BINDING PROTEINS IN THE SMALL WORLD OF RESIDUE NETWORKS

by .
Glingor Ozer
B.S. Chem. Kog¢ University, 2002

Submitted to Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of
Master of Science

Sabanci University
July 2004



© Giingér Ozer 2004
ALL RIGHTS RESERVE



annem’e
ve
babam a...



ABSTRACT

We analyze the network properties of a set of 59 pairs of proteins in their
bound and unbound forms. We verify that these "residue networks" are in the
"small world" class in their separate forms as well as in complex. We also
investigate the different network properties of interface residues compared
to those of other surface residues of the complexes. The results point that
the average shortest paths of interface residues are in general lower than
other surface residues even in their unbound forms. Moreover, the residues
that are used in the shortest pathways between the receptor and the ligand
are analyzed with the theory of betweenness centrality. When specific
weights are assigned to the links in the network, the same pairs of residue
types emerge as important hubs when complexation occurs. The calculations
are further implemented to decoy structures of 15 of the bound complexes,
with 10 decoys for each complex. We find the characteristic path length as
the most important descriptor for differentiating between decoys and native

structures.



OZET

Bu c¢aligmada 59 protein kompleksinin hem ayrik hem de baghh durumdaki ag
Ozelliklerini inceledik. Ag seklinde ifade edilen proteinlerin “kiigiik diinya”
Ozelliklerinin kompleks olusumu sonrasinda da devam ettigini gozlemledik. Ayrica,
baglanmada etkin rol oynayan amino asitlerin diger ylizey amino asitlerine gore —bagsiz
durumda bile— daha yiiksek ortalama en kisa yol degerlerine sahip oldugunu gordiik.
Reseptor ve ligand amino asitleri arasindaki en kisa yollarda kullanilan ve reseptor’den
ligand’a ge¢is noktalarini olusturan amino asit ¢iftlerinin kullanilan farkli kontak
enerjilerinden bagimsiz olarak, ¢ogunlukla, benzer oldugunu gosterdik. Daha sonra,
ayni hesaplamalar1 gercek ve bozulmus kompleks yapilarin ag o6zellikleri iizerinde
gerceklestirdik. Ortalama kisa yol degerleri yine en belirleyici 6zellik olarak ortaya
cikti. Ayrica Miyazawa ve Jeringan’in kontak enerjilerinin bu gercek ve bozulmus
yapilar icindeki reseptor-ligand gecis amino asitlerini daha iyi ayrimsadigini

gbzlemledik.
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1. INTRODUCTION

Understanding and predicting the protein function computationally is one of the
major scientific obstacles. Protein-protein interactions play a key role in the functioning
of proteins. The problem of Protein Docking (i.e. finding the geometry in which two or
more proteins interact under physiological conditions) arises here. Many scientists from
different backgrounds try to understand the logic behind this problem using different
methodologies. Although no satisfactory answer has yet been reached, every study
contributes to the solution in various ways and more importantly, all research done so
far, leads the researchers to new ideas, new techniques and new strategies.

Weng and coworkers have been developing a docking algorithm that, for the
present, takes into account pairwise shape complementarity, desolvation and
electrostatics simultaneously which gave good results [Chen ef al, 2003] in 2003
CAPRI' challenge. In our research, our purpose is to contribute to the understanding of
the docking problem with a statistical analysis of interacting proteins. We treat these
interacting proteins, on a coarse level, as residue networks. We use the carefully
selected set of Chen et al., consisting of 59 protein complexes. We also utilize decoy
structures for 15 of these 59 complexes.

Small World Network (SWN) properties have recently been shown to arise in
miscellaneous systems such as airport network [Guimera et al., 2003] social networks
[Wattz and Strogatz, 1998], neuronal networks [Wattz and Strogatz, 1998], food webs
[McCann, 1998], disease spreading [Woolhouse and Donaldson, 2001], scientific
collaborations [Newman, 2001], and the World Wide Web [Barabasi, Nature, 1999;
Barabasi, Science, 1999]. Also residue networks in proteins show SWN behavior
[Atilgan et al., 2004] and the analysis of complex structures of proteins is of great
significance since it is known that in all types of networks there is a strong relation
between structure and function.

Proteins perform their functions basically by binding to smaller molecules (i.e.
ions, fats, sugars etc.), nucleic acids, or other proteins. Conformational changes in the

unbound form of the proteins (frequently in the side chains, sometimes in the whole

! Critical Assesment of Prediction of Interactions



backbone) are commonly encountered and that is a main obstacle for the solution of the
docking problem. It is also observed for many systems that some residues are more
important than others while proteins are carrying out their functions. Here, some critical
questions arise: Is it also possible to observe that kind of key roles in residue networks?
How do the structural changes during binding appear while analyzing residue networks?
More importantly, may the representation of protein complexes as networks give a
concrete clue about the structural changes during binding, or structure-function

relationships?



2. PROTEIN COMPLEXES AS NETWORK STRUCTURES

In this research, proteins are treated as networks formed using the spatial
coordinates of atoms. We assume each residue as a different node. Two nodes are
connected by an edge if the distance between the pairs of residues is less than a

particular cut-off radius.

2.1 Overview

A network is basically any set of interconnected nodes. Here, by replacing the
term “node” with a particular object (telephone, computer, people, railroad, neuron etc.)
it will be possible to express any set of interacting entities as a network. In other words,
any complex system can be modeled as a network by using a clear definition for the
nodes and the interactions between the nodes.

Any network can be represented graphically as a diagram —called graph— with
vertices (sng. Vertex, any node in that graph) and edges (links connecting these

vertices) [ Wilson and Watkins, 1990].

D

Figure 2. 1 A simple graph with 6 vertices and 8 edges”.
For a better understanding, take the members of a population as the vertices, then

the edges can be any kind of relationship between each member like friendships,

? http://www.geom.uiuc.edu/~zarembe/graph3.gif
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business ties, etc. The brain is a network of neurons, organizations are networks of
people, and global economy is a network of national economies which are networks of
markets which in turn are networks of producers and consumers [SFI bulletin, vol.14
no.2]. Such networks that exist in real life have unique properties like error tolerance,
speed and flexibility. These characteristics play central roles in, for example, spreading
diseases through social networks or viruses through computer networks, or propagation
of power failures through energy grids. Therefore, understanding the roles of these
properties sufficiently will lead to better and more efficient design of networks, which

would lead to better productivity in various fields [Watts, 1999].

2.2 Small World Networks

At the extremes, a network may be considered to be either completely regular or
completely random; however, many biological, technological and social networks are
somewhere between these complete regularity and randomness. With the random
rewiring procedure shown in figure 2.2 [Wattz and Strogatz, 1998] it will be easy to
interpolate the regular and random networks. Starting from a ring lattice with n vertices
and k edges for each vertex, each edge is rewired at random with a probability p.
Consequently, the graph is tuned between ultimate regularity (»p = 0) and ultimate
randomness (p = 1).

Regular Small-world Random

Increasing randomness

Figure 2. 2 The transition through regularity and randomness in a simple topology.
Figure 2.2 [Watts and Strogatz, 1998] is a demonstration of the random rewiring
procedure for the interpolation between a regular network and a random network

without altering the number of vertices (n = 20, there are 20 nodes) and edges (k = 4,



each node has 4 connections to other nodes). In this process a vertex is chosen and the
edge that connects the chosen vertex to its closest neighbor is reconnected to another
vertex chosen uniformly at random over the entire ring. Duplication of edges is
forbidden, otherwise the edges conserve their original positions. This process is
repeated by moving clockwise around the lattice ring, considering each vertex in turn
until a lap is completed. Then, the same process is repeated for more distant edges until
all the edges are considered. So, for p = 0 the original lattice is preserved. As p
increases, the graph become more disordered. Finally, at p = 1, the graph has the
ultimate randomness with all the edges rewired randomly according to a Gaussian
distribution of the neighbors. The clear observation with this figure is that, for the
intermediate values of p the graph is highly clustered like a regular graph; on the other
hand, it has small values of characteristic shortest paths —also defined as Network
Diameter’ [Barthélémy, 1999]- like a random graph. Table 2.1 below shows this
difference in the characteristics of regular and random networks for three different

systems (film actors, power grid and C. elegans);

SYStem Lactual Lrandom Cactual Crandom
Film Actors | 3.65 2.99 0.79 0.00027
Power Grid | 18.7 12.4 0.08 0.005
C. elegans 2.65 2.25 0.28 0.05

Table 2. 1 Empirical examples of SWN’s; L = L.uuioms C>> Cranaom- [ Wattz and Strogatz,
1998].

According to this table, all three systems show SWN properties. Since these
systems are not hand-picked networks, it is quite logical to claim that small-world
phenomenon is probably generic for many large, sparse networks found in nature
[Wattz and Strogatz, 1998].

Thus, in order to deeply understand the general characteristics of SWNs, there are
two significant network properties; quantifying the amount of clustering, C and
quantifying the value of characteristic shortest path, L. Moreover, in real life, unlike the
ideal lattice ring in figure 2.1, the number of edges from vertex to vertex may differ.
Therefore, another important property quantifying the number of neighbors, 4, and its

distribution, p(k), should also be considered.

> http://www.ssec.wisc.edu/~billh/gbrain0.html
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2.2.1 Degree (k)

The number of neighbors of each node, for any complex network, has valuable
information on the structure of the corresponding network. In order to quantify this
characteristic, let p(k) be the fraction of nodes with £ neighbors [Strogatz, 2001]; £;
itself; on the other hand, is the number of neighbors that the i™ node has.

Atilgan et al. demonstrate the following contact distribution for residue networks.

surface core residues
D_z_r'esidues -
- overall
distribution
0.1 -

contact distribution, P(k)

2 6 8 101

number of contacts, k

Figure 2. 3 Degree distribution of residue networks [Atilgan et al., 2004].
These residue networks were constructed from proteins using a cutoff radius of 7 A, a
Gaussian distribution with a mean of 6.9 neighbors is constructed representing the
connectivity distribution of residue networks. The distribution in the graph above is in a
good agreement with that proposed previously for all 20 different types of amino acids

[Miyazawa and Jernigan, 1996].



2.2.2 Characteristic Path Length (L)

One of the most important statistics of graphs is the characteristic path length (L)
that is the average distance between every vertex and every other vertex. Distance here
does not refer to any metric space between vertices. Yet, the shortest path between any
two nodes is simply the minimum number of edges that must be traversed in order to
reach a vertex from another vertex, and L is the average of these over all nodes in the
system [Watts, 1999].

L itself is not indicative of the topology of a particular network. Instead, L scaling
(the scaling of L with n —the size of the network— or k& —the average number of
neighbors—) display some characteristic for the system.

The different behavior of L in a regular network and in a SWN is the change of L
with size; for a detailed explanation, in a regular network L increases linearly with the
size of the network (L ~n) and in a SWN L increases with the logarithm of the size of
the network (L ~ In(n)) [Barthe¢lemy, 1999].

More interestingly, a very good correlation between path lengths and dynamics of
the proteins were discovered [Atilgan et al., 2004]. Atilgan et al. compared the residue
fluctuations computed by the Gaussian Network Model, which many researches [Bahar,
1997; Bahar, 1999; Baysal and Atilgan, 2001; Ming, 2003] proved to be in an excellent
agreement with experimentally extracted B-factors, with the average path lengths of
individual residues. They found L to be in good agreement with residue fluctuations and

therefore experimental results.

2.2.3 Clustering Coefficient (C)

In a network, the density of neighboring clusters is an important factor
characterizing the topology of that network. Clustering coefficient (C;) of a particular
node is the probability that the neighbors of a node are neighbors of each other. C of a
network, on the other hand, is the average of the clustering coefficient of every vertex of

that network.



The clustering coefficient of a vertex with k neighbors is defined as follows. The
maximum number of edges interconnecting these & neighbors is k(k-1)/2; however, the
actual number is usually less than that maximum since in a spatial network of a
particular cut-off radius, it is very unlikely to have all the neighbors interconnected. The
ratio of this actual number to the maximum possible number of edges gives the
clustering coefficient of that particular vertex.

Atilgan et al. (2004) proposed a relationship of depth (i.e. the shortest distance

from a residue to the surface of a protein) with C and L values seen in the graph below;
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Figure 2. 4 vs. C and depth vs. L for three different system sizes [Atilgan et al., 2004].
The reasoning concerning the conclusion inferred from the graph above is discussed in

section 3.1.

2.2.4 Weighting Effect

Most studies concerning complex networks assume all the edges of the network to
be identical. In practice, however, the weights (e.g. the quality or cost) of these links are
not equal resulting in heterogeneity within a particular network. Ignoring the weights
might lead to an incorrect evaluation of the parameters mentioned before, or even the

whole network itself.



Recently, some researchers include this effect in their studies, and give new
definitions for the network parameters discussed in the previous sections. In this thesis,
two different weighting sets are used. These are the interresidue contact potentials
proposed by Miyazawa and Jernigan in 1996 (MJ Potential) and by Thomas and Dill
again in 1996 (TD Potential) [Miyazawa and Jernigan, 1996; Thomas and Dill, 1996].

2.2.4.1 Degree of Weighted Networks

The term obtained by extending the definition of vertex degree in terms of
assigning weights is stated as strength, s;. This new quantity measures the total weight
of the connections of a particular residue. As an example, consider the SCN, scientist
collaboration network [Newman, 2001a; Newman 2001b; Barabasi et al., 2002], the
strength defines the scientific productivity since it is equal to the number of publications
of any given scientist.

Strength of a particular node is an important measure of the significance of that
particular node in communication through the network. To quantitatively characterize
the role of network elements in information flow, a new term defined as the

betweenness centrality [Goh et al., 2001; Barrat ef al., 2004] has been used.

2.2.4.2 Betweenness Centrality

Betweenness centrality simply accounts for the number of shortest paths, between
all pairs in the network, passing through a given vertex. Centrality is often used in
transportation networks (e.g. WAN — world airport network) to estimate the traffic
handled by the vertices (e.g. airports).

Depending on the heterogeneity of the system, the quantity of betweenness
centrality, and thus the quality, of a node may vary. The reason for that is the difference
between definitions of shortest paths in weighted and non-weighted links. The level of
disorder in a particular network would lead the information flow between any two nodes
to have different paths than the paths in the weightless system. Thus, the residues
existing in the weighted shortest paths would differ.



2.2.4.3 Characteristic Path Length of Weighted Networks

Shortest path between any two nodes was previously defined as the minimum
number of edges that must be traversed in order to reach a vertex from another vertex.
Note that, considering shortest path as the least number of edges between two vertices is
meaningful only when all the edges are assumed to have the same weights.

When such a set of weights is applied, the network becomes disordered and there
arises a need for a new definition of L. We define two new Ls for the new disordered
network: Weak Disorder in which all links on the path contributes to the optimal path,
and Strong Disorder in which the power of a strong link dominates the optimum path

[Braunstein, 2003]; Lyear and Ly ong, respectively.

2.2.4.4 Clustering Coefficient of Weighted Networks

Clustering around a particular vertex could also become more designative with the
contribution of weights. Considering different links to have different values will lead a
better understanding of local cohesiveness. For, not only the number of closed triplets in
the neighborhood around a vertex but also the total of their relative weights is also
included in the quantification.

The global cohesiveness of a weighted network is closely related to the general
behavior of local clustering. If the weights of the closed triplets are more likely to have
larger weights than the others within the network, then the average weighted clustering
of the network will also be larger than that of a network with identical weights assigned
to each edge. Similarly, with smaller weights of the edges forming the close triplets, the
average weighted clustering of the network will have smaller value. Figure 2.5

demonstrates this on a small network of five nodes and seven edges;
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Figure 2. 5 Difference between the weighted and non-weighted clustering coefficient.

2.3 Proteins as Networks of Their Interacting Residues

In order to treat the proteins in our data set as networks, we have used the method
developed by Baysal and coworkers [Atilgan, 2004]. The generation of the networks
and calculation of the parameters of interest (C, L, and K) are implemented over all the

data set.

2.3.1 Protein Network Generation

Each protein is converted into a network by taking every residue in a structure as
a vertex and the interaction among them as edges [Yilmaz and Atilgan, 2000]. The
position of each residue is assigned the coordinate of Cg atoms of that particular residue
(Cq, for Glycine). Two residues are considered as connected if they are within distance
of a particular cut-off radius from each other (6.7 A in our calculations) and they are
said to be interacting/in contact. An example of a generated residue network is

demonstrated in Figure 2.6 with 7 A cut-off radius.

11



Figure 2. 6 Folded structure and network representation of 1- converting enzyme.

For each residue, their contacts are found by calculating the distance from the
corresponding residue to all the other residues. Therefore, an NxN matrix —where N is
the number of residues in the protein is formed by assigning the matrix elements a value
of 1 if the residues of interest are in contact and with 0 if not. This symmetric matrix,

the so called Adjacency Matrix, can be mathematically expressed as [Atilgan et al.,

2004];

H(r = 1;) i*)
41 o i— (M
=J

where r;; is the distance between the i" and j" nodes, H(x) is the Heavyside step function
given by H(x) = 1 for x > 0 and H(x) = 0 for x <0, and r, is the given cut-off radius.

All the properties C, L and K can easily be calculated using this matrix. These
computations differ slightly when the weighting term w;; for each pair of residues is

considered.

2.3.2 Calculation of Degree

The degree of a particular residue £; is simply obtained by counting the number of

neighbors of that residue. The mathematical expression is shown below;

N
k; = JZ_; 4; (2)
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Thus, the average connectivity of the network is just the arithmetic average over

ki

k,

1

i 3)

M=

K =

al

The strength, on the other hand, of a particular residue is calculated by simply
adding up the weights of every edge belonging to that residue. As follows [Barrat et al.,
2004],

N
S; :Z;Aij Wy 4)
=

Therefore, the average strength of the network is the arithmetic average over s;;

Si
X ®
N

2.3.3 Calculation of Betweenness Centrality

The definition of betweenness centrality includes a simple term — the percent

centrality (PC) of a particular node, which, here, is calculated by;
100
PC =—— E E b.
CONGEN, e (6)

where S and D are two different sets of nodes; source and destination, respectively and
Ns and Np are the number of nodes in both sets. On the other hand, b, is a function of
which value is either 1 when the i node is in the optimal path between the s” and d"
nodes, 0 otherwise.

When the source, S, is taken as the receptor residues and the destination, D, as the
ligand residues, the last residue in the receptor and the first residue in the ligand define
the contact pair used in the information flow within the complex protein [Barrat ef al.,

2004].

13



2.3.4 Calculation of Characteristic Path Length

It is not possible to calculate L directly from the adjacency matrix; yet, the powers
of this matrix lead to this information. If the shortest path between the i and j* residues
is d, then the ij" entry of the d” power of the adjacency matrix should become non-zero
whereas it is zero for all smaller powers. Thus, to get all the shortest paths between all
pairs of residues, the multiplication of the matrix with itself should run until all the
elements of the resulting matrix are non-zero. The mathematical expression for the
shortest path of a particular pair of residues, i andj is;

i.  if no weights are assigned for the links between pairs of residues;

Lij =n

wehere 7 is that power of 4; which is non-zero for the first time.

ii.  if different weights are assigned for different pairs of residues;

a. in weak disordered networks, the optimal path between any two vertices
i and j is considered as the path with minimum weighted sum of all edges
on the way, found using Dijkstra Algorithm (Appendix A);

b. in strong disordered network, on the other hand, the optimal path is the
path in which the maximum weight on the way is the minimum among
all other paths.

L;; will, therefore, be equal to the number of edges connecting the optimal paths
found for these two cases.
The average shortest path, L, when no weights are assigned for the edges can be

computed from [Atilgan et al., 2004];

N-1

N(N b2 2l )
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2.3.5 Calculation of Clustering Coefficient

C for the " residue of a particular structure with k neighbors is the ratio of the
number of actual connections between the neighbors of the i residue to the all possible

ones [Atilgan et al., 2004];

1 N N
*Z ZA”.A[,(A,C]
¢ =2 ®)
’ C(k,,2)

where C(k;2) is the combination relationship and counts the maximum number of
possible connections between the £; first neighbors.
When the elements of a particular network are not identical, the weights of

interconnected edges should be considered [Barrat et al., 2004].

Y (w, jk)
“ s%—DZZ A ®)

The average clustering coefficient of a particular network is, therefore;

=i (10)

2.3.6 The Data Sets

Recent developments in proteomics and structural genomics are resulting in a
continuously increasing number of single and complex protein structures deposited in
the Protein Data Bank.[ Bernstein et al., 1977; Abola et al., 1987] Yet the number of the
structures that form a complex is still limited with a few hundred deposited coordinate
sets, most of which are from a highly limited variety of proteins.

The complete list of the data set is in Appendix C.
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2.3.6.1 Native Complex and Unbound Structures

We have used a set’ of 59 complexes: 22 enzyme-inhibitor complexes, 19
antibody-antigen complexes, 11 other complexes and 7 difficult complexes (having
significant conformational change for more than half of the interface backbone residues,
see below for the definition of interface). Among them, there are 31 unbound-unbound
and 28 unbound-bound cases. Among the unbound-unbound test cases, 16 are enzyme-
inhibitor, 5 antibody-antigen, 5 others and 5 difficult.

There are two different definitions of interface residues analyzed separately in
this research. (i) Any residue having at least an atom closer than 10 A to any atom in the
corresponding protein (if the residue of interest is a ligand residue then the
corresponding protein is the receptor of the complex, or vice versa) then that residue is
said to be an interface residue, (ii) The limiting value in this second definition is 6.7 A
instead of 10 A, and the comparisons are made using only Cj (C, for Glycine)
coordinates instead of comparing all atomic distances.

On the other hand, surface residues are defined as the residues having at least an
atom within 4 A depth’ of the protein of interest [Chakravarty& Varadarajan, 1999]. The
values of atomic depths are calculated using Monte Carlo procedure outlined in their
paper. The depth of a residue is assumed as the depth of the atom with the lowest value

of distance to surface among all atoms of that particular residue.

2.3.6.2 Decoy Complex Structures

The other data set we have used is formed of 15 decoy complexes all of which we
also have the original complex structures in our original data set. In this set, there are 10
decoy structures for each case. The RMSDs of these decoy structures are ranging from

the lowest range of 9-10 A to the highest of 40-41 A. These decoys are selected from a

* http://zlab.bu.edu/zdock/
> Residue depths are calculated by the DEPTH program of Chakravarty1 and
Varadarajan (1999).
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much crowded list —of possible docked complexes generated— choosing the ones with
highest surface complemantarity scores by Weng and coworkers [Chen et al., 2003].
The data set of interface and surface residues used in the computational

implementation for these decoys are the same as mentioned in the pervious subsection.
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3. RESULTS AND DISCUSSION

We have used to different definitions for interface residues as mentioned in
section 2.3.6.1: (i) residues having at least an atom closer than 10 A to any atom in the
other protein of the complex, (i7) residues having their Cy (C, for Glycine) atom closer
than 6.7 to any Cg (C,, for Glycine) in the other protein of the complex. We have found
the results, with the latter definition, more considerable. Therefore, only these results

are introduced in this thesis.

3.1 Basic Network Parameters

We first repeated the study of Atilgan e al. using a cut-off distance of 6.7 A

instead of 7 A used in that work. We choose 6.7 A since it is the limit of the first
coordination shell. [Atilgan et al., 2003; Akan, 2002]

—e—overall
025 | complex (428 aa)
surface
—A—core
02}
0.15 }
p(k)
01 }
0.05 }
o&—A/ : A—A
0 2 4 6 8 10 12 14

Degree



025 | receptor (279 aa) —e—overall
surface
—aA— core
02}
0.15 }
p(k)
o1}
0.05 }
0 l—ik . i
0 2 4 6 8 10 12 “1 .
Degree
i I
025 } ligand (134 aa) —e—owera
surface
—aA— core
02}
0.15
p(k)
01}
0.05 }
O“—A A . - —ASI A_‘
0 2 4 6 8 10 12 14
Degree

Figure 3. 1 Residue contact distribution at 7. = 6.7 A for the (a) complex, (b) receptor,
(c) ligand.

Previous research shows that the distribution over connectivity displays a
Gaussian distribution for both the hydrophobic core and molten surface residues. Note
that Atilgan et al. demonstrate this property of residue networks at 7 A cut-off. A
similar distribution was observed Miyazawa&Jernigan for each of the 20 amino acid
types [Miyazawa&Jernigan, 1996]. The graphs above are plotted using the results of
residue networks with 6.7 A. The observation of a Gaussian distribution does not
change with the size of the networks: the residue network of (a) the whole complex with

an average of 428 amino acids per complex (b) only the receptor proteins with an
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average of 279 amino acids per protein (c) only the ligand proteins with an average of

134 amino acids per protein.

In the same study of Atilgan et al. the relation of C and L with residue depth was

investigated (again at 7 A cut-off) separately. They have shown that the clustering

coefficient is independent of network size, and the value of C approaches a fixed value

of 0.35 at depths greater than 4 A. On the other hand, the characteristic path length

decreases consistently with depth, and as the network size increases, the curve shifts to

higher values. In our study, similar results with identical inferences are extracted with 7,

= 6.7 A (Figure 3.2). There is a difference observed at the converged value of C (0.35

—0.31).
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Figure 3. 2 Depth dependence of network parameters; (a) degree, (b) clustering
coefficient, (c) characteristic path length.

3.2 Proteins Organize into Larger Networks by Binding

The presence of SWN properties in proteins has already been shown in previous
research [Atilgan et al., 2004], and in the previous parts of this thesis. Is the same status
valid for protein complexes? To answer this question, we have analyzed the networks
formed by the complexes of our data set. The results strongly support the idea that the
bound complexes of proteins behave also as SWNss.

As mentioned in section 3.1, C —irrespective of system size— decreases from a
value of 0.55 and at depths greater than 4 A become fixed at a value of ca. 0.31 (for r, =
6.7A). Figure 3.3 shows that the average C values of interface residues decreases after
the complex formation, indicating that the surface residues of unbound proteins gain
core status upon complexation. Note that interface residues are thos that reside on

different proteins and that are at most 6.7 A from each other.
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Figure 3. 3 Clustering coefficients of the interface residues.
That the bound proteins form a perfect match so that the interface resembles the

inside of a single protein, is also indicated by the change in the average connectivities of

the interface residues;
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Figure 3. 4 Connectivities of the interface residues.
The depth-connectivity relation was discussed in section 3.1 (Figure 3.2a), suggesting
an increase from the molten surface to the hydrophobic core approaching a value of ca.
9. The graph above demonstrates the increase in the average connectivity of interface
residues; however, it does not approach the values of the core. The connectivity indeed
never reaches 9 except for a few complexes, proposing that the depth of interface

residues in the complex structure is not so high.
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3.3 Identifying interface residues by comparing path lengths in unbound forms

The agreement of shortest paths with residue fluctuations, thus with protein
dynamics, was discussed in section 2.2.3. Therefore, it is quite reasonable to expect
some residues —interface residues in our definition— to have higher shortest paths than
others since proteins function via the residues that fluctuate dynamically in space.
However, the results do not support those expectations with all three calculations of L

(i.e. weighted strong disorder and weak disorder, and weightless) as seen in figure 3.5.
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Figure 3. 5 Comparison of average shortest path lengths (MJ potential set).
The average shortest paths of interface residues that are placed at a depth of 4 A or less
(i.e. in the unbound forms of the receptor and the ligand, separately) are compared with
those of all other residues that reside at the same depth. The result does not reflect our
expectation that the interface residue would have higher L than that of an arbitrary
surface residue (discussed more in Appendix D.1). On the contrary, the latter has
slightly higher shortest paths on average. A similar graph and same inference is made
from the results of links weighted by Thomas and Dill’s set of contact potentials, as

seen in Figure 3.6.
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Figure 3. 6 Comparison of characteristic path lengths (TD potential set).

From this figure (note that, the weightless average shortest paths are not included)
and Figure 3.5, we can propose that changing the weights of the interacting residue
potentials does significantly change the quantitative values of L.

The quantitative change can be clearly observed from the following comparison
of average shortest paths of surface residues calculated with MJ and TD contact
potentials, separately. As one can see in Figure3.7a and Figure 3.7b, in the data
calculated with MJ and TD potentials, Ly and Ly, are strongly correlated. Besides,
the difference between Lyong and Ly calculated with MJ potentials is almost identical
with the difference between Long and Ly.qx calculated with TD potentials.

The results for receptors and ligands (separately) are discussed in Appendix D.
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Figure 3. 7 Comparison of L of all surface residues calculated using (a) MJ potentials.
(b) TD potentials.

3.4 Amino acid based analysis of residue networks

The characteristic network parameters are also used to compare the possible
different behavior of amino acid types. The global properties K and C should obviously
differentiate between residue types. For example, the inference that is made in section
3.2 —that small proteins organize into larger systems with the same properties upon
binding— could be proved applying the same comparison as in that section onto different
types of amino acids. The same hypothesis of depth-K and depth-C relation is used, and

thus the following two graphs support our theory of the formation of a larger network
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with the same properties (complex) from binding of two smaller networks (receptor and

ligand).
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Figure 3. 8 (a) Clustering coefficient, (b) connectivity of interface residues in unbound
form vs. in complex form.

From the above two figures, it can be inferred that all characteristics of small
world networks are also well fitting with the averaged amino acid values of SWN

parameters K, C, and L.
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3.5 Native Structures vs. Decoy Structures

Since decoy structures of complex proteins are formed by misdocking of ligand to
receptor, one can rightfully expect different behaviors from complex networks. Yet, our
calculations concerning both native and decoy structures result in no clear difference
between their SWN parameters. As an example, the following five figures compare C,
K and L values of interface residues belonging to both type of structures (note that,

Lirong and Ly, are calculated using MJ potentials set);
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Figure 3. 9 Clustering of interface residues of native and decoy structures.

In Figure 3.9, relatively higher values of C of interface residues in decoy
structures with respect to that in native structures is observed (i.e. ca. %70 of all three
kinds —receptor, ligand, and complex— have higher values for decoys). That is a good
demonstration of wrongly bound proteins. Since the geometric docking of a particular
ligand over a particular receptor requires the perfect matching of protrusions with
intrusions, decoys not fulfilling that matching would clearly result in less clustering in
the interacting part of the complex. It is also observed that the clustering coefficient of

the native structures spans a broad range (from 0.3 to 0.4), yet that of decoys span in

27



relatively narrow range (from 0.27 to 0.43). Same range difference is also observed

between the connectivities of decoy structures and native structures (Figure 3.10).
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Figure 3. 10 Connectivity of interface residues of native and decoy structures.
Connectivity of the same interface residues, on the other hand, does not differ between
native and decoy structures in any way, although our expectation includes relatively
lower K values for decoys since the possibility of forming new neighbors is low because

of the lack of exact geometric match.

*

4.00 f ] H receptor

x=y
¢ ligand
3.50 } complex

3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00
L - Native

Figure 3. 11 L of interface residues of native and decoy structures.
Using the same justifications made for the reasoning of Figure 3.9 above, the

relatively high values of L in Figure 3.11 is explained. The lack of all possible contacts
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between receptor and ligand prevents some optimal paths existing in native structure to
occur in decoys, again due to non-exact geometric match. L., shows a similar
behavior in the comparison between native structures and decoy structures (Figure

3.12).

8.00

7.50 F

7.00 } -

Lweak - Decoy
o
o
S
*
*
Le
[ *
'0

4.50 F

4.00 F [ ] W receptor
x=y

¢ ligand

3.50 f complex

3.00 1 1 1 1

3.00 4.00 5.00 6.00 7.00 8.00
Lweak - Native

Figure 3. 12 L., of interface residues of native and decoy structures (TD).
Contrary to the fact inferred in the previous graph, Figure 3.13 —demonstrating the

comparisons of Lg;,ne — shows no difference between native and decoy structures.
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Figure 3. 13 L., of interface residues of native and decoy structures (TD).
The reason for this observation hides in the definition of Lg;one (i.€. the optimal

path is dominated by a strong link on the way). In the line of this definition, the Ly ong
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does not depend on the number of contacts between a receptor and a ligand unless the
mismatch of the geometry does not cause the loss of a strong link between receptor and
ligand existing in the native structure. Therefore, the scatter in the graph in Figure 3.13
is quite reasonable.

Figure 3.12 and 3.13 are drawn using the data calculated by TD potentials. Similar
graphs and same inferences are observed with the data calculated by MJ potentials.

3.6 Contact Residues used in the Shortest Paths

It is also of interest to determine the amino acid pairs that significantly couple in
bound complexes. In this part of the thesis, the pairings existing in the shortest
pathways from every node in the receptor protein to every node in the ligand protein are
analyzed.
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Figure 3. 14 Receptor—Ligand residue contacts with (a) MJ and (b) TD potential sets
(native).

The figures above reflect the percentage of amino acid pairs used in the optimal
paths from every residue in receptor proteins to every residue in ligand proteins for
calculations of L with both strong disorder and weak disorder. While choosing the pairs,
the percent occurrences of strong disorder and weak disorder cases are added up and the
top 20 pairs are graphed. (Notice that the values seen in the labels equal the total
percentage of these 20 pairs).

The role of weights —the TD and MJ contact potentials calculated differently— can
be clearly seen. The 20 pairs, in each diagram, are chosen among all the possible 400
pairs of 20 different amino acids.

There are 10 pairs (ILE-LEU, TYR-ASN, VAL-GLY, PHE-HIS, LYS-PRO, THR-
ASN, TYR-HIS, LEU-ARG, ASN-GLY, and PHE-MET) occurring in both top 20 used
contact residues data (50 percent difference) extracted using TD and MJ contact energy
sets. That shows the different behavior of a system with different weights.

As expected, in figure 3.14a, most of the pairs agree with the suggestion of
Miyazawa and Jernigan saying that their set of contact potentials are well fitting with
the hydrophobicities attained by experimental data. Only 5 of each 40 amino acids
forming the 20 pairs are not hydrophobic, and it is quite sensible that hydrophobic
residues prefer to cover the surroundings with other residues more than water itself. The
other interesting observation in this same figure is that the total percentage of the 20
pairs existing in the graph gives similar results; %3/ and %23 for strong and weak
disorder, respectively. That is also consistent when we think of their contact potential

data; noting that (from Appendix B) the values of hydrophobic interactions are much
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higher than that of hydrohobic-polar or polar-polar interactions on average and the
different hydrophobic contact energies for different hydrophobic pairs are very close to
each other [Miyazawa&Jernigan, 1996].

On the other hand, in figure 3.14b the difference in the total percentages are
relatively higher (total with strong disorder is 33% while it is 22% for weak disorder).
The deviation of the hydrophobic interaction potentials that Thomas and Dill suggested
is much higher than that of potentials suggested by Miyazawa and Jernigan, the same is
also true for hydrophobic-polar and polar-polar interaction potentials [Thomas&Dill,
1996].

The two graphs above are the demonstrations for native structures of complex
proteins. We now would like to see if a similar inference is possible for decoys. The
following two bar type graphs reflect the results for decoy structures:
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Figure 3. 15 Receptor—Ligand residue contacts with (a) MJ and (b) TD potential sets
(decoy).
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A first glance to the graph extracted with the MJ potentials set, the number of
polar residues in the top 20 pairs increased from 13 (out of 40) in the native set to 18
(out of 40) in the decoy set. A similar increse from 16 to 26 occurs with TD potentials
set.

Better explanations could be claimed by the following graphs comparing the
behavioral differences between native and decoy networks.

4

MJ - Strong Disorder | odecoy (%30)  mnatie (%23)

35 F —

% occurrence
N

1

LEU- MET- THR- GLN- VAL- ARG- LEU- ALA- THR- SER- LEU- ILE- ILE- VAL- SER- LEU- ALA- PRO- VAL- VAL-
SER ASN LEU LEU GLY TYR ILE CYS ILE LEU THR GLY THR ILE CYS VAL LEU PHE THR TYR

45
\ MJ - Weak Disorder | odecoy %22 mnative (%22)
35 F —
o
c
Qo5 H
1
=]
O 2¢
(8]
[0}
°\°15'
et At dedant
0.5 H .
A !II!I'I'“I HEN Illllﬁ!

LYS- MET- THR- THR- VAL- VAL- LYS- GLY- LEU- VAL- GLN- GLN- ILE- VAL- ASN- GLN- LEU- LEU- LEU- ILE-
SER ASN LEU THR ILE GLY PRO THR ILE VAL LEU SER GLY THR LEU THR VAL ARG SER LEU

Figure 3. 16 Receptor—Ligand residue contacts (native vs. decoy structures) of (a)
strong disorder and (b) weak disorder (MJ potentials).

Using the figures above, the clear and useful inference could be the dramatic
difference between the total percentages of weakly disordered native and decoy
networks; native structures have almost twice as large contribution in the top 20 pairs

than that of decoy structures. Therefore, identifying receptor-ligand contact residues
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used in the weakly disordered optimal paths could be a good strategy of discrimination
of native from decoy structures.

Looking at the total percentages, the difference in figure 3.16b and figure 3.17.a-b
could be regarded negligible. However, a closer look would show that the values differ
dramatically for individual pairs. For example, LEU-SER (figure 3.16a) pair has a
percentage of 3.5 in native networks; however, it has only a percentage of ~0.5 in decoy
networks. Similar inferences could be made with many pairs in both strong and weak
disorder data extracted both with the MJ set (above) and the TD set (below). However,
MIJ set obviously discriminates better between decoys and natives since the calculations
with MJ potentials result in greater difference between the values of individual pairs.
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4. CONCLUSION

In this thesis, a set of 59 protein-protein complexes, and the unbound proteins that
form the complexes, are converted into networks of interacting residues and their
network properties are examined.

The formation of a new network that emerges by the binding of a ligand protein to
its receptor is shown to carry the characteristics of a small world network (i.e. the
contact distribution of the complex is the same as that of single proteins, the depth
dependence of average shortest path and average clustering is in good agreement with
the known relation). The same agreement is shown to exist with the calculations
averaging the K and C values of different types of amino acids.

The identification of interface residues in the native structures of complexes is
also tested with different definitions of shortest path (i.e. shortest path with no weights,
L, with weak disorder L., and with strong disorder Lgne). Results suggest a relatively
lower value of average shortest path of interface residues that are in the molten surface
compared to that of all other surface residues. The same comparison of the small world
characteristics between native structures and decoy structures are also implemented. L
and L., comparisons show that the decoys have relatively higher values than the
native structures. On the other hand, Lgn,, C and K results do not reflect any
discriminating characteristics between these different structures.

Receptor to ligand residue contacts are analyzed in the final part of the thesis.
Here we give importance not to all residues in the interface, but only to those residues
that are most frequently used in all the possible pathways between the receptor and the
ligand. These pairs mostly consist of hydrophobic residues with the calculations using
both the MJ and TD potential sets. It was also observed that these pairs are different in
strong disorder and weak disorder. However, we are led to different results depending
on which set is used in the calculations. For example, the percentage of hydrophobic
residues within the top 20 pairs is relatively higher for the MJ case. In addition, pairs

are observed to differ between the results of native structures and decoy structures. It is
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shown that the MJ set discriminates between the decoy and native structures in the
strong disorder case, whereas TD set is more discriminating in the weak disorder case.
Nevertheless, irrespective of the potential set used, we find /LE-LEU, TYR-ASN, VAL-
GLY, PHE-HIS, LYS-PRO, THR-ASN, TYR-HIS, LEU-ARG, ASN-GLY, and PHE-MET
pairs to be frequently utilized in complexation.

In future studies, one might bring together these network features to develop a
methodology to discriminate the structures closest to the native complex from amongst
a large set of structures reproduced by a prediction algorithm. It should also be possible
to point out an irregular network structure along the interface. Such a property will
especially be useful to determine situations where there is substantial structural change

upon binding.
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APPENDIX A: DIJKSTRA’s ALGORITHM

Many different algorithms have been developed to find a shortest path between
two vertices in a weighted graph. The one that is discovered by the Dutch
mathematician Edsger Dijkstra in 1959 is used in our calculations. The algorithm
simply proceeds by making the choice that looks best at each step’.

In a weakly disordered network the optimal path between any two vertices i and j
is considered as the path with minimum weighted sum of all edges on the way and is

simply found by iteratively calculating the following series.

LU = mil’l{Lk_l (la j))Lk—l (l’ x) + ij )}

Dijkstra’s algorithm proceeds by forming a distinguished set of vertices, S, at
each step, k. Initially Sy = @ and S;, at each iteration, is formed from S ; by adding a

vertex, x, that is not in Sy, if it results in smaller sum — L, ,(i,x)+w, . The iterations

are implemented until ; is added to S [Rosen, 2003].

An example with a weighted network of six vertices and nine edges is
demonstrated in Figure A. The purpose is to find a shortest path between a and z.
Initially Sy = @ (no vertex is in circle) and the shortest paths to all other edges are
assigned c. At each step a different vertex is added to S, finally z is added and the

computation terminates.

% http://www.cs.dartmouth.edu/~chepner/cs15/notes/22_graphs.html
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Figure A. 1 Using Dijkstra’s Algorithm to find a shortest path from a to z [Rosen,
2003].
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APPENDIX B: INTERRESIDUE CONTACT POTENTIALS

B.1 Overview

The problem, Protein Folding, is the most widely studied issue in the world of
structural biology. The number of elucidated structures of proteins increase rapidly, and
it becomes more and more possible to find a generalized answer for the problem day by
day. However, current computational power is not enough for detailed molecular
dynamics simulations that employ potentials for full atomic representations of proteins.
Therefore, different approaches are also studied. One point of view is contributing the
solution by deriving potential functions —energy like quantities— for interacting pairs of
residues. Most of these statistical studies apply Boltzmann relation to the pairing
frequencies of amino acids observed in known protein structures for their derivations.

The works belonging to Thomas & Dill (TD) and Miyazawa & Jernigan (MJ) give
quite successful approximations. MJ contact potentials are calculated statistically over a
large set of known structures; on the other hand, TD contact potentials were calculated
iteratively, over a relatively smaller set of proteins, until a convergence is reached.

In our thesis, the set of contact potentials for both these two works are modified
and used to assign the weights of connected residue pairs. The modification is simply
like that; we first add the absolute value of the smallest potential to all potentials (i.e.
the smallest, therefore, would be equal to zero), then for each different network we add

the average weight of the network to all individual weights.

42



B.2a Thomas & Dill

Cys Met Phe lle Leu Val Trp Tyr Ala Gly Thr Ser Giln Asm Glu Asp His Arg Lys Pro

Cys |-1.78 -1.23 -0.88 048 -0.59 -0.34 -0.30 -0.96 -0.30 -0.42 -0.35 -0.20 -0.48 032 004 055 -0.82 -0.40 000 OOF
Mat D.36 -1.03 041 031 084 -0.07 -1.10 0.05 0.00 006 -047 054 031 002 1.07 -0.35 0.43 0.55 -0.3%
Phe -0.61 066 -1.02 -0.76 -0.69 -0.32 -0.05 021 -0.19 0.14 010 0.02 019 020 -0.75 -0.22 -0.17 -0.43
lle 071 -1.04 -0.35 -0.6% -0.87 -064 040 -0.29 -0.13 -0.3% 030 020 004 -0.52 006 -0.26 D25
Leu -1.14 -1.03 -0.97 -0.60 -0.57 -0.08 -0.39 -0.07 -0.13 0.10 <005 050 -0.36 010 010 QOB
Val -1.15 -0.60 -0.70 -0080 -0.20 0.06 -0.31 -0.09 -0.24 002 025 -0.35 -0.45 -0.09 -0.08
Trp 002 099 -0.08 -0.14 0.07 -0.z0 040 0838 032 024 -0.41 -0.75 -0.30 -0.44
Tyr 0.35 -0.37 -0.32 023 025 -0.38 074 022 0.1 -0.67 0.21 -0.20 -0.45
Ala -0.0& -0.09 -0.22 -004 -0.41 0014 003 010 -0.5 0.07 000 D41
Gly 0.04 D.13 -004 042 .93 0.40 -0.0E 0.00 -0.15 0.10 D4D
Thr 0.26 0.05 -0.17 .27 015 003 -0.27 017 0.09 D36
Ser -013 D40 D37 030 009 058 D61 018 044
Gin -o.0e 005 062 048 0.05 082 0.04 0.2
Bsn 088 025 012 0.05 D04 012 011
G&lu 021 088 -053 -026 -009 033
Asp 080 -0.08 -0.15 -0.09 D.B4
His 0.14 001 0.14 -0.22
Arg 0.23 0.30 0.0
Lys 145 051
Pro el

Table B. 1 TD Interresidue contact potentials [Thomas and Dill, 1996].

B.2b Miyazawa & Jernigan

Cys Met Phe lle Leu Val Trp Tyr Ala Gly Thr Ser Asn Gln Asp Glu His Arg Lys Pro

Cys J-5.44 439 -5B0 -ER] -5.33 -4.96 -4.85 -4 1€ -357 -3.16 -3.11 -2.E5 -2.5-9 -2.B5 241 22-7 -260 -2.57 -1.95 -307
Met -5.46 <6506 002 -5.41 -5.32 -5.55 -£.91 -394 -3.39 -3.51 -3.03 -2.85 -3.30 -257 -2.89 -395 -3.92 -2.46 -3.45
Phe -7.26 8B4 726 6529 618 -5.66 -4.81 -4.12 £28 402 -375 410 248 -358 -4 77 -3.85 -3.36 ~4.25
lle 554 -7.04 505 -5.78 -5.25 -4.58 -3.78 -403 -3.82 -3.24 -3ET 217 2327 444 -3E3 -3.01 -ATE
Leau -7.37 645 -6.14 -5.67 -4.81 -4.16 -£ 34 -3 82 -3 74 4[4 -240 -3.59 -4.54 -4.03 -3.37 -4.20
Wal -5.52 -5.18 462 -4.04 -3.38 -3.46 -3.05 -2.83 -3.07 -2.48 -2.87 -3.58 -3.07 -2.4% -3.32
Tr|:| -5.0E -4 6E -382 -3.42 2322 280 S307 2311 -ZB4 2209 22098 -3.41 268 2273
Tyr 417 -3.35 -3.01 -3.01 -2.78 -2.76 -207 -2 78 -2.79 -3.52 -3.96 -2.60 -3.19
Ala -272 231 232 20 -1.84 <188 170 -1.81 <241 -1.E3 131 <203
Gly 234 208 182 174 -1.88 -1.50 -1.22 215 -1.72 -1.15 -1.87
Thr -212 -1.85 -1.88 -1.90 -1.80 -1.74 <242 -1.00 -1.31 -1.3

Ser -1.ET 156 -140 -1 63 -142 211 -1.62 -1.05 -1.57
Asn .66 171 -1.68 -151 208 -1.64 -1.21 -1.53
Gln 154 <148 142 2198 -1.ED -1.28 <173
Asp 21 -1.02 232 -2.29 -1.66 -1.33
Glu 0081 -215 -2.27 180 126
His -305 -2.18 -1.35 -2.25
Arg -1.55 -0.38 -1.70
L]lg -0.12 -0.37
Pro 173

Table B. 2 MJ Interresidue contact potentials [Miyazawa and Jernigan, 1996].
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APPENDIX C: DATA SET

Complex” Receptor”  Ligand"  Receptor Description Ligand Description RMSDMA) CA" AASATAY
Enzyme-inhibitor (22}
Unbound-unbound (16}
IACB(E:D)  SCHA(A)  ICSE() o -chymotrvpsin Eglin 07 | 1540
IAVWI{AB) 2PTN IBATA)  Trwpsin Sovhean Trypsin inhibitor (.35 0 1740
IBRC(E:IX__IBRA 1AAP(A)  Trypsin APPI 044 0 1320
IBRS(A:D)  IA2P(B) IAI%A)  Bamase Barstar 0,47 0 1560
ICGIED ¥ ICHG IHPT  a-chymotrypsinogen Ef';:‘l‘l;“]:;:;;’]':m“ | 4% 14 2050
ICHOGE: Dy  SCHALA) 200 i -chymotrvpsin Crvompcoid 3rd Domain - (.39 I 1470
ICSE(ED  15CD IACB(I)  Subtilisin Carlsbers  Eglin 043 0 1480
|DFJ1:E) X 2BNH TRSA  Ribonuclease inhibitor Ribonuclease A 104 13 2580
IFSSIA-BIX ZACEE) _ |Fsc  Snake Venom Fasciculin 11 0.75 11970
Acetylcholinesterase
IMAH(AF)  IMAA{B)  IFSC fi‘iﬁmnmw“u Fasticulin 2 0.6 02150
ITGS(Z:I)  2PTN IHPT  Trypsinogen ﬁ_’;?:“;’;ﬁ;‘:'”r-" 149 17 1720
IUGH(ET) % TAKZ 1UGIA) ;ﬁ:‘_‘;;_;;:“""mﬁ‘ Inhibitor 0.53 I 2190
IKANABI X 2PKA(XY)  6PTI Kallikrein A Trypsin inhibitor 07 31420
WPTC(ET)  2PTN 6PTI -ty psin f:l:;?;':‘“ trypsin 032 0 1430
ISIC(EN X ISUP 3581 Subtilisin BPN Subtilisin inhibitor 0.4 0 1620
ISNIEL)  ISUP WA Subtilisin Neva Chymaotrypsin inhibitor 2 0.37 0 1630
Unbound-bound (&)
IPPE(E:I)  2PTN IPPE(l)  Trypsin CMT-1 027 0 1690
ISTF(E:I) PPN ISTF(I)  Papain Stefin B 0.25 0 1790
ITABET}  2PTN ITAB(I}  Trypsin BRI 027 0 1360
IUDKET)  IUDH D) ;”l"“:;:“]f::'“”“ nhibitor 036 0 2020
ITEC(E:l)  ITHM ITECIY  Thermitase Eglin 014 0 1560
JHTC{LH:1)  2HNT(LCEF) 4HTC(I) A —Thrombin Hirudin 0,56 2230
Antibody-antigen (19)
Unbeund-unbound (%)
|AHWI(DE-Fi% FGNILH} __IBOY ___ Antibody Fab 5G9 Tissue Factor 071 11900
|BVK(DE-FI X IBVLILH} _ 3LZT Antibody Hulysl 1 Fyv  Lysozyme 1.22 301400
IDONAR:C) X IDOOYLH)  3LZT Fivhel - 63 Fab Ly sozyme 073 31760
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IMLCIAB:E) ¥ IMLE(AR)

I'WENLH:Fix 1QBLILH])
Unbound-bound { 14

IBOLILH:Y) 1BOL(LH)

IEOR(LH-A) 1EO8(LH)

IFBIILH:X)  IFBHLH)

HAIMILH)  TATF(LH)

IJHLiLH:A)  LIHL{LH)

IKXO(DE)  IPIF(A)

IKXT(AB)  IPIF(A)

IKXVIAC)  IPIF(A)

IMEL{B:M)  IMEL(B)

INCA{LHN) INCA(LH)

INMB(LH:N) INMB(LH)

IQFU(LH:A) 1QFU{LH;

VEL(LHP)  2JEL(LH)

WVIRIAB.C) 2VIR(AB)

(Others (11)
Unbound-unbound (5)

LAVZB:CIH AVV

ILOY(A'B)  IBEC
IWOLGRIX IWER

IMTA(LHA) 2BBK(LH)

IPCCIABIH ICCA

Unbound-bound (6}
LADCHA:B)
LATH{A: D}

ICHN
IATN(A)

IGLA(G:F)  IGLA(G)

1LZA

1HRC

1DKJ
IVIL(A)

1HHL
MAI(LH)
1GHL{A)

IKXQ(E)

IKXT(B)

TKXV(C)

ILZA

THNG

THNG

IVIL A
1POH

2VILIA)

15HF(A)

1B1Z(A)

P21

1AAN

1¥YCC

LADOVE)

3DNI
1F3G

lgGl D44.1 Fab
fragment

[2Gl E8 Fab fragment

Hvhel - 3 Fab
Bhl51 Fab

IeGl Fab fragment
[pCi] Idiotypic Fab

lgGl Fv Fragment
o-amy lase
o-any lase

o-any lase

Wh Smgle-Domain
Antibody

Fab MC4]

Fab NC 10

[gel-k Fab
Jel42 Fab Frogment

[ggl-lamda Fab

Lvsouryme

Cvtochrome ©

Ly sounyme

Influenzn Virus
Hemagglutinm

Lysowyvme
lpe2A Anti-Idiotypic Fab
Lvsoayme

Camelid AMDS Vhh
Denmain

Camelid AMBT Vhh
Denmain

Camelid AMDILO Vhh
Damain

Lyvsomvme
Infleenzn Virus
Newraminidase

Influenen Virs
Neuraminidase

Influenzn Virus
Hemagglubimn

A06 Phosphotransferase

Influenza Virus
Hemagglutnin

F¥M tyvrosin kinase SH3

HIV-1 MEF e

T Cell Receptor P Exoteniii &1
chain

RAS activating doman RAS
Hicyaing Amicvanin

dehvdrogenase

Cytochrome O
Peroxidase

Che A
Actin

Cilveerol kinase
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Iso-1-Cytochrome C

Che Y
Drecmyribonuelease 1

GSF I

(LE3

0.32

(.32

028

.5
(.99
(.26

.43

039

024

R

027

018

041

0.73

083

(&3

i
12

(2

1390

11RO

1630

530

L9
1850
1240

2140

620

L6520

L &80

LS50

1350

L840

1500

1260

1260

130

2910

1460

1140

130

1770
1300



IGCILH: Ay IHGC{LH) 1GD IpGl Fab Fragment  Protein G .74 1 1330
1SPBR{S:P) ISP ISPB{P}  Subbilisin Sublilisin prosegment 0,35 0 2230
IBTF APy 2BTF(A) I1PHE t —Actin Profilin 029 0 2060

Difficult Test Cases (7)
Unbound-unbound (5)

Pancreatic trypsin

IBTH(LH:P) 2HNT(LCEF) 6PTI Thrombin mutant o 191 18 2370
g CDE2 evelin- o . 3
IFIN(A:B)  THCL IVIN ot kimse 2 CYelin 466 59 3400
IFOIB:A)  IB3%A)  IFPZ(F) CDK2 KAP 335 131830
IGOT{A'BG) 1TAG ITRG(AE) Lrousducin Gto, Gia g 5 245 30 2500
chimern
IKKL(ACH) 1JBI ISPH{A) HPrKinase fl"l;r’-“*’h"““”"“rp"““"“ 233 W 1640
Unbound-bound {2}
IEFU*(A-B) ID8T(A)  1EFU(B) E. coli Ef-Tu Efs 257 109 3630
SHHRAB-A) SHHR(B) — IHGU ~ remen growih Receplor 204 24 4150
TG

! 4-letter PDB code for the ervstal structures used in this study with chain [Ds in parenthesis

* The RMSD of the interface C, atoms for input receptor and ligand afler superposition onto the co-crystallized complex
strueture, caleulated as in our previous work®,

“ Mumber of interface C, atoms with RMSD larger than 2 A between unbound and bound structures after superposition,

Y AASA - change in Accessible Surface Area (ASA) upon complex formation was caleulated using the program NACCESS®,

Table C.1 The list of complex systems used in our calculations.
In Table C.1 one can find the list of all the complexes together with their unbound
(or re-assembled from complex structure) receptor and ligand proteins.
The ones with an x mark next to the name of the complex (also underlined) form

the list of our decoy data set.
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APPENDIX D: RESULTS IN DETAIL

D.1 Fluctuation and Shortest Path Relation

Previous research showed that there is a good agreement between residue

fluctuations and shortest paths [Atilgan et al., 2004]. It was also shown that fluctuation

and protein dynamics are correlated. Therefore, we expected interface residues to have

higher shortest path lengths than ordinary surface residues. However, we have observed

just the opposite, in section 3.3.

The figures below (Figure D.1a and D1b) correspond the shortest path distribution

of all residues and interface residues (of receptor and ligand of the complex, 1gla —

Phosphotransferase) with different signs. The residues with the largest shortest paths are

not necessarily the interface residues in the either receptor or the ligand.

©

Shortest Path Length
~

(&
T

Interface - Fluctuation Relation (1gla, receptor)

[«
T

‘—o—all residues A interface residues‘

x ‘ !'
\' !l’ l )
| '|‘
I
“‘v ll
) 'i W

300
Amino Acid Number

100 200
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o

Interface - Fluctuation Relation (1gla, ligand)

Shortest Path Length
w N [$)]
3 IS 3 o o

w
T

N
&)1

—eo—all residues A interface residues

\

o

20 40 60 80

Amino Acid Number

100 120 140

Figure D. 1 Fluctuation of inteface residues for (a) receptor, (b) ligand.

D.2 Average Shortest Paths in Receptors and Ligands Individually.

In section 3.3 it was observed that the shortest paths (L; Lyex and Lgyong) best

discriminate interface residues on the molten surface over all other surface residues

even in the unbound form. It has been observed that the interface residues have slightly

lower average shortest path values of the overall complex. How is the relation if we

think of the receptors and ligands separately? Figure D.2 demonstrates this relation;

10.5

9.5 -

8.5 -

all other surface residues

3.5

25

7.5 -

6.5 1

5.5 1

4.5 -

RECEPTOR
x X X
X o X X X
xx7% e *
> X
2% 0 X °
X
o X
*¢2 ¢
o &
o x=
6")0 * X strong
& weak
o weightless
2.5 3.5 45 5.5 6.5 7.5 8.5 9.5

interface residues on surface
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10.5

9.5

8.5

all other surface residues

3.5 1

25

7.5

6.5

5.5 1

4.5 4

LIGAND
X
XX
X &%
oo .
X
X X
X strong
.O’ & weak
o weightless
3.5 5.5 6.5 75 9.5

interface residues on surface

10.5

Figure D. 2 Comparison of average shortest path lengths -M1J potential set- for (a)

receptors and (b) ligands.

As seen from these graphs; in ligand proteins, residues having relatively higher shortest

paths are more preferably to be interface residues. On the other hand, in receptor

proteins the opposite is observed. So, in ligands interface residues fluctuate more; on the

contrary, in receptors interface residues fluctuate less.

D.3 Identifying Interface Residues with Clustering and Connectivity.

In section 3.3 we have concluded that shortest path discriminates between

interface residues and surface residues better than other network parameters (i.e. degree,

strength, clustering coefficient and weighted clustering coefficient). The comparison of

the values of these parameters between interface residues on molten surface and all

other surface residues can be seen in Figure D.3 and D.4.
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Figure D. 3 Comparison between interface residues and surface residues of (a) degree
and (b) clustering coefficient.

In Figure D.3, it is observed that both degree and clustering coefficient does not
provide much clue to determine interface residues. The only difference is that, surface
residues have a narrow range of both degree and clustering ((=0,3 — =0.5 for C, and =4.5

— =6 for k) while interface residues spread more (=0,2 — =0.6 for C, and =3 — =7 for k).
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When we consider the weighted averages of these two parameters (i.e. strength
and weighted clustering coefficient) the results lead slightly different inferences. Figure

D.4 demonstrates these differences.

115 | Strength
10.5 . o
L 2 §< o >t><00’o>¢ oo g5 © o
o
§9 5 * ) 2% .
2 * se * X e
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885 * .
8 * L SR
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37.5 1 ®
K=
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5.5 - & ligand
O receptor
4.5 : : : : : : :
4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5
interface residues on surface
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805 X o
-g L ° >Q’>% 00 o) <
: o § Pueen
° ., AL %
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: Yo 38 o $
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E [ 2
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0.2 X overall
¢ ligand
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0.1 : : : : :
0.1 0.2 0.3 04 0.5 0.6 0.7

interface residues on surface

Figure D. 4 Comparison between interface residues and surface residues of (a) strength
and (b) weighted clustering coefficient.

In Figure D.4, the same inference made for the clustering in Figure D.3 is valid

for the weighted clustering. However, the comparison of average strengths leads better
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discrimination between interface residues in molten surface and all other surface
residues. In all complexes (except only one, considering overall strength), interface

residues have lower weighted connectivity than other surface residues.
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