokia 7650, as the client and open source Kannel Gateway [45] running on Cygwin

[46] as the WAP gateway. Crypto primitives and the WTLS Handshake Protocol [5]

were implemented using C++. Microsoft Visual Studio 6.0 has been used as the

development environment for both client and server sides, where Nokia’s Symbian 6.1

SDK was used to build the code for the ARM [47] processor of Nokia 7650. The

gateway (server) operating system was Microsoft Windows 2000 Advanced Server SP4

running on an Intel P4 2.4 GHz CPU and 1GB DDR RAM.

Three main factors on WTLS Handshake Protocol performance are considered.

These are:

i. Processing time at both client and server

ii. Server queue waiting time

iii. Handshake data transmission time over the GSM network

Client and server processing time model is given at Section 3.1. Processing time

for each handshake message appropriate to the selected handshake suite must be

measured to compute the overall handshake processing time PDT . Each handshake suite

has been performed for 15 times during the tests and the arithmetic mean of these 15

different values has been recorded as the average processing time for the corresponding

handshake message. 24 different cases for both mutual authenticated and server

authenticated WTLS handshake have been performed and the measured timing values

were used to compute the overall processing time for client (CPDT _) and server (SPDT _).

Detailed analysis of client and server processing time for a total of 48 test cases has

been given in Section 4.1.

69

Server queue delay model is given at Section 3.2. The server is modeled as an

M/G/1 queue and the average waiting time QDT for a key exchange suite can be

computed using (3.12). Server queue waiting time is strictly dependent on the average

processing time of each handshake message in the selected key exchange suite. The

queue delay model in conjunction with the measured timing values has been used to

compute QDT . Computations were done using Matlab 6.0 and analyzed in Section 4.2.

The data transmission delay TDT model is given in Section 3.3. TDT has been

computed by subtracting the total processing time PDT from the measured overall

handshake time. Then using the transmission delay model, the GSM service provider’s

traversal delay traversalT has been computed for the selected data bearer. Data

transmission delay analysis is given in Section 4.3.

4.1. Processing Time Analysis

Processing times of the client side and the server side has been measured for 24

mutual authenticated and 24 server authenticated WTLS handshake test cases. Each test

case differs by the CA certificate public key parameter specifier and the peers’

certificate public key parameter specifier. These test cases are in fact the three

categories defined in Section 3. Mutual authenticated WTLS handshake processing

times are given in Table 4.1 and server authenticated WTLS handshake processing

times are given in Table 4.2. Processing time analysis has been done using the timing

values given in these two tables and corresponding figures generated using these timing

values.

70

Category#

Group# CA Cert.

Client /Server

Cert.

Client

Processing

Time(ms)

Server

Processing

Time(ms)

1 160p 160p 745.65 10.57

2 163k 163k 502.74 24.48

3 163r 163r 489.01 24.01

1

 4 rsa1024 rsa1024 3780.40 45.86

224p 160p 1477.19 18.66 1

224p 224p 1860.47 22.52

233k 163k 733.85 36.85 2

233k 233k 886.93 43.61

233r 163r 758.14 38.04 3

233r 233r 885.57 46.11

rsa2048 rsa1024 5192.50 60.52

2

4

rsa2048 rsa2048 23567.50 264.69

256p 160p 2071.71 27.46

256p 224p 2441.38 29.55

1

256p 256p 2730.20 33.04

283k 163k 1207.24 58.48

283k 233k 1320.61 65.16

2

283k 283k 1552.83 75.92

283r 163r 1293.13 60.90

283r 233r 1372.31 67.33

3

283r 283r 1632.93 78.63

rsa3072 rsa1024 7678.87 78.40

rsa3072 rsa2048 26239.86 298.91

3

4

rsa3072 rsa3072 74109.11 891.53

Table 4.1 Mutual authenticated WTLS handshake overall processing times

71

Category#

Group# CA Cert. Server Cert.

Client

Processing

Time(ms)

Server

Processing

Time(ms)

1 160p 160p 738.95 3.85

2 163k 163k 501.89 8.42

3 163r 163r 485.63 12.51

1

 4 rsa1024 rsa1024 1006.78 36.99

224p 160p 1451.11 3.68 1

224p 224p 1853.71 7.90

233k 163k 724.86 8.77 2

233k 233k 861.78 14.70

233r 163r 759.96 9.31 3

233r 233r 884.06 26.76

rsa2048 rsa1024 2451.88 37.80

2

4

rsa2048 rsa2048 3925.60 240.39

256p 160p 2079.21 3.73

256p 224p 2470.75 7.97

1

256p 256p 2742.43 11.48

283k 163k 1206.30 8.50

283k 233k 1308.86 15.44

2

283k 283k 1552.11 25.86

283r 163r 1286.09 8.41

283r 233r 1368.78 15.61

3

283r 283r 1625.03 26.67

rsa3072 rsa1024 4935.73 38.37

rsa3072 rsa2048 6396.90 244.18

3

4

rsa3072 rsa3072 8815.48 871.41

Table 4.2 Server authenticated WTLS handshake overall processing times

Analyzing the processing times for the category#1, server processing times are

always lower than the client processing times as an expected result. Category#1-

group3(163 bit random curve) client side processing time is the lowest one among the

others for both server authenticated and mutual authenticated WTLS handshake. 163 bit

72

Koblitz curve is on the second and the 160 bit prime curve is the worst case for the

ECDH_ECDSA key exchange suites of Category#1 client side processing times.

Group#4(RSA 1024) key exchange is significantly slower when compared to the

ECDH_ECDSA key exchange suites in the same category. Server authenticated WTLS

handshake client processing time for the group#4 (RSA key exchange using 1024 bit

public key) is 1006.78 ms, where it is 485.63 ms for the group#3 (ECDH_ECDSA key

exchange using 163 bit random curve). Mutual authenticated WTLS handshake client

processing time for the group#4 is 3780.4 ms and it is 489.01 ms for the group#3.

Comparing the results for category#1 processing times of server authenticated and

mutual authenticated handshakes, it is clear tha t the ECDH_ECDSA key exchange

client processing times increase a little for the mutual authenticated WTLS handshake.

On the other hand, group#4 key exchange client processing time significantly increases

from 1006.78 ms to 3780.4 ms for the mutual authenticated WTLS handshake.

Measurements show that the processing times of category#1 behave different for

the server side. ECDH_ECDSA key exchange suites’ processing times are always lower

than the RSA key exchange but surprisingly the 160 bit prime curve which is the worst

case for the client side performs better than the other ECC curves for the server side.

Group#2 and group#3 server processing times are almost equal for the server

authenticated WTLS handshake, where group#2 performs 50% better than group#3 for

the mutual authenticated WTLS handshake. Another interesting concern is that the ratio

of the server side processing times for the server authenticated WTLS handshake is

significantly different. ECDH_ECDSA key exchange using 160 bit prime curve

performs in a total processing time of 3.85 ms, where 163 bit Koblitz curve performs in

8.42 ms, 163 bit random curve performs in 12.51 ms and 1024 bit RSA key exchange

suite performs in 36.99 ms. The ratios of the group#2(163 bit Koblitz curve),

group#3(163 bit random curve) and group#4(1024 bit RSA) processing times over

group#1(160 bit prime curve) processing time are 2.18, 3.24 and 9.6 respectively. The

ratios of the processing times are not that much for the client side. The same rule also

applies for the mutual authenticated WTLS handshake with the following ratios 2.31,

2.27 and 4.33 respectively.

73

Category#1 client processing times and server processing times for mutual

authenticated and server authenticated WTLS handshake cases are given in Figure 4.1

and Figure 4.2.

Client processing times for category#1 ECDH_ECDSA key exchange suites of

mutual authenticated and server authenticated WTLS handshakes are almost equal,

where the RSA key exchange suite processing time significantly increases for the

mutual authenticated WLS handshake as seen in Figure 4.1.

Figure 4.1 Category#1 client processing times

Server processing times for category#1 mutual authenticated WTLS handshake

are significantly higher then the server authenticated WTLS handshake groups’

processing times. Server authenticated and mutual authenticated handshake processing

times are compared in Figure 4.2.

74

Figure 4.2 Category#1 server processing times

Category#2 mutual authenticated and server authenticated WTLS handshakes

client and server processing times are given in Figure 4.3 and Figure 4.4 respectively.

Category#2 processing times have similar characteristic with category#1 but there

are also some slight changes. Generally speaking, group#4 (RSA key exchange suites)

handshakes always have more processing time when compared to the ECDH_ECDSA

ones. Comparing the certificates that offer the same level of security, the key exchange

suite that uses client certificate with 163 bit Koblitz curve parameters signed with 233

bit Koblitz curve private key has the lowest client processing time, where the client

certificate with 160 bit prime curve parameters signed with 224 bit prime curve private

key has the highest client processing time. Group#1 always has the highest client

processing times for both server authenticated and mutual authenticated WTLS

handshake. Meanwhile the client processing time when using client certificate with 233

bit random curve parameters signed with 233 bit random curve private key has only a

little more client processing time when compared to the client certificate with 233 bit

Koblitz parameters. Client processing time significantly increases when peers have

certificates that use 2048 bit RSA public key.

75

Figure 4.3 Category#2 client processing times

Similar to the category#1 handshakes, category#2 handshakes have the lowest

server processing times when using ECDH_ECDSA key exchange suites with prime

curve parameters.

Figure 4.4 Categor y#2 server processing times

76

Category#3 mutual authenticated and server authenticated WTLS handshakes

client and server processing times are given in Figure 4.5 and Figure 4.6.

Figure 4.5 Category#3 client processing times

Client processing times of category#3-group#4(RSA) handshakes always has the

highest value, where the group#2 (Koblitz curves) handshakes have the lowest client

processing times. Group#1 (prime curves) have the highest client processing time

among the other ECDH_ECDSA key exchange suites.

Server processing times of category#3-group#1(prime curves) has the lowest

value as it is the same case for category#1 and category#2 server processing times.

Server processing time with RSA 3072 bit public key certificates has the highest value.

It is also interesting that the server processing time has significantly high value for both

mutual authenticate and server authenticated WTLS handshake.

77

Figure 4.6 Category#3 server processing times

Comparison of the client and sever processing times for both mutual authenticated

and server authenticated WTLS handshakes has been given up to here. A more detailed

analysis that gives the processing time percentage for each handshake message fo r a

given category and group is given next.

Mutual authenticated WTLS handshake ECDH_ECDSA and RSA key exchange

suites client processing time percentages are given in Table 4.3 and Table 4.4. It is

obviously seen that there are two main operations for ECDH_ECDSA key exchange

suites and three main operations for RSA key exchange suites. SCERTCMT __ is 65%-87%

of overall client processing time and CKXCMT __ is 11%-34% of overall client processing

time for ECDH_ECDSA key exchange suites. This shows that two main handshake

messages for ECDH_ECDSA key exchange suites are ClientKeyExchange and

Certificate verification. ECDH operation is performed to compute the premaster secret.

Generation and processing of ClientKeyExchange message requires two operations one

which is ECDH operation in ECDHCMT __ ms and the other is computing the master

secret from the premaster secret in MSCMT __ ms. Measurements show that the ECDH

operation gets more than 99% of ClientKeyExchange message processing time

78

CKXCMT __ . Verifying the server certificate using the CA certificate and the ECDH

operation to compute the premaster secret are the two main operations that constitute

more than 98% of overall client processing time. Processing times for other handshake

messages seem to be negligible for the client side.

Considering the mutual authenticated RSA key exchange suites, we see three

handshake messages ClientKeyExchange, Server.Certificate and CertificateVerify that

have client processing time percentage of 13%-6%, 6%-57% and 35%-88% respectively.

These three messages’ client processing time constitutes more than 99% of the overall

client processing time and the other processing times can be neglected.

CertificateVerify message includes a private key operation, CERTVRFYCMT __ has the

biggest portion of the client processing time. ClientKeyExchange message processing

includes two main operations, the first one is the encryption of the premaster secret

using the server’s public key and the second operation is computing the master secret

from the premaster secret. The public key encryption time RSAENCCMT __ gets more than

99% of ClientKeyExchange message processing time CKXCMT __ . Therefore, we can say

that three main operations that form 99% of client processing time when using RSA key

exchange suites are verifying the server certificate using the CA certificate in

SCERTCMT __ , encrypting the premaster secret using the server certificate in RSAENCCMT __

ms and finally signing the hash value of the previous handshake messages using the

client private key in CERTVRFYCMT __ ms.

79

CA

Cert.

Client

Cert. Others CKXCMT __ CKXCM

ECDHCM

T

T

__

__
CKXCM

MSCM

T

T

__

__
SCERTCMT __

160p 160p 1.24 33.38 99.66 0.34 65.38

224p 160p 0.20 16.24 99.67 0.33 83.56

224p 224p 1.02 33.48 99.85 0.15 65.51

256p 160p 0.40 11.86 99.67 0.33 87.74

256p 224p 0.36 24.99 99.86 0.14 74.65

256p 256p 0.38 32.57 99.91 0.09 67.05

163k 163k 1.81 32.92 99.47 0.53 65.27

233k 163k 1.57 21.17 99.42 0.58 77.26

233k 233k 0.91 33.69 99.71 0.29 65.40

283k 163k 0.51 12.66 99.44 0.56 86.83

283k 233k 0.64 20.80 99.68 0.32 78.56

283k 283k 0.92 32.67 99.83 0.17 66.41

163r 163r 1.50 31.62 99.45 0.55 66.89

233r 163r 1.20 21.11 99.49 0.51 77.68

233r 233r 0.68 31.79 99.70 0.30 67.53

283r 163r 0.84 12.50 99.48 0.52 86.65

283r 233r 0.48 20.88 99.72 0.28 78.64

283r 283r 0.76 32.79 99.83 0.17 66.45

Table 4.3 Mutual authenticated WTLS handshake ECDH_ECDSA key exchange suites client

processing time percentages

CA

Cert.

Server

Cert. Others CKXCMT __

CKXCM

MSCM

T

T

__

__
CKXCM

RSAENCCM

T

T

__

__
SCERTCMT __

CERTVRFYCMT __

rsa1024 rsa1024 0.26 13.20 0.17 99.83 13.20 73.34

rsa2048 rsa1024 0.38 9.65 0.19 99.81 37.61 52.36

rsa2048 rsa2048 0.02 8.23 0.05 99.95 8.29 83.47

rsa3072 rsa1024 0.17 6.51 0.19 99.81 57.33 35.99

rsa3072 rsa2048 0.05 7.50 0.04 99.96 16.75 75.71

Rsa3072 rsa3072 0.02 5.97 0.02 99.98 5.94 88.08

Table 4.4 Mutual authenticated WTLS handshake RSA key exchange suites client processing

time percentages

80

Figure 4.7 gives the change in percentages of ECDH operation processing times,

and verification of server certificate processing times of the selected ECDH key

exchange suites for the client side. It is obviously seen that the processing time

percentage of ECDH operation increases as larger keys are used. CA certificate public

key type and the CA public key size are common for a given category. Therefore,

verification of the server certificate always requires the same key public key size to be

used. Thus the certificate verification operation processing time changes slightly as

larger keys are used. On the other hand, ECDH operation client processing time

percentage increases as larger keys are used for the mutual authenticated WTLS full

handshake.

Figure 4.7 Client processing time percentages of mutual authenticated ECDH key exchange

Mutual authenticated WTLS full handshake client processing time percentage

changes of RSA encryption, generation of certificate verify message and verification of

server certificate are given in Figure 4.8. RSA encryption client processing time

percentage changes slightly while the percentage of the private key operation to

generate the certificate verify message significantly increases as larger keys are used.

81

Figure 4.8 Client processing time percentages of mutual authenticated RSA key exchange

Mutual authenticated WTLS handshake ECDH_ECDSA and RSA key exchange

suites server processing time percentages are given in Table 4.5 and Table 4.6. Similar

to the client processing times for ECDH_ECDSA key exchange suites, ECDHSMT __ and

CCERTSMT __ constitute more than 95% of the server processing times for mutual

authenticated WTLS handshake. Computing the premaster secret by performing the

ECDH operation, and verification of the client certificate are two main components of

the server processing time for the mutual authenticated ECDH key exchange.

82

CA

Cert.

Client

Cert. Others CKXSMT __ CKXSM

ECDHSM

T

T

__

__
CKXSM

MSSM

T

T

__

__
CCERTSMT __

160p 160p 4.40 31.93 98.58 1.28 63.67

224p 160p 2.53 16.59 98.58 1.30 80.88

224p 224p 2.07 32.43 99.35 0.60 65.51

256p 160p 1.73 11.71 98.46 1.41 86.56

256p 224p 1.64 25.13 99.35 0.60 73.23

256p 256p 1.51 33.00 99.52 0.44 65.49

163k 163k 1.91 32.30 99.34 0.60 65.79

233k 163k 1.31 22.39 99.32 0.63 76.30

233k 233k 1.11 32.74 99.63 0.34 66.15

283k 163k 0.84 13.52 99.33 0.62 85.63

283k 233k 0.74 22.99 99.63 0.34 76.27

283k 283k 0.63 33.34 99.79 0.20 66.02

163r 163r 1.91 32.22 99.39 0.56 65.87

233r 163r 1.23 20.89 99.35 0.59 77.88

233r 233r 1.04 33.60 99.67 0.30 65.36

283r 163r 0.77 12.90 99.29 0.65 86.33

283r 233r 0.76 22.50 99.65 0.32 76.74

283r 283r 0.62 33.13 99.76 0.22 66.26

Table 4.5 Mutual authenticated WTLS handshake ECDH_ECDSA key exchange suites

server processing time percentages

Processing time percentages of the ECDH operation increase when larger keys are

used for a given category as shown in Figure 4.9.

83

Figure 4.9 Server processing time percentages of mutual authenticated ECDH key exchange

Server processing times for the RSA key exchange suites behave different than

the client side. There are again three main components, ClientKeyExchange message

processing in CKXSMT __ ms, verification of the client certificate in CCERTSMT __ ms and

CERTVRFYSMT __ in ms. CKXSMT __ has 64%-92% of overall server processing time,

CERTVRFYSMT __ and CCERTSMT __ is 4%-42% and 4%-10% of overall server processing

time. It is seen that the verification of CertificateVerify message does not have such a

big affect on server processing time as it does for the client side, but it is still one of

three messages to consider for the mutual authenticated WTLS handshake server

processing time. Server processing time percentages for the most significant

cryptographic operations are given in Figure 4.10.

84

CA

Cert.

Server

Cert. Others CKXSMT __
CKXSM

MSSM

T

T

__

__
CKXSM

RSADECSM

T

T

__

__
CCERTSMT __

CERTVRFYSMT __

rsa1024 rsa1024 1.47 79.28 0.14 99.84 9.63 9.62

rsa2048 rsa1024 1.17 64.03 0.15 99.83 27.07 7.72

rsa2048 rsa2048 0.36 87.38 0.02 99.97 6.14 6.13

rsa3072 rsa1024 0.97 47.36 0.14 99.84 46.02 5.65

rsa3072 rsa2048 0.33 81.88 0.02 99.97 12.25 5.54

rsa3072 rsa3072 0.13 91.68 0.01 99.99 4.11 4.08

Table 4.6 Mutual authenticated WTLS handshake RSA key exchange suites server

processing time percentages

Figure 4.10 Server processing time percentages of mutual authenticated RSA key exchange

Server authenticated WTLS handshake client processing times for

ECDH_ECDSA and RSA key exchange suites are given in Table 4.7 and Table 4.8

respectively. Similar to the mutual authenticated WTLS handshake client processing

85

times, the ECDH operation and verification of the server certificate are two affective

operations that constitute more than 98% of the client processing time. Namely

ECDHCST __ and SCERTCST __ are the most important two components of the server

processing time for server authenticated ECDH_ECDSA key exchange suites.

Server authenticated RSA key exchange suites do not use the CertificateVerify

message as it is the case for the mutual authenticated WTLS handshake. Two main

components of the client processing time for the server authenticated WTLS handshake

are encrypting the premaster secret in RSAENCCST __ ms and verifying the server

certificate in CCERTCST __ ms.

Client processing time percentages of the most significant handshake operations

for the server authenticated ECDH key exchange suites are given in Figure 4.11.

Figure 4.11 Client processing time percentages of server authenticated ECDH key exchange

86

Client processing time percentages of the most significant handshake operations

for the server authenticated RSA key exchange suites are given in Figure 4.12.

Figure 4.12 Client processing time percentages of mutual authenticated RSA key exchange

87

CA

Cert.

Server

Cert. Others CKXCST __ CKXCS

ECDHCS

T

T

__

__
CKXCS

MSCS

T

T

__

__
SCERTCST __

160p 160p 1.13 33.11 99.66 0.34 65.76

224p 160p 0.46 16.49 99.66 0.34 83.05

224p 224p 0.48 33.25 99.87 0.13 66.26

256p 160p 0.37 11.84 99.66 0.34 87.78

256p 224p 0.35 25.03 99.86 0.14 74.62

256p 256p 0.35 32.50 99.91 0.09 67.15

163k 163k 2.09 32.90 99.48 0.52 65.01

233k 163k 0.90 21.36 99.44 0.56 77.74

233k 233k 0.65 32.11 99.71 0.29 67.24

283k 163k 0.95 12.57 99.42 0.58 86.49

283k 233k 0.45 20.85 99.68 0.32 78.70

283k 283k 0.60 32.82 99.80 0.20 66.59

163r 163r 2.22 31.62 99.41 0.59 66.16

233r 163r 0.67 21.20 99.49 0.51 78.13

233r 233r 0.55 31.84 99.70 0.30 67.60

283r 163r 0.59 12.54 99.48 0.52 86.87

283r 233r 0.71 20.85 99.71 0.29 78.44

283r 283r 0.56 32.89 99.84 0.16 66.55

Table 4.7 Server authenticated WTLS handshake ECDH_ECDSA key exchange suites client

processing time percentages

CA

Cert.

Server

Cert. Others CKXCST __ CKXCS

MSCS

T

T

__

__
CKXCS

RSAENCCS

T

T

__

__
SCERTCST __

rsa1024 rsa1024 1.23 49.47 0.17 99.83 49.30

rsa2048 rsa1024 0.41 20.29 0.18 99.82 79.30

rsa2048 rsa2048 0.35 49.87 0.04 99.96 49.78

rsa3072 rsa1024 0.22 10.13 0.20 99.80 89.66

rsa3072 rsa2048 0.15 30.83 0.05 99.95 69.02

rsa3072 rsa3072 0.10 50.05 0.02 99.98 49.85

Table 4.8 Server authenticated WTLS handshake RSA key exchange suites client processing

time percentages

88

Server processing times for Server authenticated WTLS handshake using

ECDH_ECDSA key exchange suites have only one main component. That is the ECDH

operation performed in ECDHSST __ ms. Server processing time percentages of the

handshake messages for server authenticated WTLS handshake are given in Table 4.9.

89

CA

Cert.

Server

Cert. Others CKXSST __ CKXSS

ECDHSS

T

T

__

__
CKXSS

MSSS

T

T

__

__

160p 160p 11.81 88.19 98.32 1.48

224p 160p 12.41 87.59 98.30 1.51

224p 224p 6.10 93.90 99.21 0.69

256p 160p 12.31 87.69 98.21 1.58

256p 224p 5.95 94.05 99.22 0.68

256p 256p 4.11 95.89 99.46 0.47

163k 163k 5.33 94.67 99.28 0.64

233k 163k 5.15 94.85 99.32 0.60

233k 233k 3.20 96.80 99.60 0.35

283k 163k 5.53 94.47 99.29 0.62

283k 233k 3.06 96.94 99.61 0.34

283k 283k 1.84 98.16 99.77 0.20

163r 163r 4.51 95.49 99.36 0.57

233r 163r 5.06 94.94 99.33 0.59

233r 233r 2.33 97.67 99.67 0.30

283r 163r 5.45 94.55 99.28 0.62

283r 233r 3.02 96.98 99.60 0.34

283r 283r 1.83 98.17 99.77 0.20

Table 4.9 Server authenticated WTLS handshake ECDH_ECDSA key exchange suites server

processing time percentages

Server processing time percentages of individual handshake messages for server

authenticated WTLS handshake using RSA key exchange suites are given in Table 4.10.

It is obvious that the decryption of the premaster secret using the server private key is

the biggest portion of the server processing time.

90

CA

Cert.

Server

Cert Others CKXSST __ CKXSS

MSSS

T

T

__

__
CKXSS

RSADECSS

T

T

__

__

rsa1024 rsa1024 1.71 98.29 0.14 99.84

rsa2048 rsa1024 1.83 98.17 0.14 99.84

rsa2048 rsa2048 0.42 99.58 0.03 99.96

rsa3072 rsa1024 1.88 98.12 0.15 99.83

rsa3072 rsa2048 0.42 99.58 0.02 99.97

rsa3072 rsa3072 0.16 99.84 0.01 99.99

Table 4.10 Server authenticated WTLS handshake RSA key exchange suites client

processing time percentages

4.2. Queue Delay Analysis

Mutual authenticated and server authenticated WTLS handshake server queue

delay analysis for Category#3 key exchange suites have been given in this section. The

queue delay model is given in Section 3.2. The queue delay model has been

implemented in Matlab 6.0 and the measured timing values have been used to generate

the estimated server queue delays.

The queue delay strictly depends on the server processing time of the

corresponding handshake messages. Server processing times for each category has been

analyzed in Section 4.1. All of the four groups of category#3 include three possible key

exchange suites with corresponding ratios. Five different ratios have been considered

during the queue delay analysis. The upper limit for the arrival rate of the handshake

requests is 100 handshake requests per second. Legends in all queue delay figures are in

ascending order of queue delay performance from up to down.

Server queue delays for category#3-group#1 key exchange suites have been given

in Figure 4.13. The utilization of the server does not reach to 1 for any of the considered

five ratios. The key exchange suite using client/server certificates with 160 bit prime

curve parameters signed by CA certificate with 256 bit prime curve parameters have the

91

highest queue waiting delay because this case has the highest processing time among

the other cases. On the other hand, the server queue delay is in acceptable ranges for

any of the considered cases.

Figure 4.13 Category#3-Group#1 server queue delays(mutual authentication)

Server queue delays for category#3-group#2 key exchange suites have been given

in Figure 4.14. Average server processing time increases for the group#2 key exchange

suites which contain certificates with Koblitz curve parameters. Average server queue

waiting time increases up to 150-160 ms for 72 handshake requests per second. The

utilization of the server is equal to 1 for the systems with arrival rate higher than 72.

Therefore, 72 is the practical upper limit when category#3-group2 key exchange suites

are used. The server queue waiting time asymptotically increases after 72 handshake

requests per second.

92

Figure 4.14 Category#3-Group#2 server queue delays(mutual authentication)

Figure 4.15 Category#3-Group#3 server queue delays(mutual authentication)

93

Figure 4.15 shows the server queue delays for category#3-group#3 key exchange

suites. Similar to the group#2, 72 handshake requests per second is the upper limit for

those types of systems and the queue waiting time goes up to 230 ms for the worst case.

Server queue waiting times for category#3-group4 is much more interesting then

the other groups. Group#4 contains RSA certificates. As an expected result the case

with the lowest processing time must have the lowest server queue waiting time. Queue

delays for category#3-group4 key exchange suites with different ratios are given in

Figure 4.16.

Figure 4.16 Category#3-Group#4 server queue delays(mutual authentication)

Client/server certificates containing 1024 bit RSA public key signed by CA 3072

bit RSA certificate is the best option to use. This case has 71 handshake requests per

second as an upper limit with the queue waiting time around 146 ms. The case with

50% RSA 1024 certificates and the remaining 50% RSA 2048 certificates is the second

case that has a good queue waiting delay characteristics. The upper limit for the

94

handshake requests arrival rate is 25 with an average queue waiting time of 165 ms. As

the ratio of the RSA 3072 client/server certificates increase, the upper limit for the

handshake requests arrival rate decreases and comes to an un acceptable level for the

case, where all the client/server certificates have 3072 bit RSA public key. The server

can not serve more than one handshake request per second in an acceptable queue

waiting time range. This is because of the extremely high server processing times when

certificates with 3072 bit RSA public key are used.

A comparison of the category#3 groups’ server queue delay values have been

given for selected ratios in Figure 4.17, Figure 4.18 and Figure 4.19. Group#2, group#3

and group#4 key exchange suites have similar queue delay characteristics, where the

group#1 is significantly better for both average queue waiting time and the upper limit

for the arrival rate of handshake requests per second for the first case in Figure 4.17.

Members of the groups that are compared offer the same level of security. This shows

that certificates with 160 bit prime curve parameters have a better queue delay

performance when compared to 163 bit Koblitz curve, 163 bit random curve or 1024 bit

RSA. More than a better server queue waiting time, prime curve systems do not have

bottleneck reasoning from the queue delays, where the other alternatives can not serve

more than 70 handshake request per second on the average.

Figure 4.18 compares the queue delay characteristics of the category#3 groups

with 224 bit prime curve, 233 bit Koblitz curve, 233 bit random curve and 2048 bit

RSA. ECDH_ECDSA key exchange suites’ queue delay characteristics change slightly,

where the RSA key exchange suite has a significant change that it can serve a maximum

of 14 handshake requests per second with a 180 ms queue delay for the worst case. The

queue delay grows asymptotically for arrival rates bigger than 14 handshake requests

per second.

Wee can see the more dramatic change of server queue delay characteristics in

Figure 4.19 when using certificates with 3072 bit RSA certificates. Use of 3072 bit RSA

certificates seems like not practical to offer the same level of security using ECC

certificates with 256 bit prime curve, 283 bit Koblitz curve or 283 bit random curve

parameters.

95

Figure 4.17 Category#3 groups server queue delays-1 (mutual authentication)

Figure 4.18 Category#3 groups server queue delays-2 (mutual authentication)

96

Figure 4.19 Category#3 groups server queue delays-3 (mutual authentication)

Server queue delays for server authenticated WTLS handshake key exchange

suites will be analyzed next. Server queue delays for ECDH_ECDSA key exchange

suites of group#1, group#2 and group#3 are given in Figure 4.20, Figure 4.21 and

Figure 4.22 respectively. It is no use to analyze the server queue delay in detail for

different ratios of ECC certificates for server authenticated WTLS handshake because

the average waiting time is extremely small for all the cases (with a degree of ms510−).

This is due to the low processing times of ECDH_ECDSA key exchange suites at the

server side.

97

Figure 4.20 Category#3-Group#1 server queue delays(server authentication)

Figure 4.21 Category#3-Group#2 server queue delays(server authentication)

98

Figure 4.22 Category#3-Group#3 server queue delays(server authentication)

It is not the same perfect case as in ECDH_ECDSA key exchange suites for the

server authenticated WTLS handshake when using RSA key exchange suites. Figure

4.23 shows the average queue delays for category#3-group4 key exchange suites. The

server queue delay behavior of group#4 is similar to the case in the mutual

authenticated WTLS handshake but with a better performance. Server certificate

containing 1024 bit RSA certificate has the best queue delay performance. The queue

delay is extremely low when compared to other alternatives. The case with 50% RSA

1024 certificates and 50% RSA 2048 certificates can serve 33 handshake requests per

second with the average queue delay of 620 ms for the worst case. The queue delay

asymptotically increases for a higher arrival rates. As an expected result, the case that

uses purely 3072 bit RSA server certificates has the worst queue delay performance.

Such a system has an upper limit of 6 requests per second with a queue delay of 3000

ms for the worst case.

99

Figure 4.23 Category#3-Group#4 server queue delays(server authentication)

As a general result, the server queue delay becomes a really big bottleneck for

both server authenticated and mutual authenticated WTLS handshakes as the server side

processing time increases.

4.3. Data Transmission Time Analysis

Data transmission time analysis has been performed for two data bearer systems.

These are GSM CSD (Global System for Mobile Communication Circuit Switched

Data) and GPRS (General Packet Radio Service) data bearers. Tests have been

performed using the GSM CSD data bearer. In this way, measured data transmission

times have been given and the average traversal delay for this bearer type has been

computed. WTLS handshake protocol could not be run over GPRS bearer because of

GSM service provider restrictions on the use of GPRS. Therefore, traversal delay for the

100

GPRS bearer has been measured by using a different testbed which is detailed in

Section 4.3.2.

The corresponding data size (in bits) of each key exchange suite tested has been

given in Table 4.11.

CA Cert.

Client/Server

Cert.

Mutual Authentication

Data Size

Server Authentication

Data Size

160p 160p 1515 1362

163k 163k 1519 1366

163r 163r 1519 1366

rsa1024 rsa1024 2231 1522

224p 160p 1543 1376

224p 224p 1575 1408

233k 163k 1551 1382

233k 233k 1587 1418

233r 163r 1555 1384

233r 233r 1591 1420

rsa2048 rsa1024 2487 1650

rsa2048 rsa2048 2999 1906

256p 160p 1559 1384

256p 224p 1591 1416

256p 256p 1607 1432

283k 163k 1579 1396

283k 233k 1615 1432

283k 283k 1639 1456

283r 163r 1579 1396

283r 233r 1615 1432

283r 283r 1639 1456

rsa3072 rsa1024 2743 1778

rsa3072 rsa2048 3255 2034

rsa3072 rsa3072 3767 2290

Table 4.11 Total data sizes for selected test cases (bytes)

101

4.3.1. Data Transmission Time Analysis for GSM CSD Bearer

Data transmission time has been computed by subtracting the total processing

time for both peers from the overall handshake time. Data transmission time model was

given in Section 3.3. Using the measured timing values, traversal delay of the test

network can be found from Eq. (3.84).

 () traversalTD Tmessagesapplicableofnumber
R
L

T ××+= 2
(3.84)

GSM CSD data rate is 9600 bps. So;

bpsL 9600=

Measured data transmission times for each test case have been given in Table 4.12.

Therefore, we can compute the average traversal delay for the GSM CSD bearer.

102

CA Cert.

Client/Server

Cert. AUTHMUTUALTDT __ AUTHSERVERTDT __

160p 160p 4913.392 4952.402

163k 163k 4881.769 4722.283

163r 163r 5058.279 4924.011

rsa1024 rsa1024 5211.954 4344.448

224p 160p 5121.961 5093.972

224p 224p 4961.851 5105.81

233k 163k 4851.545 4962.061

233k 233k 4851.896 4989.211

233r 163r 4942.727 5083.323

233r 233r 4880.029 5047.458

rsa2048 rsa1024 5033.226 4522.1

rsa2048 rsa2048 5063.435 5204.466

256p 160p 5121.502 5164.236

256p 224p 4906.531 5144.932

256p 256p 5242.198 5133.612

283k 163k 5164.529 4930.2

283k 233k 5247.338 4926.873

283k 283k 5054.285 5138.207

283r 163r 5039.547 4905.654

283r 233r 6750.748 5023.451

283r 283r 4966.507 5451.005

rsa3072 rsa1024 5149.138 4499.576

rsa3072 rsa2048 5327.293 5103.475

rsa3072 rsa3072 5008.471 4930.346

Table 4.12 Transmission delays for GSM CSD bearer (ms)

Number of applicable messages is given below:

=

5

4
6

)(messagesapplicableofnumber

ECDSAECDHorRSAenticatedServerAuthif
ECDSAECDHenticatedMutualAuthif

RSAenticatedMutualAuthif

_
_

103

All the values needed have been given up to here, then Eq. (4.1) can be used to

compute the traversal delays.

 ()messagesapplicableofnumber
R
L

T
T

TD

traversal 2

 −

=

(4.1)

Eq. (4.1) has been implemented in Matlab 6.0 and traversalT was found with the

following properties:

Expected value of traversalT = 391.3 ms

Standard deviation of traversalT = 90 ms

Average number of applicable messages is 5 for the selected handshake types.

Round Trip Time (RTT) of a handshake message includes transmission of the

corresponding ACK packets. Therefore, the average number of packets that traverse

through the network is twice the number of handshake messages. The overall data

transmission delay TDT is 5042.8 ms on the average, approximately

msx 3913103.391 = of the average transmission delay comes from the

traversal delay of the GSM network for the selected data bearer type GSM CSD. The

transmission delay coming from the traversal delays of the network is %76 of the

overall data transmission time on the average. This shows that the number of handshake

messages for a given key exchange suite is more significant than the data size, on the

overall handshake duration for GSM CSD data bearer systems.

4.3.2. Data Transmission Time Analysis for GPRS Bearer

Data transmission time for the GPRS bearer is predicted analytically by using the

timing data gathered from the performance tests over GPRS bearer. Figure 4.24

represents the testbed used. We need to investigate the data rates for download (from

server to client) and upload (form client to server) operations, and traversal delay of the

104

GPRS network. 7 different time slots are selected to perform the tests. These are 12 PM,

2 PM, 4 PM, 6 PM, 8 PM, 10 PM, and 12 AM. Data rates and network traversal delays

are measured at these hours. Dial-up networking monitor v2.1 program is used to get

the data rate information. A test file of 500 KB size is uploaded to and downloaded

from a server on Internet to learn the data rates. Then the ping program is used to learn

the RTT values. Traversal delay is computed by using the data transmission rates and

RTT values. Performance tests are explained in detail below.

500 KB test file is uploaded to the Internet server and the average upload data rate

is measured for each selected time slot. The same test file is downloaded from the

Internet server and the average download rate is measured for each of 7 seven time slot.

As mentioned before, ping program was used to measure the RTT values. “ping –n 100

GatewayIP” command is run from a laptop with Windows XP operating system. A

hundred ping requests is sent to the server and the client waits for the reply. Average

RTT values are learned from the ping results. Laptop is connected with an IR (Infrared)

link to the mobile client’s internal modem. Data rate of the IR link between the mobile

client and laptop is 916 kbps, therefore it is assumed that the IR link does not cause an

extra delay.

Figure 4.24 GPRS performance evaluation testbed

Measured data transmission rates are given in Table 4.13 for each time slot. These

data rates will be used to compute average traversal delays.

105

Time Slot Upload Rate (Kbps) Download Rate (Kbps)

12 PM 10.5 18.77

2 PM 11.2 18.96

4 PM 10.99 10.42

6 PM 10.92 16.3

8 PM 11.33 19.0

10 PM 12.59 28.68

12 AM 12.76 28.89

Table 4.13 Data rates for selected cases

The GSM Service Provider configured the GPRS bearer using the CS-2 coding

scheme. Therefore the theoretical data rate for one GPRS channel (time slot) is 14.4

kbps. Nokia 7650 uses one time slot for upload and three time slots for download

operations. So, 14.4 kbps is theoretically the maximum data rate for upload operations,

and it is 43.2 kbps for download operations. On the other hand, the practical results

measured for the test network are given in Table 4.13. We see that the average values of

the data rates significantly change during the day. Especially the download data rate is

much lower than theoretical maximum value during the busy hours of the day.

The second phase is to analyze the ping RTT values. RTT for the ping request and

reply includes the transmission of the 64 byte ping request to the server, traversal delay

form the mobile client to the WAP gateway, transmission of the 64 byte ping reply from

the server to the mobile client, and traversal delay from the WAP gateway to the mobile

client. Assuming that the traversal delay is similar for both directions as stated in the

data transmission time model in Section 3.3, we can say that the RTT value is composed

of the download and upload time for the 64 byte ping request/reply, and two times the

traversal delay.

Measured RTT values for each time slot are given in Figure 4.25 through Figure

4.31 correspondingly.

106

Figure 4.25 RTT values measured at 12 PM (average = 761.8 ms)

Figure 4.26 RTT values measured at 2 PM (average = 737.3 ms)

Figure 4.27 RTT values measured at 4 PM (average = 805.9 ms)

Figure 4.28 RTT values measured at 6 PM (average = 778.9 ms)

107

Figure 4.29 RTT values measured at 8 PM (average = 805.9 ms)

Figure 4.30 RTT values measured at 10 PM (average = 743.1 ms)

Figure 4.31 RTT values measured at 12 AM (average = 710.1 ms)

We compute the traversal delay by using Eq. (4.2).

 ×
−

×
−×=

uploaddownload
RTTtraversal RR

TT
864864

2
1

(4.2)

Where;

108

traversalT : One-way traversal delay of the GPRS network

RTTT : Ping RTT value (average value for the considered time slot)

downloadR : Data rate from the server to the client

uploadR : Data rate from the client to the server

Eq. (4.2) has been implemented in Matlab 6.0 and using the data rate information

given in Table 4.13, traversal delays have been plotted for each case in Figure 4.32

through Figure 4.38.

Traversal delay characteristics for each time slot are summarized in Table 4.14.

We see that the average value for the traversal delay is between approximately 350 ms

to 400 ms for the selected test cases. It is important to remark that (i) the standard

deviation of the traversal delay is significantly high and, (ii) it is always possible to face

with high traversal delays throughout the day.

Time Slot Traversal Delay Mean

Value (ms)

Traversal Delay Standard

Deviation (ms)

12 PM 376.1 141.2

2 PM 364.1 115.8

4 PM 397.0 213.9

6 PM 384.5 175.7

8 PM 398.4 213.9

10 PM 367.9 151.4

12 AM 351.4 120.1

Table 4.14 Traversal delay characteristics for test cases

109

Figure 4.32 Traversal Delays measured at 12 PM (average = 376.1 ms)

Figure 4.33 Traversal Delays measured at 2 PM (average = 364.1 ms)

Figure 4.34 Traversal Delays measured at 4 PM (average = 397.0 ms)

Figure 4.35 Traversal Delays measured at 6 PM (average = 384.5 ms)

110

Figure 4.36 Traversal Delays measured at 8 PM (average = 398.4 ms)

Figure 4.37 Traversal Delays measured at 10 PM (average = 367.9 ms)

Figure 4.38 Traversal Delays measured at 12 AM (average = 351.4 ms)

4.3.3. Comparison of GSM CSD and GPRS Data Transmission Times

GPRS is generally known to be a superior to GSM CSD bearer when comparing

the data rates and pricing. Indeed, GPRS data rates are higher than GSM CSD. However,

111

this data rate advantage can not be realized for the WTLS handshake protocol. This is

because of the high valued network traversal delay for both GSM CSD and GPRS

bearers. High data rates become an advantage when downloading higher data sizes but

there is only a slight change in the data transmission time for WTLS handshake protocol

due to the small sized handshake messages. Traversal delays for both bearer types are

compared in Table 4.15.

Bearer Traversal Delay

Mean Value (ms)

Traversal Delay Standard

Deviation (ms)

GSM CSD 391.3 90.0

GPRS (worst case) 398.4 213.9

GPRS (average case) 376.1 141.2

GPRS (best case) 351.4 120.1

Table 4.15 Comparison of traversal delays for GSM CSD and GPRS bearers

Network traversal delay values are similar for both data bearer types. Data

transmission time is significantly determined by this high valued network specific delay

rather than the data rate of the bearer. Therefore, decreasing the number of round trips is

much more effective on the data transmission time. Therefore, it is possible to minimize

the number of round trips by combining the consecutive handshake messages where it is

appropriate. The WTLS standard [5] implies that the server handshake messages

starting from the server hello message to the server hello done message can be

combined in one lower layer message. Retrieving the client certificate from an external

certificate store instead of the client itself also decrease the number of round trips over

the GSM network between the client and the server.

4.4. Overall Handshake Time Analysis

WTLS handshake protocol overall handshake time was modeled considering three

main factors, which were:

i. Client and server processing times

112

ii. Data transmission time over the channel

iii. Server queue delay

All of the factors given above have been analyzed separately in the previous

sections. On the other hand, our aim is to discover the bottlenecks that occur during the

WTLS handshake protocol. Therefore, we need to analyze all this factors together to

decide on what constitutes a bottleneck for the protocol. Three different groups of

figures will be analyzed in this section. The first group of figures Figure 4.39, Figure

4.40 and Figure 4.41 give the overall processing times for category#1, category#2 and

category#3 key exchange suites for GSM CSD bearer. There is no server load in these

figures and the server is busy with only one handshake operation. It is possible to

analyze two main factors of the WTLS handshake protocol performance from these

figures, namely the processing times and data transmission times. Overall handshake

times for measured best case, worst case, average case GPRS and GSM CSD bearer are

compared in Figure 4.42 and Figure 4.43.

Queue delay affects on the overall handshake time are analyzed using Figure 4.44,

Figure 4.45 and Figure 4.46 for category#3 groups using different type of certificates

with different level of security.

Figure 4.39 shows the overall handshake times for mutual authenticated and

server authenticated WTLS handshakes using category#1 certificates. Data transmission

time is really a big portion of the overall handshake time for all the cases considered,

especially for ECDH_ECDSA key exchange suites. Processing time is affective on the

overall processing time for only the mutual authenticated WTLS handshake using client

and server certificates with 1024 bit RSA public key. Considering the data transmission

time over the channel as the first issue discovered, it is worth to analyze the data

transmission time in some more detail. It is interesting that the data transmission time

varies a little although the data size for the different key exchange suites vary,

especially it is almost doubled for the RSA key exchange suite. Data transmission time

analysis given in Section 4.3 states that the traversal delays of the network traversalT

constitutes 76% of the data transmission time. 2* traversalT is added to the overall

handshake time regardless of the data size transmitted. Therefore, the number of

113

handshake messages have more affect on the overall handshake time instead of the data

size and data transmission rate. It is also important that the traversal delay of the

network traversalT strictly depends on the data bearer used and may have greater or lower

values for different types of data bearers. The measurements were done using GSM

CSD as the data bearer with 9600 bps data transmission rate. Traversal delays for the

GPRS bearer have also been predicted in Section 4.3.2.

Figure 4.39 Category#1 WTLS handshake overall handshake times

Data transmission time is still a big issue for category#2 certificates as seen in

Figure 4.40. ECDH_ECDSA key exchange processing times are not very affective on

the overall WTLS handshake time. Mutual authenticated handshake using group#4

certificates (RSA1024 and RSA2048) have processing times that constitute the biggest

portion of the handshake time.

114

Figure 4.40 Category#2 WTLS handshake overall handshake times

Analyzing the handshake performance when using category#3 certificates, we see

in Figure 4.41 that the processing time is really affective on the overall handshake time

for group#4 (RSA) certificates. This is due to the increase in the client processing times

when generating the CertificateVerify message and other operations using RSA

certificates.

115

Figure 4.41 Category#3 WTLS handshake overall handshake times

Network traversal delays for the GPRS bearer has been computed in Section 4.3.2.

Mutual authenticated WTLS full handshake and server authenticated WTLS full

handshake overall times have been computed by using the network traversal delay

values given in Table 4.15 and compared in Figure 4.42 and Figure 4.43 respectively.

Although there is a significant data rate difference between GSM CSD and GPRS

bearers, we see that the overall handshake time is not very different for these bearers

because of the similar network traversal delay characteristics.

116

Figure 4.42 Mutual authenticated WTLS handshake overall times for GSM CSD and GPRS

117

Figure 4.43 Server authenticated WTL handshake overall times for GSM CSD and GPRS

First part of the overall handshake time analysis investigates the affects of the

processing times and data transmission times on the overall handshake time. It is clearly

seen that the data transmission time has the biggest affect on all of the ECDH_ECDSA

key exchange suites using category#1, category#2 and category#3 certificates and RSA

key exchange suites using category#1 and category#2 certificates when performing

server authenticated WTLS handshake for both GSM CSD and GPRS data bearer types.

Mutual authentication using RSA certificates and server authentication using

category#3 RSA certificates has the processing time as the biggest portion of the overall

handshake time.

Data transmission time is not always the bottleneck for the WTLS handshake

protocol although it has the biggest portion of the overall handshake time for our tests

over GSM CSD bearer. Due to the high valued traversal delays for both GSM CSD and

118

GPRS bearers, number of round trips is the most important parameter that significantly

affects the data transmission time.

Although the processing times are really small for especially ECDH_ECDSA key

exchange suites, the average server processing times for each handshake message are

very important when considering the server queue delay. Here begins the second part of

the overall handshake time analysis to investigate the affects of the average waiting time

in the server queue. WTLS handshake protocol queue delay performance has been

analyzed for category#3 certificates. Three cases analyzed below are the members of the

groups that offer different levels of security.

Figure 4.44 gives the overall handshake times for varying values of mutual

authenticated full handshake requests per second between 0 and 100. Categories and

corresponding groups have been defined in Table 3.3. We see that ECDH_ECDSA key

exchange suites using 160 bit prime curves have a good queue delay characteristic. On

the other hand, ECDH_ECDSA key exchange suites using 163 bit Koblitz, 163 bit

random curves and RSA key exchange suite using RSA 1024 has an upper limit of

approximately 70 handshake requests per second. This bottleneck is due to the server

processing times of the corresponding key exchange suites.

119

Figure 4.44 Mutual authenticated handshake times with queue delay-1 (category#3)

ECDH_ECDSA key exchange suites’ server queue delay characteristic s do not

change very much as the certificate security strength is increased. Figure 4.45 shows the

queue delay affects on the overall handshake time for the mutual authenticated WTLS

full handshake when using certificates with 224 bit prime curve, 233 bit Koblitz curve,

233 bit random curve parameters and RSA certificate with 2048 bit public key. 224 bit

prime curve certificates again have best queue delay performance, 233 bit Koblitz curve

certificates have an upper limit of 80 handshake requests per second, where 233 bit

random curve certificates can server 75 handshake requests per second with an

acceptable queue delay. Therefore, we see the significant change in the overall

handshake time for the RSA key exchange using certificates with 2048 bit RSA public

key. The queue delay asymptotically increases after 20 handshake requests per second

when 2048 bit RSA certificates are used.

120

Figure 4.45 Mutual authenticated handshake times with queue delay-2 (category#3)

Mutual authenticated WTLS handshake using RSA certificates with 3072 bit

public key has a terrible queue delay performance that the overall handshake time is not

acceptable even for two handshake requests per second. ECDH_ECDSA key exchange

suites using certificates with 256 bit prime curve, 283 bit Koblitz curve and 283 bit

random curve have similar queue delay characteristics as analyzed previously. Mutual

authenticated WTLS handshake times are given in Figure 4.46 for these types of

systems.

121

Figure 4.46 Mutual authenticated handshake times with queue delay-3 (category#3)

Server queue delay affects on the mutual authenticated WTLS handshake times

have been analyzed up to here. Server authenticated WTLS handshake performance is

not that bounded by the server queue delays as it is the case for the mutual authenticated

WTLS handshake excluding the server authenticated WTLS handshake using RSA

certificates. Average server queue waiting time for the use of RSA key exchange suites

during server authenticated WTLS handshake was analyzed in Section 4.2

122

5. CONCLUSIONS AND FUTURE WORK

WTLS (Wireless Transport Layer Security) [5] is the security protocol that was

designed to add valuable security services to WAP [1] sessions. WTLS has two main

sub-protocols, namely the Record Protocol and the Handshake Protocol. Handshake

protocol is responsible to provide security parameters to the Record Protocol by

negotiating on the premaster secret, key refresh period, etc. between the peers. In this

thesis WTLS Handshake Protocol performance is evaluated by modeling the different

components of the protocol and by analyzing the implementation results parallel to the

performance model. The performance model considers three main components that may

cause bottleneck for the protocol. These are client and server processing times, server

queue waiting time and handshake data transmission time over the channel.

WTLS Handshake Protocol [5] and necessary crypto primitives have been

implemented in C++ and the protocol performance has been measured for different

cryptosystems. Four different types of certificates have been used during the tests.

These are RSA certificates with 1024, 2048 and 3072 bit key sizes and three types of

ECC certificates. Three ECC curve types are prime, Koblitz and random curves. 160 bit,

224 bit, and 256 bit prime curves, 163 bit, 233 bit, and 283 bit Koblitz and random

curves have been used. 256 bit prime curve, 283 bit Koblitz curve, and 283 bit random

curve are not offered by the WTLS standard, these are the stronger ones that provide the

level of security needed for today’s WAP applications. 160/163 bit ECC curves offer

the same level of security with 1024 bit RSA certificates. Similarly, 224/233 bit ECC

curves are equivalent to 2048 bit RSA and 256/283 bit ECC certificates offer the same

level of security with 3072 bit RSA certificates.

123

Three categories have been considered during the tests. The first category includes

four groups of server/client WTLS certificates with 160 bit prime, 163 bit Koblitz, 163

bit random curve parameters and 1024 bit RSA public key. Certification authority (CA)

certificate also has the same key size and public key type. The second category comes

with an upgrade of security level. CA certificates in the second category have 224 bit

prime, 233 bit Koblitz, 233 bit random curve parameters and 2048 bit RSA public key

appropriately with the client/server certificate public key type. Client/server WTLS

certificates in this category offer two different level of security, these are 160/224 bit

prime curve, 163/233 bit Koblitz and random curve, 1024/2048 bit RSA. The third

category has the top level of security that is offered by this thesis, also not offered by

the WTLS standard [5]. CA certificates have 256 bit prime, 283 bit Koblitz, 283 bit

random curve parameters or 3072 bit RSA public key. All of the three possible key

sizes are used for server/client WTLS certificates. These are 160/224/256 bit prime,

163/233/283 bit Koblitz, 163/233/283 bit random ECC curves and 1024/2048/3072 bit

RSA. Totally 48 test cases have been considered, 24 is for mutual authenticated WTLS

full handshake and the remaining 24 is for server authenticated WTLS full handshake. 4

of 24 test cases (certificates) come from category#1 while 8 is from category#2 and 12

is from category#3 certificates.

Simulation results show that ECC curves perform better than the RSA

cryptosystems in WTLS Handshake Protocol. This is an obvious result. Therefore,

processing time effects on the WTLS handshake operation will be much more valuable.

1024 bit RSA has somewhat comparable processing time with its rival ECC ones at the

client side but it is not possible to say the same thing for the server side. ECC curves’

server processing times are significantly lower than RSA server processing times. In

addition to that, ECC curves also have different processing time performance. Prime

curves are always faster than Koblitz and random curves at the server side. Koblitz

curves are the second but random curve processing times are generally similar to the

Koblitz curves at the server side. Mutual authenticated WTLS handshake using

category#1 certificates with 160 bit prime curve parameters has a server processing time

of 10.57 ms, where it is 24.48 ms for 163 bit Koblitz curve, 24.01 ms for 163 bit

random curve and 45.86 ms for 1024 bit RSA. Server processing times for both mutual

authenticated and server authenticated WTLS handshake using WTLS certificates with

124

prime curve parameters are always lower than half of the Koblitz and random curve

server processing times.

The level of security that a certificate offers may be increased by upgrading the

issuer CA certificate to a larger key size. This is achieved by the three categories

considered during the performance evaluation. We see that the server authenticated

WTLS handshake server processing time slightly increases for ECC and RSA

certificates, in the case of signing the certificate with a stronger key size. For example,

server authenticated WTLS full handshake using category#1(to be verified with 1024

bit RSA) 1024 bit RSA certificate has a server processing time of 36.99 ms, where it is

37.80 ms for category#2(to be verified with 2048 bit RSA), and 38.37 ms for

category#3(to be verified with 3072 bit RSA). However, client processing time

significantly increases as the CA certificate is upgraded to a stronger key size. It is the

same case for both client and server when performing mutual authenticated WTLS

handshake.

It is also an interesting result that the prime curves have the worst processing time

performance for the client side, where Koblitz and random curves perform similarly.

Mutual authenticated WTLS full handshake using category#1 160 bit prime curves have

a client processing time of 745.65 ms, where it is 502.74 ms and 489.01 ms for 163 bit

Koblitz and random curves respectively. Due to the low processing power of the client,

handshake processing time at the client side is extremely higher than the server

processing times.

As an expected result, both client and server processing times increase as the key

size increases for the same public key cryptosystem. However, increase in the

processing time is much more significant for RSA key exchange suites. Implementation

results show that the server processing time increases from 38.37 ms to 871.41 ms when

using 3072 bit RSA certificates instead of 1024 bit RSA certificates. Therefore, it goes

up to 26.67 ms for 283 bit random curve while 163 bit random curve processing time is

8.41 ms. We see that increasing the security level has a significant effect on the overall

handshake processing time for RSA key exchange suites, where the increase is tolerable

for ECDH_ECDSA key exchange suites.

125

When mutual authenticated handshake is performed instead of server

authenticated handshake, increase in the client processing time is negligible for

ECDH_ECDSA key exchange suites. On the other hand, there is a significant increase

in the client processing time for the RSA key exchange suites. This is why the mutual

authenticated ECDH_ECDSA key exchange suites do not require an extra operation

except sending the client certificate to the server, where the RSA key exchange suites

require performing a private key operation to generate the CertificateVerify message.

Client processing time is measured as 738.95 ms for server authenticated WTLS

handshake using category#1 160 bit prime curves, where it is 745.65 ms for the mutual

authenticated WTLS handshake. Client processing time goes up to 3780.4 ms for

mutual authenticated WTLS handshake using category#1 1024 bit RSA certificates,

where it is 1006.78 ms for server authenticated WTLS handshake using the same RSA

certificate type. In contrast to the client side, server processing time is always grater for

mutual authenticated WTLS handshake.

 Using 256 bit prime, 283 bit Koblitz, and 283 bit random ECC curves seems

feasible, where 2048 bit and 3072 bit RSA should not be used in WTLS Handshake

Protocol for their extremely high processing times at both client and server side.

Implementation results show that server queue delay is a source of bottleneck for

the WTLS handshake operation, whereas it does not look like a problem to consider for

some cases. Average waiting time in the server queue is negligible when using

ECDH_ECDSA key exchange suites for server authenticated WTLS handshake. This is

due to the low processing times of ECDH_ECDSA key exchange suites’ handshake

messages. On the other hand, server queue delay must be considered when using RSA

certificates for server authenticated WTLS handshake. Maximum number of server

authenticated handshake requests per second is only 6 when using category#3 3072 bit

RSA certificates. 21 server authenticated WTLS handshake requests can be served with

an average waiting time of 1500 ms, when using category#3 2048 bit RSA certificates.

1024 bit RSA certificates have somewhat acceptable queue delay characteristics for

server authenticated WTLS handshake.

When performing mutual authenticated WTLS handshake, ECDH_ECDSA key

exchange with prime curves has a good queue delay characteristic due to the low

126

processing times at the server side. Koblitz and random curves have a practical upper

limit for the number of mutual authenticated WTLS handshake as well as the RSA

certificates. An interesting result is that, average waiting time in the server queue

changes slightly as the larger key sizes are used for Koblitz and random curves, where it

dramatically gets worse as the RSA key size increases. This is due to the fact that server

processing time does not increase very much for mutual authenticated WTLS handshake

as larger key sizes are used for ECDH_ECDSA key exchange suites. Therefore, RSA

key exchange suites’ server processing times are highly vulnerable to increase in key

sizes.

Server queue waiting time strictly depends on the average server processing times

of the individual handshake messages. Therefore, an improvement is possible by using

state-of-the-art implementation of the crypto primitives or upgrading the server

processing power.

Handshake data transmission time is an important concern for the overall

handshake time. It is obvious that the data transmission time depends on the

transmission rate of the data bearer used. However, another characteristic to cons ider is

the traversal delay of the network. This delay is added to the RTT (Round Trip Time)

regardless of the data size sent. Measurements show that the traversal delay of the

network is much more significant on the transmission time then the data transmission

rate for both GSM CSD and GPRS data bearer types. There is no significant difference

between the data transmission time over GSM CSD and GPRS for small data sizes. This

is due to the similar traversal delay characteristics for both carrier systems. Therefore,

the number of handshake messages becomes the most important parameter that affects

the WTLS handshake data transmission time.

Comparing the obtained results with the similar research on the subject studied by

Levi and Savas in [30], we see differences at ECC curves processing time performance.

Prime curves are the best curve option for both client and server side according to their

results. Similarly, prime curves have been found as the best option for the server side in

this thesis. However, prime curves have the worst processing time performance at the

client side. Koblitz curves are the second and random curves always have the worst

performance in [30]. There is also a conflict of performance for Koblitz and random

127

curves when compared to results in this thesis. These differences are most probably due

to the state-of-the-art implementation in [30]. Both studies have a common result that,

prime curves are the best option to use at the server side whether it is state-of-the-art

implementation or not. This is also an important result when considering the queue

delay performance of an ECDH_ECDSA key exchange suite. Transmission time effects

on the overall handshake time are also different from the results in [30]. There are two

main reasons for this difference. First of all, overall handshake data sizes are not the

same. Only the certificates sizes and other public key related data sizes are considered

in [30] where, all of the handshake messages and their corresponding ACK packets are

considered in this thesis. The second and more important difference between the two

transmission time models is the consideration of network specific traversal delay.

Traversal delay significantly affects the overall data transmission time as stated in this

thesis.

Performing the tests over a real GSM service provider network comes with the

advantages of reflecting the network specific operational costs and message parsing

costs to the overall handshake time. Queue delay was not considered only as an extra

cost to the handshake time with an assumed arrival rate. Instead, an upper limit for the

handshake requests per second has been obtained for each 48 test cases and realized that

queue delay is not always a concern for the available key exchange suites. Another

contribution is that, the data transmission time can not be modeled by only considering

the data transmission rate of the channel. The most striking result of the simulations is

that, the effects of the network specific traversal delay rules the data transmission time

for both GSM CSD and GPRS bearers. It has been realized that the number of

handshake messages is much more important for the overall data transmission time

because of the traversal delay that is added to the WSP packet Round Trip Time

regardless of the data size sent. So, measured data transmission times for all the key

exchange suites are almost equal due to the high valued traversal delay of the test

network for GSM CSD bearer. Therefore, this comes with the requirement of specifying

the average traversal delay of the network to predict the transmission time for a specific

data bearer type.

128

REFERENCES

[1] WAP Forum, “Wireless Application Protocol Architecture Specification, WAP-100-

WAPArch-19980430-a”, WAP Forum Specifications 30-Apr-1998 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[2] eMarketer, “Global Internet and Wireless Users, 2001, 2004 and 2007”, eMarketer

Market Researches, Mar. 2002, URL: http://www.emarketer.com/

[3] Datacomm Research Company, “Smart Phones Versus Conventional Wireless

Phones”, 2000, URL: http://www.datacommresearch.com/

[4] Durlacher Limited, “Predicted mCommerce Revenues, 2001 - 2005”, URL:

http://www.durlacher.com/

[5] WAP Forum, “Wireless Application Protocol Wireless Transport Layer Security

Specification, WAP-199-WTLS-20000218-a”, WAP Forum Specifications 18-Feb-

2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[6] T. Dierks and C. Allen, “The TLS Protocol – Version 1.0”, January 1999, IETF

RFC 2246, URL: http://www.ietf.org/rfc/rfc2246.txt

[7] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 Protocol”, Netscape

Communications Corporation, Nov. 1996, URL: http://home.netscape.com/eng/ssl3/

[8] WAP Forum, “Wireless Application Protocol Wireless Markup Language

Specification Version 1.3, WAP-191-WML-20000219-a”, WAP Forum

Specifications 19-February-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[9] David Raggett, Arnaud Le Hors, and Ian Jacobs, “HTML 4.0.1 Specification”, W3C

Recommendation, 24 December 1999, URL: http://www.w3.org/TR/1999/REC-

html401-19991224

[10] François Yergeau, John Cowan, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen,

Eve Maler, “Extensible Markup Language (XML) 1.1”, W3C Recommendation, 4

February 2004, URL: http://www.w3.org/TR/2004/REC-xml11-20040204/

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-

Lee, “Hypertext Transfer Protocol – HTTP/1.1”, June 1999, IETF RFC 2616, URL:

http://www.ietf.org/rfc/rfc2616.txt

129

[12] International Organization for Standardization, “Information technology – Open

Systems Interconnection – Basic Reference Model: The Basic Model - ISO/IEC

7498-1:1994”, URL: http://www.iso.org/

[13] WAP Forum, “Wireless Application Protocol Wireless Application Environment

Specification Version 1.3, WAP-190-WAESpec”, WAP Forum Specifications 29-

March-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[14] WAP Forum, “WML Script Specification, WAP-193-WMLS-20001025-a”,

WAP Forum Specifications 25-October-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[15] WAP Forum, “Wireless Application Protocol Wireless Telephony Application

Specification, WAP-169-WTA-20000707-a”, WAP Forum Specifications 07-Jul-

2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[16] WAP Forum, “Wireless Application Protocol Wireless Session Protocol

Specification, WAP-203-WSP-20000504-a”, WAP Forum Specifications 04-May-

2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[17] WAP Forum, “Wireless Application Protocol Wireless Transaction Protocol

Specification, WAP-201-WTP-20000219-a”, WAP Forum Specifications 19-

February-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[18] WAP Forum, “Wireless Application Protocol Wireless Datagram Protocol

Specification, WAP-200-WDP-20000219-a”, WAP Forum Specifications 19-

February-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[19] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public Key Cryptosystems”, Communications of the ACM, vol. 21,

no. 2, pp. 120-126, February 1978

[20] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation,

48(177):203-209, January 1987

[21] V. S. Miller, “Use of Elliptic Curves in Cryptography”, Proceedings of the

Advances in Cryptology – CRYPTO’85, 1985, pp. 417-426

130

[22] IEEE, “IEEE Std. 1363-2000”, IEEE standard specifications for public key

cryptography, 30 Jan. 2000

[23] W. Diffie, and M. Hellman, “New directions in cryptography”, IEEE

Transactions on Information Theory, 22:644-654, Nov. 1976

[24] National Institute for Standards and Technology, “Digital Signature Standard

(DSS) FIPS PUB 186-2”, U.S. Department of Commerce, Jan. 2000, URL:

http://csrc.nist.gov/fips

[25] National Institute for Standards and Technology, “Digital Signature Standard

(DSS) FIPS PUB 186”, U.S. Department of Commerce, 1994, URL:

http://csrc.nist.gov/fips

[26] A. K. Lenstra, E. R. Verheul, “Selecting Cryptographic Key Sizes”, Proceedings

of the Public Key Cryptography, January 2000

[27] National Institute of Standards and Technology, “Recommended Elliptic Curves

for Federal Government Use”, May 1999, URL: http://csrc.nist.gov/encryption

[28] National Institute for Standards and Technology, “NIST FIPS PUB 180-1,

Secure Hash Standard”, U.S. Department of Commerce, May 1994, URL:

http://csrc.nist.gov/fips

[29] B. Schneier, “Applied Cryptography”, Wiley, New York, 1996

[30] A. Levi, and E. Savas, “Performance Evaluation of Public-Key Cryptosystems

Operations in WTLS Protocol”, Proceedings of the Eight IEEE International

Symposium on Computers and Communication (ISCC’03), 2003

[31] G. Apostolopoulos, V. Peris, and P. Pradhan., “Securing Electronic Commerce:

Reducing the SSL Overhead”, IEEE Network, (14)4: 8-16 July/August 2000

[32] G. Apostolopoulos, V. Peris, and D. Saha, “Transport Layer Security: How

much does it really cost?”, Proceedings of IEEE Infocom’99, pp. 717-725, March

1999

[33] SpecWeb96, Standard Performance Evaluation Corp., 1996, URL:

http://www.spec.org/osg/web96

[34] I. Herwono, and I. Liebhardt, “Performance of WTLS and its Impact on an M-

Commerce Transaction”, ICICS 2001 – Proceedings of the Third International

Conference on Information and Communications Security, Nov. 2001, pp. 167-171,

Xi’an, China, URL: http://www.comnets.rwth-aachen.de

131

[35] I. Herwono, and I. Liebhardt, “Performance Evaluation of the WAP Security

Protocols”, Proceedings of the 10th Aachen Symposium on Signal Theory, Sept.

2001, pp. 95-100, Aachen, Germany, URL: http://www.comnets.rwth-aachen.de

[36] K. Kant, R. Iyer, and P. Mohapatra, “Architectural Impact of Secure Socket

Layer on Internet Servers”, IEEE International Conference on Computer Design

(ICCD’00), pp. 7-15, Sept. 2000

[37] V. Gupta, S. Gupta, and S. Chang, “Performance Analysis of Elliptic Curve

Cryptography for SSL”, WiSe’02, Atlanta, Georgia, USA, September 28, 2002

[38] “The OpenSSL Project”, URL: http://www.openssl.org/

[39] Dimitri Bertsekas, Robert Gallager, “Data Networks”, Prentice Hall, NJ, 1987

[40] G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saaranen, “TCP Performance

Issues over Wireless Links”, IEEE Communications Magazine, Volume 39, Number

4, 2001, pp. 52-58

[41] D. Fritsch, N. Fikouras, and C. Görg, “Enabling Hand-offs between GSM and

IEEE 802.11b bearers with Mobile IP”, Proceedings of the Fourth International

Symposium on Wireless Personal Multimedia Communications (WPMC), Denmark,

2001,URL:http://www.comnets.uni-bremen.de/~niko/publications/wpmc01-wap.pdf

[42] R. Ludwig, and B. Rathonyi, “Link Layer Enhancements for TCP/IP over GSM”,

IEEE Infocom’99, March 1999

[43] R. Hillebrand, and T. Wierlemann, “Mobile Internet Guide”, URL:

http://mobileinternetguide.org/”

[44] “Symbian: The Mobile Operating System”, URL: http://www.symbian.com/

[45] “Kannel: Open Source WAP and SMS Gateway”, URL: http://www.kannel.org/

[46] “Cygwin: Linux- like environment for Windows”, URL:

http://www.cygwin.com/

[47] “ARM Processors”, URL: http://www.arm.com/

128

REFERENCES

[1] WAP Forum, “Wireless Application Protocol Architecture Specification, WAP-100-

WAPArch-19980430-a”, WAP Forum Specifications 30-Apr-1998 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[2] eMarketer, “Global Internet and Wireless Users, 2001, 2004 and 2007”, eMarketer

Market Researches, Mar. 2002, URL: http://www.emarketer.com/

[3] Datacomm Research Company, “Smart Phones Versus Conventional Wireless

Phones”, 2000, URL: http://www.datacommresearch.com/

[4] Durlacher Limited, “Predicted mCommerce Revenues, 2001 - 2005”, URL:

http://www.durlacher.com/

[5] WAP Forum, “Wireless Application Protocol Wireless Transport Layer Security

Specification, WAP-199-WTLS-20000218-a”, WAP Forum Specifications 18-Feb-

2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[6] T. Dierks and C. Allen, “The TLS Protocol – Version 1.0”, January 1999, IETF

RFC 2246, URL: http://www.ietf.org/rfc/rfc2246.txt

[7] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 Protocol”, Netscape

Communications Corporation, Nov. 1996, URL: http://home.netscape.com/eng/ssl3/

[8] WAP Forum, “Wireless Application Protocol Wireless Markup Language

Specification Version 1.3, WAP-191-WML-20000219-a”, WAP Forum

Specifications 19-February-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[9] David Raggett, Arnaud Le Hors, and Ian Jacobs, “HTML 4.0.1 Specification”, W3C

Recommendation, 24 December 1999, URL: http://www.w3.org/TR/1999/REC-

html401-19991224

[10] François Yergeau, John Cowan, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen,

Eve Maler, “Extensible Markup Language (XML) 1.1”, W3C Recommendation, 4

February 2004, URL: http://www.w3.org/TR/2004/REC-xml11-20040204/

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-

Lee, “Hypertext Transfer Protocol – HTTP/1.1”, June 1999, IETF RFC 2616, URL:

http://www.ietf.org/rfc/rfc2616.txt

129

[12] International Organization for Standardization, “Information technology – Open

Systems Interconnection – Basic Reference Model: The Basic Model - ISO/IEC

7498-1:1994”, URL: http://www.iso.org/

[13] WAP Forum, “Wireless Application Protocol Wireless Application Environment

Specification Version 1.3, WAP-190-WAESpec”, WAP Forum Specifications 29-

March-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[14] WAP Forum, “WML Script Specification, WAP-193-WMLS-20001025-a”,

WAP Forum Specifications 25-October-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[15] WAP Forum, “Wireless Application Protocol Wireless Telephony Application

Specification, WAP-169-WTA-20000707-a”, WAP Forum Specifications 07-Jul-

2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[16] WAP Forum, “Wireless Application Protocol Wireless Session Protocol

Specification, WAP-203-WSP-20000504-a”, WAP Forum Specifications 04-May-

2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[17] WAP Forum, “Wireless Application Protocol Wireless Transaction Protocol

Specification, WAP-201-WTP-20000219-a”, WAP Forum Specifications 19-

February-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[18] WAP Forum, “Wireless Application Protocol Wireless Datagram Protocol

Specification, WAP-200-WDP-20000219-a”, WAP Forum Specifications 19-

February-2000 version, URL:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

[19] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public Key Cryptosystems”, Communications of the ACM, vol. 21,

no. 2, pp. 120-126, February 1978

[20] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation,

48(177):203-209, January 1987

[21] V. S. Miller, “Use of Elliptic Curves in Cryptography”, Proceedings of the

Advances in Cryptology – CRYPTO’85, 1985, pp. 417-426

130

[22] IEEE, “IEEE Std. 1363-2000”, IEEE standard specifications for public key

cryptography, 30 Jan. 2000

[23] W. Diffie, and M. Hellman, “New directions in cryptography”, IEEE

Transactions on Information Theory, 22:644-654, Nov. 1976

[24] National Institute for Standards and Technology, “Digital Signature Standard

(DSS) FIPS PUB 186-2”, U.S. Department of Commerce, Jan. 2000, URL:

http://csrc.nist.gov/fips

[25] National Institute for Standards and Technology, “Digital Signature Standard

(DSS) FIPS PUB 186”, U.S. Department of Commerce, 1994, URL:

http://csrc.nist.gov/fips

[26] A. K. Lenstra, E. R. Verheul, “Selecting Cryptographic Key Sizes”, Proceedings

of the Public Key Cryptography, January 2000

[27] National Institute of Standards and Technology, “Recommended Elliptic Curves

for Federal Government Use”, May 1999, URL: http://csrc.nist.gov/encryption

[28] National Institute for Standards and Technology, “NIST FIPS PUB 180-1,

Secure Hash Standard”, U.S. Department of Commerce, May 1994, URL:

http://csrc.nist.gov/fips

[29] B. Schneier, “Applied Cryptography”, Wiley, New York, 1996

[30] A. Levi, and E. Savas, “Performance Evaluation of Public-Key Cryptosystems

Operations in WTLS Protocol”, Proceedings of the Eight IEEE International

Symposium on Computers and Communication (ISCC’03), 2003

[31] G. Apostolopoulos, V. Peris, and P. Pradhan., “Securing Electronic Commerce:

Reducing the SSL Overhead”, IEEE Network, (14)4: 8-16 July/August 2000

[32] G. Apostolopoulos, V. Peris, and D. Saha, “Transport Layer Security: How

much does it really cost?”, Proceedings of IEEE Infocom’99, pp. 717-725, March

1999

[33] SpecWeb96, Standard Performance Evaluation Corp., 1996, URL:

http://www.spec.org/osg/web96

[34] I. Herwono, and I. Liebhardt, “Performance of WTLS and its Impact on an M-

Commerce Transaction”, ICICS 2001 – Proceedings of the Third International

Conference on Information and Communications Security, Nov. 2001, pp. 167-171,

Xi’an, China, URL: http://www.comnets.rwth-aachen.de

131

[35] I. Herwono, and I. Liebhardt, “Performance Evaluation of the WAP Security

Protocols”, Proceedings of the 10th Aachen Symposium on Signal Theory, Sept.

2001, pp. 95-100, Aachen, Germany, URL: http://www.comnets.rwth-aachen.de

[36] K. Kant, R. Iyer, and P. Mohapatra, “Architectural Impact of Secure Socket

Layer on Internet Servers”, IEEE International Conference on Computer Design

(ICCD’00), pp. 7-15, Sept. 2000

[37] V. Gupta, S. Gupta, and S. Chang, “Performance Analysis of Elliptic Curve

Cryptography for SSL”, WiSe’02, Atlanta, Georgia, USA, September 28, 2002

[38] “The OpenSSL Project”, URL: http://www.openssl.org/

[39] Dimitri Bertsekas, Robert Gallager, “Data Networks”, Prentice Hall, NJ, 1987

[40] G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saaranen, “TCP Performance

Issues over Wireless Links”, IEEE Communications Magazine, Volume 39, Number

4, 2001, pp. 52-58

[41] D. Fritsch, N. Fikouras, and C. Görg, “Enabling Hand-offs between GSM and

IEEE 802.11b bearers with Mobile IP”, Proceedings of the Fourth International

Symposium on Wireless Personal Multimedia Communications (WPMC), Denmark,

2001,URL:http://www.comnets.uni-bremen.de/~niko/publications/wpmc01-wap.pdf

[42] R. Ludwig, and B. Rathonyi, “Link Layer Enhancements for TCP/IP over GSM”,

IEEE Infocom’99, March 1999

[43] R. Hillebrand, and T. Wierlemann, “Mobile Internet Guide”, URL:

http://mobileinternetguide.org/”

[44] “Symbian: The Mobile Operating System”, URL: http://www.symbian.com/

[45] “Kannel: Open Source WAP and SMS Gateway”, URL: http://www.kannel.org/

[46] “Cygwin: Linux- like environment for Windows”, URL:

http://www.cygwin.com/

[47] “ARM Processors”, URL: http://www.arm.com/

