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ABSTRACT 

We analyze the network properties of a set of 59 pairs of proteins in their 

bound and unbound forms. We verify that these "residue networks" are in the 

"small world" class in their separate forms as well as in complex. We also 

investigate the different network properties of interface residues compared 

to those of other surface residues of the complexes. The results point that 

the average shortest paths of interface residues are in general lower than 

other surface residues even in their unbound forms. Moreover, the residues 

that are used in the shortest pathways between the receptor and the ligand 

are analyzed with the theory of betweenness centrality. When specific 

weights are assigned to the links in the network, the same pairs of residue 

types emerge as important hubs when complexation occurs. The calculations 

are further implemented to decoy structures of 15 of the bound complexes, 

with 10 decoys for each complex. We find the characteristic path length as 

the most important descriptor for differentiating between decoys and native 

structures. 
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ÖZET 

Bu çalışmada 59 protein kompleksinin hem ayrık hem de bağlı durumdaki ağ 

özelliklerini inceledik. Ağ şeklinde ifade edilen proteinlerin “küçük dünya” 

özelliklerinin kompleks oluşumu sonrasında da devam ettiğini gözlemledik. Ayrıca, 

bağlanmada etkin rol oynayan amino asitlerin diğer yüzey amino asitlerine göre –bağsız 

durumda bile– daha yüksek ortalama en kısa yol değerlerine sahip olduğunu gördük. 

Reseptör ve ligand amino asitleri arasındaki en kısa yollarda kullanılan ve reseptör’den 

ligand’a geçiş noktalarını oluşturan amino asit çiftlerinin kullanılan farklı kontak 

enerjilerinden bağımsız olarak, çoğunlukla, benzer olduğunu gösterdik. Daha sonra, 

aynı hesaplamaları gerçek ve bozulmuş kompleks yapıların ağ özellikleri üzerinde 

gerçekleştirdik. Ortalama kısa yol değerleri yine en belirleyici özellik olarak ortaya 

çıktı. Ayrıca Miyazawa ve Jeringan’ın kontak enerjilerinin bu gerçek ve bozulmuş 

yapılar içindeki reseptor-ligand geçiş amino asitlerini daha iyi ayrımsadığını 

gözlemledik. 
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1. INTRODUCTION 

Understanding and predicting the protein function computationally is one of the 

major scientific obstacles. Protein-protein interactions play a key role in the functioning 

of proteins. The problem of Protein Docking (i.e. finding the geometry in which two or 

more proteins interact under physiological conditions) arises here. Many scientists from 

different backgrounds try to understand the logic behind this problem using different 

methodologies. Although no satisfactory answer has yet been reached, every study 

contributes to the solution in various ways and more importantly, all research done so 

far, leads the researchers to new ideas, new techniques and new strategies. 

Weng and coworkers have been developing a docking algorithm that, for the 

present, takes into account pairwise shape complementarity, desolvation and 

electrostatics simultaneously which gave good results [Chen et al., 2003] in 2003 

CAPRI1 challenge. In our research, our purpose is to contribute to the understanding of 

the docking problem with a statistical analysis of interacting proteins. We treat these 

interacting proteins, on a coarse level, as residue networks. We use the carefully 

selected set of Chen et al., consisting of 59 protein complexes. We also utilize decoy 

structures for 15 of these 59 complexes. 

Small World Network (SWN) properties have recently been shown to arise in 

miscellaneous systems such as airport network [Guimerà et al., 2003] social networks 

[Wattz and Strogatz, 1998], neuronal networks [Wattz and Strogatz, 1998], food webs 

[McCann, 1998], disease spreading [Woolhouse and Donaldson, 2001], scientific 

collaborations [Newman, 2001], and the World Wide Web [Barabasi, Nature, 1999; 

Barabasi, Science, 1999]. Also residue networks in proteins show SWN behavior 

[Atilgan et al., 2004] and the analysis of complex structures of proteins is of great 

significance since it is known that in all types of networks there is a strong relation 

between structure and function.  

Proteins perform their functions basically by binding to smaller molecules (i.e. 

ions, fats, sugars etc.), nucleic acids, or other proteins. Conformational changes in the 

unbound form of the proteins (frequently in the side chains, sometimes in the whole 
                                                 
1 Critical Assesment of Prediction of Interactions 
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backbone) are commonly encountered and that is a main obstacle for the solution of the 

docking problem. It is also observed for many systems that some residues are more 

important than others while proteins are carrying out their functions. Here, some critical 

questions arise: Is it also possible to observe that kind of key roles in residue networks? 

How do the structural changes during binding appear while analyzing residue networks? 

More importantly, may the representation of protein complexes as networks give a 

concrete clue about the structural changes during binding, or structure-function 

relationships? 

 2



 

2. PROTEIN COMPLEXES AS NETWORK STRUCTURES 

In this research, proteins are treated as networks formed using the spatial 

coordinates of atoms. We assume each residue as a different node. Two nodes are 

connected by an edge if the distance between the pairs of residues is less than a 

particular cut-off radius. 

2.1 Overview 

A network is basically any set of interconnected nodes. Here, by replacing the 

term “node” with a particular object (telephone, computer, people, railroad, neuron etc.) 

it will be possible to express any set of interacting entities as a network. In other words, 

any complex system can be modeled as a network by using a clear definition for the 

nodes and the interactions between the nodes. 

Any network can be represented graphically as a diagram –called graph– with 

vertices (sng. Vertex, any node in that graph) and edges (links connecting these 

vertices) [Wilson and Watkins, 1990]. 

 

Figure 2. 1 A simple graph with 6 vertices and 8 edges2. 

For a better understanding, take the members of a population as the vertices, then 

the edges can be any kind of relationship between each member like friendships, 
                                                 
2 http://www.geom.uiuc.edu/~zarembe/graph3.gif  
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business ties, etc. The brain is a network of neurons, organizations are networks of 

people, and global economy is a network of national economies which are networks of 

markets which in turn are networks of producers and consumers [SFI bulletin, vol.14 

no.2]. Such networks that exist in real life have unique properties like error tolerance, 

speed and flexibility. These characteristics play central roles in, for example, spreading 

diseases through social networks or viruses through computer networks, or propagation 

of power failures through energy grids. Therefore, understanding the roles of these 

properties sufficiently will lead to better and more efficient design of networks, which 

would lead to better productivity in various fields [Watts, 1999].  

2.2 Small World Networks 

At the extremes, a network may be considered to be either completely regular or 

completely random; however, many biological, technological and social networks are 

somewhere between these complete regularity and randomness. With the random 

rewiring procedure shown in figure 2.2 [Wattz and Strogatz, 1998] it will be easy to 

interpolate the regular and random networks. Starting from a ring lattice with n vertices 

and k edges for each vertex, each edge is rewired at random with a probability p. 

Consequently, the graph is tuned between ultimate regularity (p = 0) and ultimate 

randomness (p = 1). 

 

Figure 2. 2 The transition through regularity and randomness in a simple topology. 

Figure 2.2 [Watts and Strogatz, 1998] is a demonstration of the random rewiring 

procedure for the interpolation between a regular network and a random network 

without altering the number of vertices (n = 20, there are 20 nodes) and edges (k = 4, 
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each node has 4 connections to other nodes). In this process a vertex is chosen and the 

edge that connects the chosen vertex to its closest neighbor is reconnected to another 

vertex chosen uniformly at random over the entire ring. Duplication of edges is 

forbidden, otherwise the edges conserve their original positions. This process is 

repeated by moving clockwise around the lattice ring, considering each vertex in turn 

until a lap is completed. Then, the same process is repeated for more distant edges until 

all the edges are considered. So, for p = 0 the original lattice is preserved. As p 

increases, the graph become more disordered. Finally, at p = 1, the graph has the 

ultimate randomness with all the edges rewired randomly according to a Gaussian 

distribution of the neighbors. The clear observation with this figure is that, for the 

intermediate values of p the graph is highly clustered like a regular graph; on the other 

hand, it has small values of characteristic shortest paths –also defined as Network 

Diameter3 [Barthèlèmy, 1999]– like a random graph. Table 2.1 below shows this 

difference in the characteristics of regular and random networks for three different 

systems (film actors, power grid and C. elegans); 

 

System Lactual Lrandom Cactual Crandom 
Film Actors 3.65 2.99 0.79 0.00027 
Power Grid 18.7 12.4 0.08 0.005 
C. elegans 2.65 2.25 0.28 0.05 

Table 2. 1 Empirical examples of SWN’s; L ≈ Lrandom, C >> Crandom. [Wattz and Strogatz, 
1998]. 

According to this table, all three systems show SWN properties. Since these 

systems are not hand-picked networks, it is quite logical to claim that small-world 

phenomenon is probably generic for many large, sparse networks found in nature 

[Wattz and Strogatz, 1998]. 

Thus, in order to deeply understand the general characteristics of SWNs, there are 

two significant network properties; quantifying the amount of clustering, C and 

quantifying the value of characteristic shortest path, L. Moreover, in real life, unlike the 

ideal lattice ring in figure 2.1, the number of edges from vertex to vertex may differ. 

Therefore, another important property quantifying the number of neighbors, k, and its 

distribution, p(k), should also be considered. 

                                                 
3 http://www.ssec.wisc.edu/~billh/gbrain0.html  
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2.2.1 Degree (k) 

The number of neighbors of each node, for any complex network, has valuable 

information on the structure of the corresponding network. In order to quantify this 

characteristic, let p(k) be the fraction of nodes with k neighbors [Strogatz, 2001]; ki, 

itself; on the other hand, is the number of neighbors that the ith node has. 

Atilgan et al. demonstrate the following contact distribution for residue networks. 

 

Figure 2. 3 Degree distribution of residue networks [Atilgan et al., 2004]. 

These residue networks were constructed from proteins using a cutoff radius of 7 Å, a 

Gaussian distribution with a mean of 6.9 neighbors is constructed representing the 

connectivity distribution of residue networks. The distribution in the graph above is in a 

good agreement with that proposed previously for all 20 different types of amino acids 

[Miyazawa and Jernigan, 1996].  
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2.2.2 Characteristic Path Length (L) 

One of the most important statistics of graphs is the characteristic path length (L) 

that is the average distance between every vertex and every other vertex. Distance here 

does not refer to any metric space between vertices. Yet, the shortest path between any 

two nodes is simply the minimum number of edges that must be traversed in order to 

reach a vertex from another vertex, and L is the average of these over all nodes in the 

system [Watts, 1999].  

L itself is not indicative of the topology of a particular network. Instead, L scaling 

(the scaling of L with n –the size of the network– or k –the average number of 

neighbors–) display some characteristic for the system. 

The different behavior of L in a regular network and in a SWN is the change of L 

with size; for a detailed explanation, in a regular network L increases linearly with the 

size of the network (L ∼ n) and in a SWN L increases with the logarithm of the size of 

the network (L ∼ ln(n)) [Barthèlèmy, 1999]. 

More interestingly, a very good correlation between path lengths and dynamics of 

the proteins were discovered [Atilgan et al., 2004]. Atilgan et al. compared the residue 

fluctuations computed by the Gaussian Network Model, which many researches [Bahar, 

1997; Bahar, 1999; Baysal and Atilgan, 2001; Ming, 2003] proved to be in an excellent 

agreement with experimentally extracted β-factors, with the average path lengths of 

individual residues. They found L to be in good agreement with residue fluctuations and 

therefore experimental results. 

2.2.3 Clustering Coefficient (C) 

In a network, the density of neighboring clusters is an important factor 

characterizing the topology of that network. Clustering coefficient (Ci) of a particular 

node is the probability that the neighbors of  a node are neighbors of each other. C of a 

network, on the other hand, is the average of the clustering coefficient of every vertex of 

that network. 
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The clustering coefficient of a vertex with k neighbors is defined as follows. The 

maximum number of edges interconnecting these k neighbors is k(k-1)/2; however, the 

actual number is usually less than that maximum since in a spatial network of a 

particular cut-off radius, it is very unlikely to have all the neighbors interconnected. The 

ratio of this actual number to the maximum possible number of edges gives the 

clustering coefficient of that particular vertex. 

Atilgan et al. (2004) proposed a relationship of depth (i.e. the shortest distance 

from a residue to the surface of a protein) with C and L values seen in the graph below; 

 

Figure 2. 4 vs. C and depth vs. L for three different system sizes [Atilgan et al., 2004]. 

The reasoning concerning the conclusion inferred from the graph above is discussed in 

section 3.1. 

2.2.4 Weighting Effect 

Most studies concerning complex networks assume all the edges of the network to 

be identical. In practice, however, the weights (e.g. the quality or cost) of these links are 

not equal resulting in heterogeneity within a particular network. Ignoring the weights 

might lead to an incorrect evaluation of the parameters mentioned before, or even the 

whole network itself.  
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Recently, some researchers include this effect in their studies, and give new 

definitions for the network parameters discussed in the previous sections. In this thesis, 

two different weighting sets are used. These are the interresidue contact potentials 

proposed by Miyazawa and Jernigan in 1996 (MJ Potential) and by Thomas and Dill 

again in 1996 (TD Potential) [Miyazawa and Jernigan, 1996; Thomas and Dill, 1996]. 

2.2.4.1 Degree of Weighted Networks 

The term obtained by extending the definition of vertex degree in terms of 

assigning weights is stated as strength, si. This new quantity measures the total weight 

of the connections of a particular residue. As an example, consider the SCN, scientist 

collaboration network [Newman, 2001a; Newman 2001b; Barabasi et al., 2002], the 

strength defines the scientific productivity since it is equal to the number of publications 

of any given scientist.  

Strength of a particular node is an important measure of the significance of that 

particular node in communication through the network. To quantitatively characterize 

the role of network elements in information flow, a new term defined as the 

betweenness centrality [Goh et al., 2001; Barrat et al., 2004] has been used. 

2.2.4.2 Betweenness Centrality 

Betweenness centrality simply accounts for the number of shortest paths, between 

all pairs in the network, passing through a given vertex. Centrality is often used in 

transportation networks (e.g. WAN – world airport network) to estimate the traffic 

handled by the vertices (e.g. airports). 

Depending on the heterogeneity of the system, the quantity of betweenness 

centrality, and thus the quality, of a node may vary. The reason for that is the difference 

between definitions of shortest paths in weighted and non-weighted links. The level of 

disorder in a particular network would lead the information flow between any two nodes 

to have different paths than the paths in the weightless system. Thus, the residues 

existing in the weighted shortest paths would differ. 
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2.2.4.3 Characteristic Path Length of Weighted Networks 

Shortest path between any two nodes was previously defined as the minimum 

number of edges that must be traversed in order to reach a vertex from another vertex. 

Note that, considering shortest path as the least number of edges between two vertices is 

meaningful only when all the edges are assumed to have the same weights.  

When such a set of weights is applied, the network becomes disordered and there 

arises a need for a new definition of L. We define two new Ls for the new disordered 

network: Weak Disorder in which all links on the path contributes to the optimal path, 

and Strong Disorder in which the power of a strong link dominates the optimum path 

[Braunstein, 2003]; Lweak and Lstrong, respectively. 

2.2.4.4 Clustering Coefficient of Weighted Networks 

Clustering around a particular vertex could also become more designative with the 

contribution of weights. Considering different links to have different values will lead a 

better understanding of local cohesiveness. For, not only the number of closed triplets in 

the neighborhood around a vertex but also the total of their relative weights is also 

included in the quantification.  

The global cohesiveness of a weighted network is closely related to the general 

behavior of local clustering. If the weights of the closed triplets are more likely to have 

larger weights than the others within the network, then the average weighted clustering 

of the network will also be larger than that of a network with identical weights assigned 

to each edge. Similarly, with smaller weights of the edges forming the close triplets, the 

average weighted clustering of the network will have smaller value. Figure 2.5 

demonstrates this on a small network of five nodes and seven edges; 
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Figure 2. 5 Difference between the weighted and non-weighted clustering coefficient. 

2.3 Proteins as Networks of Their Interacting Residues 

In order to treat the proteins in our data set as networks, we have used the method 

developed by Baysal and coworkers [Atilgan, 2004]. The generation of the networks 

and calculation of the parameters of interest (C, L, and K) are implemented over all the 

data set. 

2.3.1 Protein Network Generation 

Each protein is converted into a network by taking every residue in a structure as 

a vertex and the interaction among them as edges [Yilmaz and Atilgan, 2000]. The 

position of each residue is assigned the coordinate of Cβ atoms of that particular residue 

(Cα for Glycine). Two residues are considered as connected if they are within distance 

of a particular cut-off radius from each other (6.7 Å in our calculations) and they are 

said to be interacting/in contact. An example of a generated residue network is 

demonstrated in Figure 2.6 with 7 Å cut-off radius.  
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Figure 2. 6 Folded structure and network representation of 1-β converting enzyme. 

For each residue, their contacts are found by calculating the distance from the 

corresponding residue to all the other residues. Therefore, an NxN matrix –where N is 

the number of residues in the protein is formed by assigning the matrix elements a value 

of 1 if the residues of interest are in contact and with 0 if not. This symmetric matrix, 

the so called Adjacency Matrix, can be mathematically expressed as [Atilgan et al., 

2004]; 

 




=
≠−

=
ji
jirrH

A ijc
ij 0

)(
(1)

 

 

where rij is the distance between the ith and jth nodes, H(x) is the Heavyside step function 

given by H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0, and rc is the given cut-off radius.  

All the properties C, L and K can easily be calculated using this matrix. These 

computations differ slightly when the weighting term wij for each pair of residues is 

considered. 

2.3.2 Calculation of Degree 

The degree of a particular residue ki is simply obtained by counting the number of 

neighbors of that residue. The mathematical expression is shown below; 
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=

=
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j
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1
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Thus, the average connectivity of the network is just the arithmetic average over 

ki; 

 
N

k
K

N

i
i∑

== 1  (3)

The strength, on the other hand, of a particular residue is calculated by simply 

adding up the weights of every edge belonging to that residue. As follows [Barrat et al., 

2004],  

 ∑
=

=
N

j
ijiji wAs

1
*  (4)

Therefore, the average strength of the network is the arithmetic average over si; 

 
N

s
S

N

i
i∑

== 1  (5)

2.3.3 Calculation of Betweenness Centrality 

The definition of betweenness centrality includes a simple term – the percent 

centrality (PC) of a particular node, which, here, is calculated by; 

 ∑∑=
s d

isd
DS

i b
NN

PC
*

100  (6)

where S and D are two different sets of nodes; source and destination, respectively and 

NS and ND are the number of nodes in both sets. On the other hand, bisd is a function of 

which value is either 1 when the ith node is in the optimal path between the sth and dth 

nodes, 0 otherwise.  

When the source, S, is taken as the receptor residues and the destination, D, as the 

ligand residues, the last residue in the receptor and the first residue in the ligand define 

the contact pair used in the information flow within the complex protein [Barrat et al., 

2004]. 
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2.3.4 Calculation of Characteristic Path Length 

It is not possible to calculate L directly from the adjacency matrix; yet, the powers 

of this matrix lead to this information. If the shortest path between the ith and jth residues 

is d, then the ijth entry of the dth power of the adjacency matrix should become non-zero 

whereas it is zero for all smaller powers. Thus, to get all the shortest paths between all 

pairs of residues, the multiplication of the matrix with itself should run until all the 

elements of the resulting matrix are non-zero. The mathematical expression for the 

shortest path of a particular pair of residues, i and j is; 

i. if no weights are assigned for the links between pairs of residues; 

n =ijL  

wehere n is that power of  which is non-zero for the first time. ijA

ii. if different weights are assigned for different pairs of residues; 

a. in weak disordered networks, the optimal path between any two vertices 

i and j is considered as the path with minimum weighted sum of all edges 

on the way, found using Dijkstra Algorithm (Appendix A); 

b. in strong disordered network, on the other hand, the optimal path is the 

path in which the maximum weight on the way is the minimum among 

all other paths. 

Lij will, therefore, be equal to the number of edges connecting the optimal paths 

found for these two cases. 

The average shortest path, L, when no weights are assigned for the edges can be 

computed from [Atilgan et al., 2004]; 

 ∑ ∑
−

= +=−
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2.3.5 Calculation of Clustering Coefficient 

C for the ith residue of a particular structure with k neighbors is the ratio of the 

number of actual connections between the neighbors of the ith residue to the all possible 

ones [Atilgan et al., 2004]; 
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where C(ki,2) is the combination relationship and counts the maximum number of 

possible connections between the ki first neighbors.  

When the elements of a particular network are not identical, the weights of 

interconnected edges should be considered [Barrat et al., 2004]. 

 ∑∑
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The average clustering coefficient of a particular network is, therefore; 

 
N

C
C

N

i
i∑

== 1  (10)

2.3.6 The Data Sets 

Recent developments in proteomics and structural genomics are resulting in a 

continuously increasing number of single and complex protein structures deposited in 

the Protein Data Bank.[ Bernstein et al., 1977; Abola et al., 1987] Yet the number of the 

structures that form a complex is still limited with a few hundred deposited coordinate 

sets, most of which are from a highly limited variety of proteins.  

The complete list of the data set is in Appendix C. 
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2.3.6.1 Native Complex and Unbound Structures 

We have used a set4 of 59 complexes: 22 enzyme-inhibitor complexes, 19 

antibody-antigen complexes, 11 other complexes and 7 difficult complexes (having 

significant conformational change for more than half of the interface backbone residues, 

see below for the definition of interface). Among them, there are 31 unbound-unbound 

and 28 unbound-bound cases. Among the unbound-unbound test cases, 16 are enzyme-

inhibitor, 5 antibody-antigen, 5 others and 5 difficult. 

There are two different definitions of interface residues analyzed separately in 

this research. (i) Any residue having at least an atom closer than 10 Å to any atom in the 

corresponding protein (if the residue of interest is a ligand residue then the 

corresponding protein is the receptor of the complex, or vice versa) then that residue is 

said to be an interface residue, (ii) The limiting value in this second definition is 6.7 Å 

instead of 10 Å, and the comparisons are made using only Cβ (Cα for Glycine) 

coordinates instead of comparing all atomic distances. 

On the other hand, surface residues are defined as the residues having at least an 

atom within 4 Å depth5 of the protein of interest [Chakravarty&Varadarajan, 1999]. The 

values of atomic depths are calculated using Monte Carlo procedure outlined in their 

paper. The depth of a residue  is assumed as the depth of the atom with the lowest value 

of distance to surface among all atoms of that particular residue. 

2.3.6.2 Decoy Complex Structures 

 

The other data set we have used is formed of 15 decoy complexes all of which we 

also have the original complex structures in our original data set. In this set, there are 10 

decoy structures for each case. The RMSDs of these decoy structures are ranging from 

the lowest range of 9-10 Å to the highest of 40-41 Å. These decoys are selected from a 

                                                 
4 http://zlab.bu.edu/zdock/  
5 Residue depths are calculated by the DEPTH program of Chakravarty1 and 
Varadarajan (1999). 
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much crowded list –of possible docked complexes generated– choosing the ones with 

highest surface complemantarity scores by Weng and coworkers [Chen et al., 2003]. 

The data set of interface and surface residues used in the computational 

implementation for these decoys are the same as mentioned in the pervious subsection. 
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3. RESULTS AND DISCUSSION 

We have used to different definitions for interface residues as mentioned in 

section 2.3.6.1: (i) residues having at least an atom closer than 10 Å to any atom in the 

other protein of the complex, (ii) residues having their Cβ (Cα for Glycine) atom closer 

than 6.7 to any Cβ (Cα for Glycine) in the other protein of the complex. We have found 

the results, with the latter definition, more considerable. Therefore, only these results 

are introduced in this thesis. 

3.1 Basic Network Parameters 

We first repeated the study of Atilgan et al. using a cut-off distance of 6.7 Å 

instead of 7 Å used in that work. We choose 6.7 Å since it is the limit of the first 

coordination shell. [Atilgan et al., 2003; Akan, 2002] 
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Figure 3. 1 Residue contact distribution at rc = 6.7 Å  for the (a) complex, (b) receptor, 
(c) ligand. 

Previous research shows that the distribution over connectivity displays a 

Gaussian distribution for both the hydrophobic core and molten surface residues. Note 

that Atilgan et al. demonstrate this property of residue networks at 7 Å cut-off. A 

similar distribution was observed Miyazawa&Jernigan for each of the 20 amino acid 

types [Miyazawa&Jernigan, 1996]. The graphs above are plotted using the results of 

residue networks with 6.7 Å. The observation of a Gaussian distribution does not 

change with the size of the networks: the residue network of (a) the whole complex with 

an average of 428 amino acids per complex (b) only the receptor proteins with an 
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average of 279 amino acids per protein (c) only the ligand proteins with an average of 

134 amino acids per protein. 

In the same study of Atilgan et al. the relation of C and L with residue depth was 

investigated (again at 7 Å cut-off) separately. They have shown that the clustering 

coefficient is independent of network size, and the value of C approaches a fixed value 

of 0.35 at depths greater than 4 Å. On the other hand, the characteristic path length 

decreases consistently with depth, and as the network size increases, the curve shifts to 

higher values. In our study, similar results with identical inferences are extracted with rc 

= 6.7 Å (Figure 3.2). There is a difference observed at the converged value of C (0.35 

→ 0.31). 
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Figure 3. 2 Depth dependence of network parameters; (a) degree, (b) clustering 
coefficient, (c) characteristic path length. 

3.2 Proteins Organize into Larger Networks by Binding 

The presence of SWN properties in proteins has already been shown in previous 

research [Atilgan et al., 2004], and in the previous parts of this thesis. Is the same status 

valid for protein complexes? To answer this question, we have analyzed the networks 

formed by the complexes of our data set. The results strongly support the idea that the 

bound complexes of proteins behave also as SWNs. 

As mentioned in section 3.1, C –irrespective of system size– decreases from a 

value of 0.55 and at depths greater than 4 Å become fixed at a value of ca. 0.31 (for rc = 

6.7Å). Figure 3.3 shows that the average C values of interface residues decreases after 

the complex formation, indicating that the surface residues of unbound proteins gain 

core status upon complexation. Note that interface residues are thos that reside on 

different proteins and that are at most 6.7 Å from each other. 
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Figure 3. 3 Clustering coefficients of the interface residues. 

That the bound proteins form a perfect match so that the interface resembles the 

inside of a single protein, is also indicated by the change in the average connectivities of 

the interface residues; 
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Figure 3. 4 Connectivities of the interface residues. 

The depth-connectivity relation was discussed in section 3.1 (Figure 3.2a), suggesting 

an increase from the molten surface to the hydrophobic core approaching a value of ca. 

9. The graph above demonstrates the increase in the average connectivity of interface 

residues; however, it does not approach the values of the core. The connectivity indeed 

never reaches 9 except for a few complexes, proposing that the depth of interface 

residues in the complex structure is not so high.  
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3.3 Identifying interface residues by comparing path lengths in unbound forms 

The agreement of shortest paths with residue fluctuations, thus with protein 

dynamics, was discussed in section 2.2.3. Therefore, it is quite reasonable to expect 

some residues –interface residues in our definition– to have higher shortest paths than 

others since proteins function via the residues that fluctuate dynamically in space. 

However, the results do not support those expectations with all three calculations of L 

(i.e. weighted strong disorder and weak disorder, and weightless) as seen in figure 3.5. 
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Figure 3. 5 Comparison of average shortest path lengths (MJ potential set). 

The average shortest paths of interface residues that are placed at a depth of 4 Å or less 

(i.e. in the unbound forms of the receptor and the ligand, separately) are compared with 

those of all other residues that reside at the same depth. The result does not reflect our 

expectation that the interface residue would have higher L than that of an arbitrary 

surface residue (discussed more in Appendix D.1). On the contrary, the latter has 

slightly higher shortest paths on average. A similar graph and same inference is made 

from the results of links weighted by Thomas and Dill’s set of contact potentials, as 

seen in Figure 3.6.  
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Figure 3. 6 Comparison of characteristic path lengths (TD potential set). 

From this figure (note that, the weightless average shortest paths are not included) 

and Figure 3.5, we can propose that changing the weights of the interacting residue 

potentials does significantly change the quantitative values of L.  

The quantitative change can be clearly observed from the following comparison 

of average shortest paths of surface residues calculated with MJ and TD contact 

potentials, separately. As one can see in Figure3.7a and Figure 3.7b, in the data 

calculated with MJ and TD potentials, Lweak and Lstrong are strongly correlated. Besides, 

the difference between Lstrong and Lweak calculated with MJ potentials is almost identical 

with the difference between Lstrong and Lweak calculated with TD potentials. 

The results for receptors and ligands (separately) are discussed in Appendix D. 
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Figure 3. 7 Comparison of L of all surface residues calculated using (a) MJ potentials. 
(b) TD potentials. 

3.4 Amino acid based analysis of residue networks 

The characteristic network parameters are also used to compare the possible 

different behavior of amino acid types. The global properties K and C should obviously 

differentiate between residue types. For example, the inference that is made in section 

3.2 –that small proteins organize into larger systems with the same properties upon 

binding– could be proved applying the same comparison as in that section onto different 

types of amino acids. The same hypothesis of depth-K and depth-C relation is used, and 

thus the following two graphs support our theory of the formation of a larger network 
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with the same properties (complex) from binding of two smaller networks (receptor and 

ligand). 
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Figure 3. 8 (a) Clustering coefficient, (b) connectivity of interface residues in unbound 
form vs. in complex form. 

From the above two figures, it can be inferred that all characteristics of small 

world networks are also well fitting with the averaged amino acid values of SWN 

parameters K, C, and L. 
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3.5 Native Structures vs. Decoy Structures 

Since decoy structures of complex proteins are formed by misdocking of ligand to 

receptor, one can rightfully expect different behaviors from complex networks. Yet, our 

calculations concerning both native and decoy structures result in no clear difference 

between their SWN parameters. As an example, the following five figures compare C, 

K and L values of interface residues belonging to both type of structures (note that, 

Lstrong and Lweak are calculated using MJ potentials set); 
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Figure 3. 9 Clustering of interface residues of native and decoy structures. 

In Figure 3.9, relatively higher values of C of interface residues in decoy 

structures with respect to that in native structures is observed (i.e. ca. %70 of all three 

kinds –receptor, ligand, and complex– have higher values for decoys). That is a good 

demonstration of wrongly bound proteins. Since the geometric docking of a particular 

ligand over a particular receptor requires the perfect matching of protrusions with 

intrusions, decoys not fulfilling that matching would clearly result in less clustering in 

the interacting part of the complex. It is also observed that the clustering coefficient of 

the native structures spans a broad range (from 0.3 to 0.4), yet that of decoys span in 
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relatively narrow range (from 0.27 to 0.43). Same range difference is also observed 

between the connectivities of decoy structures and native structures (Figure 3.10). 
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Figure 3. 10 Connectivity of interface residues of native and decoy structures. 

Connectivity of the same interface residues, on the other hand, does not differ between 

native and decoy structures in any way, although our expectation includes relatively 

lower K values for decoys since the possibility of forming new neighbors is low because 

of the lack of exact geometric match. 
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Figure 3. 11 L of interface residues of native and decoy structures. 

Using the same justifications made for the reasoning of Figure 3.9 above, the 

relatively high values of L in Figure 3.11 is explained. The lack of all possible contacts 

 28



 

between receptor and ligand prevents some optimal paths existing in native structure to 

occur in decoys, again due to non-exact geometric match. Lweak shows a similar 

behavior in the comparison between native structures and decoy structures (Figure 

3.12). 
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Figure 3. 12 Lweak of interface residues of native and decoy structures (TD). 

Contrary to the fact inferred in the previous graph, Figure 3.13 –demonstrating the 

comparisons of Lstrong – shows no difference between native and decoy structures.  
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Figure 3. 13 Lstrong of interface residues of native and decoy structures (TD). 

The reason for this observation hides in the definition of Lstrong (i.e. the optimal 

path is dominated by a strong link on the way). In the line of this definition, the Lstrong 
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does not depend on the number of contacts between a receptor and a ligand unless the 

mismatch of the geometry does not cause the loss of a strong link between receptor and 

ligand existing in the native structure. Therefore, the scatter in the graph in Figure 3.13 

is quite reasonable. 

Figure 3.12 and 3.13 are drawn using the data calculated by TD potentials. Similar 
graphs and same inferences are observed with the data calculated by MJ potentials. 

3.6 Contact Residues used in the Shortest Paths 

It is also of interest to determine the amino acid pairs that significantly couple in 

bound complexes. In this part of the thesis, the pairings existing in the shortest 

pathways from every node in the receptor protein to every node in the ligand protein are 

analyzed. 
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Figure 3. 14 Receptor→Ligand residue contacts with (a) MJ and (b) TD potential sets 
(native). 

The figures above reflect the percentage of amino acid pairs used in the optimal 

paths from every residue in receptor proteins to every residue in ligand proteins for 

calculations of L with both strong disorder and weak disorder. While choosing the pairs, 

the percent occurrences of strong disorder and weak disorder cases are added up and the 

top 20 pairs are graphed. (Notice that the values seen in the labels equal the total 

percentage of these 20 pairs). 

The role of weights –the TD and MJ contact potentials calculated differently– can 

be clearly seen. The 20 pairs, in each diagram, are chosen among all the possible 400 

pairs of 20 different amino acids.  

There are 10 pairs (ILE-LEU, TYR-ASN, VAL-GLY, PHE-HIS, LYS-PRO, THR-

ASN, TYR-HIS, LEU-ARG, ASN-GLY, and PHE-MET) occurring in both top 20 used 

contact residues data (50 percent difference) extracted using TD and MJ contact energy 

sets. That shows the different behavior of a system with different weights. 

As expected, in figure 3.14a, most of the pairs agree with the suggestion of 

Miyazawa and Jernigan saying that their set of contact potentials are well fitting with 

the hydrophobicities attained by experimental data. Only 5 of each 40 amino acids 

forming the 20 pairs are not hydrophobic, and it is quite sensible that hydrophobic 

residues prefer to cover the surroundings with other residues more than water itself. The 

other interesting observation in this same figure is that the total percentage of the 20 

pairs existing in the graph gives similar results; %31 and %23 for strong and weak 

disorder, respectively. That is also consistent when we think of their contact potential 

data; noting that (from Appendix B) the values of hydrophobic interactions are much 
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higher than that of hydrohobic-polar or polar-polar interactions on average and the 

different hydrophobic contact energies for different hydrophobic pairs are very close to 

each other [Miyazawa&Jernigan, 1996]. 

On the other hand, in figure 3.14b the difference in the total percentages are 

relatively higher (total with strong disorder is 33% while it is 22% for weak disorder). 

The deviation of the hydrophobic interaction potentials that Thomas and Dill suggested 

is much higher than that of potentials suggested by Miyazawa and Jernigan, the same is 

also true for hydrophobic-polar and polar-polar interaction potentials [Thomas&Dill, 

1996]. 

The two graphs above are the demonstrations for native structures of complex 

proteins. We now would like to see if a similar inference is possible for decoys. The 

following two bar type graphs reflect the results for decoy structures: 
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Figure 3. 15 Receptor→Ligand residue contacts with (a) MJ and (b) TD potential sets 
(decoy). 

 32



 

A first glance to the graph extracted with the MJ potentials set, the number of 

polar residues in the top 20 pairs increased from 13 (out of 40) in the native set to 18 

(out of 40) in the decoy set. A similar increse from 16 to 26 occurs with TD potentials 

set.  

Better explanations could be claimed by the following graphs comparing the 

behavioral differences between native and decoy networks. 
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Figure 3. 16 Receptor→Ligand residue contacts (native vs. decoy structures) of (a) 
strong disorder and (b) weak disorder (MJ potentials). 

Using the figures above, the clear and useful inference could be the dramatic 

difference between the total percentages of weakly disordered native and decoy 

networks; native structures have almost twice as large contribution in the top 20 pairs 

than that of decoy structures. Therefore, identifying receptor-ligand contact residues 
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used in the weakly disordered optimal paths could be a good strategy of discrimination 

of native from decoy structures. 

Looking at the total percentages, the difference in figure 3.16b and figure 3.17.a-b 

could be regarded negligible. However, a closer look would show that the values differ 

dramatically for individual pairs. For example, LEU-SER (figure 3.16a) pair has a 

percentage of 3.5 in native networks; however, it has only a percentage of ≈0.5 in decoy 

networks. Similar inferences could be made with many pairs in both strong and weak 

disorder data extracted both with the MJ set (above) and the TD set (below). However, 

MJ set obviously discriminates better between decoys and natives since the calculations 

with MJ potentials result in greater difference between the values of individual pairs. 
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Figure 3. 17 Receptor→Ligand residue contacts (native vs. decoy structures) of (a) 
strong disorder and (b) weak disorder (TD potentials). 
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4. CONCLUSION 

In this thesis, a set of 59 protein-protein complexes, and the unbound proteins that 

form the complexes, are converted into networks of interacting residues and their 

network properties are examined. 

The formation of a new network that emerges by the binding of a ligand protein to 

its receptor is shown to carry the characteristics of a small world network (i.e. the 

contact distribution of the complex is the same as that of single proteins, the depth 

dependence of average shortest path and average clustering is in good agreement with 

the known relation). The same agreement is shown to exist with the calculations 

averaging the K and C values of different types of amino acids.  

The identification of interface residues in the native structures of complexes is 

also tested with different definitions of shortest path (i.e. shortest path with no weights, 

L, with weak disorder Lweak, and with strong disorder Lstrong). Results suggest a relatively 

lower value of average shortest path of interface residues that are in the molten surface 

compared to that of all other surface residues. The same comparison of the small world 

characteristics between native structures and decoy structures are also implemented. L 

and Lmean comparisons show that the decoys have relatively higher values than the 

native structures. On the other hand, Lstrong, C and K results do not reflect any 

discriminating characteristics between these different structures. 

Receptor to ligand residue contacts are analyzed in the final part of the thesis. 

Here we give importance not to all residues in the interface, but only to those residues 

that are most frequently used in all the possible pathways between the receptor and the 

ligand. These pairs mostly consist of hydrophobic residues with the calculations using 

both the MJ and TD potential sets. It was also observed that these pairs are different in 

strong disorder and weak disorder. However, we are led to different results depending 

on which set is used in the calculations. For example, the percentage of hydrophobic 

residues within the top 20 pairs is relatively higher for the MJ case. In addition, pairs 

are observed to differ between the results of native structures and decoy structures. It is 
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shown that the MJ set discriminates between the decoy and native structures in the 

strong disorder case, whereas TD set is more discriminating in the weak disorder case. 

Nevertheless, irrespective of the potential set used, we find ILE-LEU, TYR-ASN, VAL-

GLY, PHE-HIS, LYS-PRO, THR-ASN, TYR-HIS, LEU-ARG, ASN-GLY, and PHE-MET 

pairs to be frequently utilized in complexation. 

In future studies, one might bring together these network features to develop a 

methodology to discriminate the structures closest to the native complex from amongst 

a large set of structures reproduced by a prediction algorithm. It should also be possible 

to point out an irregular network structure along the interface. Such a property will 

especially be useful to determine situations where there is substantial structural change 

upon binding. 

 

 36



 

REFERENCES 

1. Abola E.E., F.C. Bernstein, S.H. Bryant, T.F. Koetzle, and J. Weng, "Protein 
Data Bank" in Crystallographic Databases - Information Content, Software 
Systems, Scientific Applications, eds. F.H. Allen, G. Bergerhoff and R. Sievers, 
Data Commission of the International Union of Crystallography, 
Bonn/Cambridge/Chester, 1987. p. 107-132. 

2. Bahar, I., B. Erman and A.R. Atilgan, Direct Evaluation of Thermal 
Fluctuations in Proteins Using a Single Parameter Harmonic Potential, Fold. 
Des., 1997. 2(3): p. 173-181. 

3. Bahar, I., B. Erman, R.L. Jernigan, A.R. Atilgan and D.G. Covell, Collective 
Dynamics of Hiv-1 Reverse Transcriptase: Examination of Flexibility and 
Enzyme Function, J. Mol. Biol., 1999. 285: p. 1023-1037. 

4. Barabasi, A.-L, R. Albert and H Jeong, Internet: Growth Dynamics of the 
World-Wide Web, Nature, 1999. 401: p. 130-131.  

5. Barabasi, A.-L. and R. Albert, Emergence of Scaling in Random Networks, 
Science, 1999. 286: p. 509-512 

6. Barabási, A. L., H. Jeong, Z. Néda, E. Ravasz, A. Schubert and T. Vicsek, 
Evolution of the social network of scientific collaborations, Physica A, 2002. 
311: p. 590-614 

7. Barrat A., M. Barthèlèmy, R. Pastor-Satorras, and A. Vespignani, The 
architecture of complex weighted networks, Proc. Natl. Acad. Sci., 2003. 
101(11): p. 3747-3752. 

8. Barthèlèmy, M. and  L.A.N. Amaral,  Small-World Networks:Evidence  for a 
Crossover Picture. Phys. Rev. Lett., 1999. 82: p. 3180-3183. 

9. Baysal, C. and A.R. Atilgan, Elucidating the Structural Mechanisms for 
Biological Activity of the Chemokine Family, Proteins, 2001. 43: 150-160. 

10. Baysal, C. and A.R. Atilgan, Relaxation Kinetics and the Glassiness of Proteins: 
The Case of Bovine Pancreatic Trypsin Inhibitor, Biophys. J., 2004. 83: p. 699-
705. 

 37



 

11. Baysal, C, P. Akan & A.R. Atilgan, Small-World Communication of Residues 
and Significance for Protein Dynamics, Biophys. J., 2004. 86: p. 85-91. 

12. Bernstein, F.C., T.F. Koetzle , G.J. Williams, E.F. Jr. Meyer, M.D. Brice, J.R. 
Rodgers, O. Kennard, T. Shimanouchi and M. Tasumi, The protein data bank: a 
computer based archival file for macromolecular structures. J Mol Biol 1977. 
112: 535–542. 

13. Braunstein, L.A, S.V. Buldyrev, R. Cohen, S. Havlin and H.E. Stanley, Optimal 
Paths in Disordered Complex Networks, Phys. Rev. Lett., 2003. 91, 168701. 

14. Braunstein, L.A., S. Sreenivasan, T. Kalisky, S.V. Buldyrev, S. Havlin and H.E. 
Stanley, Effect of Disorder Strength on Optimal Paths in Complex Networks, 
submitted to Phys. Rev. E, 2004. 

15. Chakravarty, S. and Varadarajan, R., Residue Depth: A Novel Parameter for the 
Analysis of Protein Structure and Stability, Structure, 1999 7: p. 723-732. 

16. Chen, R., W. Tong, J. Mintseris, L. Li and Z. Weng, ZDOCK Predictions for the 
CAPRI Challenge. Proteins, 2003. 52: p. 68-73. 

17. Goh, K.-I., B. Kahng and D. Kim, Universal Behavior of Load Distribution in 
Scale-Free Networks, Phys. Rev. Lett., 2001. 87: 278701. 

18. Guimerà, R., S. Mossa, A. Turtschi and L.A.N Amaral, Structure and Efficiency 
of the World-Wide Airport Network, preprint (available online at 
http://arxiv.org/abs/cond-mat/0312535) 

19. McCann, K., A. Hatings and G. R. Huxel, Weak Trophic Interactions and the 
Balance of Nature, Nature, 1998. 395: p. 794-798. 

20. Ming, D., Y. Kong, Y. Wu and J. Ma, Substructure Synthesis Method for 
Simulation Large Molecular Complexes, Proc. Natl. Acad. Sci., 2003. 100: p. 
104-109 

21. Miyazawa, S. and R.L.  Jernigan, Residue-Residue Potentials with a Favorable 
Contact Pair Term and an Favorable High Packing Density Term, for 
Simulation and Threading. J. Mol. Biol., 1996. 256: p. 623-644. 

22. Newman, M. E. J., The Structure of Scientific Collaboration Networks, Proc. 
Natl. Acad. Sci., 2001. 98: p. 404-409 

23. Newman, M. E. J., Scientific collaboration networks. I. Network construction 
and fundamental results, Phys. Rev. E, 2001. 64: 016131. 

 38



 

24. Newman, M. E. J., Scientific collaboration networks. II. Shortest paths, 
weighted networks, and centrality, Phys. Rev. E, 2001. 64: 016132. 

25. Rosen, K. H., Discrete Mathematics and Its Applications. 2003, New York, NY, 
USA: McGrav-Hill Companies, Inc. 

26. Strogatz, S.H., Exploring Complex Networks, Nature, 2001. 410: p. 268-276. 

27. Thomas, P.D. and K.A. Dill, An iterative method for extracting energy-like 
quantities from protein structures, Proc. Natl. Acad. Sci., 1996. 93: p. 11628-
11633. 

28. Voet, D. and J.G. Voet, Biochemistry (2nd Edition). 1995, Somerset, NJ, USA: 
John Wiley & Sons, Inc. 

29. Watts, D.J. and S.H. Strogats, Collective Dynamics of ‘Small World’ Networks. 
Nature, 1998. 393: p. 440-442. 

30. Watts, D.J., Small Worlds: the Dynamics of Networks Between Order and 
Randomness. 1999, Princeton, NJ, USA: Princeton University Press. 

31. Wilson, R. J., and J. J. Watkins, Graphs: An Introductory Approach. 1990, New 
York, USA: Wiley. 

32. Woolhouse, M. and A. Donaldson, Managing Foot and Mouth, Nature, 2001. 
410: p. 515-517 

 39



 

APPENDIX A: DIJKSTRA’s ALGORITHM 

Many different algorithms have been developed to find a shortest path between 

two vertices in a weighted graph. The one that is discovered by the Dutch 

mathematician Edsger Dijkstra in 1959 is used in our calculations. The algorithm 

simply proceeds by making the choice that looks best at each step6. 

In a weakly disordered network the optimal path between any two vertices i and j 

is considered as the path with minimum weighted sum of all edges on the way and is 

simply found by iteratively calculating the following series. 

{ })),(),,(min  11 jxkkij wxiLjiLL += −−  

Dijkstra’s algorithm proceeds by forming a distinguished set of vertices, Sk, at 

each step, k. Initially S0 = Ø and Sk, at each iteration, is formed from Sk-1 by adding a 

vertex, x, that is not in Sk-1 if it results in smaller sum – . The iterations 

are implemented until j is added to S

jxk wxiL  1 ),( +−

k [Rosen, 2003].  

An example with a weighted network of six vertices and nine edges is 

demonstrated in Figure A. The purpose is to find a shortest path between a and z. 

Initially S0 = Ø (no vertex is in circle) and the shortest paths to all other edges are 

assigned ∞. At each step a different vertex is added to Sk, finally z is added and the 

computation terminates. 

                                                 
6 http://www.cs.dartmouth.edu/~chepner/cs15/notes/22_graphs.html  
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Figure A. 1 Using Dijkstra’s Algorithm to find a shortest path from a to z [Rosen, 
2003]. 
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APPENDIX B: INTERRESIDUE CONTACT POTENTIALS 

B.1 Overview 

The problem, Protein Folding, is the most widely studied issue in the world of 

structural biology. The number of elucidated structures of proteins increase rapidly, and 

it becomes more and more possible to find a generalized answer for the problem day by 

day. However, current computational power is not enough for detailed molecular 

dynamics simulations that employ potentials for full atomic representations of proteins. 

Therefore, different approaches are also studied. One point of view is contributing the 

solution by deriving potential functions –energy like quantities– for interacting pairs of 

residues. Most of these statistical studies apply Boltzmann relation to the pairing 

frequencies of amino acids observed in known protein structures for their derivations. 

The works belonging to Thomas & Dill (TD) and Miyazawa & Jernigan (MJ) give 

quite successful approximations. MJ contact potentials are calculated statistically over a 

large set of known structures; on the other hand, TD contact potentials were calculated 

iteratively, over a relatively smaller set of proteins, until a convergence is reached. 

In our thesis, the set of contact potentials for both these two works are modified 

and used to assign the weights of connected residue pairs. The modification is simply 

like that; we first add the absolute value of the smallest potential to all potentials (i.e. 

the smallest, therefore, would be equal to zero), then for each different network we add 

the average weight of the network to all individual weights. 
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B.2a Thomas & Dill 

 

Table B. 1 TD Interresidue contact potentials [Thomas and Dill, 1996]. 

B.2b Miyazawa & Jernigan 

 

Table B. 2 MJ Interresidue contact potentials [Miyazawa and Jernigan, 1996]. 
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APPENDIX C: DATA SET 
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Table C.1 The list of complex systems used in our calculations. 

In Table C.1 one can find the list of all the complexes together with their unbound 

(or re-assembled from complex structure) receptor and ligand proteins.  

The ones with an x mark next to the name of the complex (also underlined) form 

the list of our decoy data set. 
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APPENDIX D: RESULTS IN DETAIL 

D.1 Fluctuation and Shortest Path Relation 

Previous research showed that there is a good agreement between residue 

fluctuations and shortest paths [Atilgan et al., 2004]. It was also shown that fluctuation 

and protein dynamics are correlated. Therefore, we expected interface residues to have 

higher shortest path lengths than ordinary surface residues. However, we have observed 

just the opposite, in section 3.3. 

The figures below (Figure D.1a and D1b) correspond the shortest path distribution 

of all residues and interface residues (of receptor and ligand of the complex, 1gla – 

Phosphotransferase) with different signs. The residues with the largest shortest paths are 

not necessarily the interface residues in the either receptor or the ligand.  
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Interface - Fluctuation Relation (1gla, ligand)
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Figure D. 1 Fluctuation of inteface residues for (a) receptor, (b) ligand. 

D.2 Average Shortest Paths in Receptors and Ligands Individually. 

In section 3.3 it was observed that the shortest paths (L; Lweak and Lstrong) best 

discriminate interface residues on the molten surface over all other surface residues 

even in the unbound form. It has been observed that the interface residues have slightly 

lower average shortest path values of the overall complex. How is the relation if we 

think of the receptors and ligands separately? Figure D.2 demonstrates this relation; 
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Figure D. 2 Comparison of average shortest path lengths -MJ potential set- for (a) 
receptors and (b) ligands. 

As seen from these graphs; in ligand proteins, residues having relatively higher shortest 

paths are more preferably to be interface residues. On the other hand, in receptor 

proteins the opposite is observed. So, in ligands interface residues fluctuate more; on the 

contrary, in receptors interface residues fluctuate less. 

D.3 Identifying Interface Residues with Clustering and Connectivity. 

In section 3.3 we have concluded that shortest path discriminates between 

interface residues and surface residues better than other network parameters (i.e. degree, 

strength, clustering coefficient and weighted clustering coefficient). The comparison of 

the values of these parameters between interface residues on molten surface and all 

other surface residues can be seen in Figure D.3 and D.4. 
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Figure D. 3 Comparison between interface residues and surface residues of (a) degree 
and (b) clustering coefficient. 

In Figure D.3, it is observed that both degree and clustering coefficient does not 

provide much clue to determine interface residues. The only difference is that, surface 

residues have a narrow range of both degree and clustering ((≈0,3 – ≈0.5 for C, and ≈4.5 

– ≈6 for k) while interface residues spread more (≈0,2 – ≈0.6 for C, and ≈3 – ≈7 for k). 
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When we consider the weighted averages of these two parameters (i.e. strength 

and weighted clustering coefficient) the results lead slightly different inferences. Figure 

D.4 demonstrates these differences. 
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Figure D. 4 Comparison between interface residues and surface residues of (a) strength 
and (b) weighted clustering coefficient. 

In Figure D.4, the same inference made for the clustering in Figure D.3 is valid 

for the weighted clustering. However, the comparison of average strengths leads better 
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discrimination between interface residues in molten surface and all other surface 

residues. In all complexes (except only one, considering overall strength), interface 

residues have lower weighted connectivity than other surface residues. 
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