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ABSTRACT 

AC drives based on fully digital control have reached the status of a maturing 
technology in a broad range of applications ranging from the low cost to high 
performance systems. Continuing research has concentrated on the removal of the 
sensors measuring the mechanical coordinates (e.g. tachogenerators, encoders) while 
maintaining the cost and performance of the control system. Speed estimation is an 
issue of particular interest with induction motor electrical drives as the rotor speed is 
generally different from the speed of the revolving magnetic field. The advantages of 
sensorless drives are lower cost, reduced size of the machine set, elimination of the 
sensor cable and reliability. However, due to the high order and nonlinearity of the IM 
dynamics, estimation of the angle speed without the measurement of mechanical 
variables becomes a challenging problem. Variety of solutions has been proposed to 
solve this problem in the literature. 

In this thesis work, by combining the variable structure systems and Lyapunov 
designs a new sensorless sliding mode observer algorithm for induction motor is 
developed. A Lyapunov function is chosen to estimate the rotor flux of an induction 
motor under any initial condition based on the principle that the aim of the vector 
control of IM is to keep the rotor flux magnitude constant from zero to nominal speed. 
Additionally, an observer estimating the rotor speed and the rotor time constant of the 
machine simultaneously has been proposed that stems from the flux estimation. The 
proposed method is very suitable for closed loop high-performance sensorless drives 
and it is believed that with its new approach it will help many researchers in their 
further work in the field of sensorless vector control of IM. 

The proposed algorithm has been tested and verified via simulation and 
experimental results on an IM in the graduate laboratory of Mechatronics at the Sabanci 
University. 
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ÖZET 

Sayısal kontrol yöntemlerine dayalı asenkron ve senkron motor sürücüleri düşük 
ve yüksek performanslı sistemlerin yer aldığı çok geniş bantlı uygulamalarda 
olgunlaşan teknoloji seviyesine ulaşmıştır. Bu alandaki mevcut araştırma motorun 
mevcut maliyetini ve performansını iyileştirirken motor mekanik koordinatlarını ölçen 
sensörlerin (takojeneratör, enkoder v.b.) sistemden ayrılmasına  yöneliktir. Endüksiyon 
motoru sürücülerinde rotor hızı motor manyetik alanı dönme hızından farklı olduğundan 
hız kestirimi ayrı bir önem arz etmektedir. Sensörsüz sürücülerin en önemli avantajları 
düşük maliyet, makine ebatlarında azalma, sensör kablosunun çıkarılaması ve 
güvenilirliliktir. Buna rağmen, endüksiyon motorunun yüksek dereceli ve doğrusal 
olmayan dinamikleri sistemin mekanik durumlarını ölçmeden yapılan hız kestirimlerini 
zorlayıcı bir problem haline getirmektedir. Literatürde bu problemi çözmek için birçok 
yöntem önerilmiştir. 

Bu tezde, değişken yapılı sistem ve Lyapunov tasarım yöntemleri kullanılarak 
endüksiyon motoru için yeni bir kayan kipli gözlemleyici modeli önerilmiştir. Bunun 
için, vektör kontrolünün manyetik alan büyüklüğünün sıfır hızdan anma hızına kadar 
sabit tutulması prensibine dayalı olarak motor akısının başlangıç koşullarından bağımsız 
olarak kestirilmesi için bir Lyapunov fonksiyonu seçilmiştir. Ayrıca akı kestiriminden 
faydalanarak motor şaft hızı ve zaman sabitini kestirilmesi için bir gözlemleyici 
önerilmiştir. Önerilen gözlemleyiciler kapalı-çevrim yüksek performans sensörsüz 
sürücüler için çok uygundur ve önerilen bu yeni fikrin bu alanda çalışan birçok 
araştırmacıya ileriki sensörsüz vektör kontrol alanındaki çalışmalarında yardımcı 
olacağına inanılmaktadır. 

Önerilen algoritma Sabancı Üniversitesi Mekatronik yüksek lisans laboratuarında 
benzeşim ve deneylerle test edilmiş ve doğrulanmıştır. 
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1 INTRODUCTION 

Today the industrial processes require advanced high performance, low cost 

control techniques to control the torque and accurate position and low speed for their 

operations in the application areas like appliances (washers, blowers, compressors), 

HVAC (heating, ventilation and air conditioning), industrial servo drives (Motion 

control, Power supply inverters, Robotics), Automotive control (electric 

vehicles).Asynchronous motors are based on induction. The least expensive and most 

widely spread induction motor is the squirrel cage motor. They are known as the “work 

horses” of the industry. The wires along the rotor axis are connected by a metal ring at 

the ends resulting in a short circuit. There is no current supply needed from outside the 

rotor to create a magnetic field in the rotor. This is the reason why this motor is so 

robust and inexpensive. Previously the circuitry for driving the induction motors were 

too complicated and expensive to apply to the daily life, DC drives were dominating the 

market. During the last few years the field of controlled electrical drives has undergone 

rapid expansion due mainly to the advantages of semiconductors in both power and 

signal electronics and resulting in micro-electronic microprocessors and DSPs. These 

technological improvements have enabled the development of really effective AC drive 

control with ever lower power dissipation hardware and ever more accurate control 

structures. Thanks to these factors, the control of AC machine acquires every advantage 

of DC machine control and frees itself from the mechanical commutation drawbacks. 

1.1 Problems In The Control of Induction Machine 

In the high performance control of AC drives a technique called “field oriented 

control” is used. The aim in this technique is to decouple the torque and flux of the 

machine resulting in a high performance independent control of the torque and flux in 
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the transient and steady state operation as for the separately excited DC machine. To 

decouple the components of the stator current that are controlling the flux and torque 

independently the rotor flux position should be measured or estimated. The 

measurement of the rotor flux is not an easy task, special winding design and additional 

sensors should be added to the plant to be controlled which causes reliability problems 

and increase in the cost. Thus, due to the problems explained above the main approach 

in getting the rotor flux position is to construct flux observers. 

Removal of the sensors that are measuring the mechanical coordinates of the 

system is one of the other main ongoing research due to the advantages like reliability, 

low cost, maintenance and operation in the harsh environment of these sensorless 

structures not only in the field of electrical drives but also in the field of dynamic 

control. However, due to the high order (5th) and nonlinearity of the IM dynamics, 

estimation of the angle speed and rotor flux simultaneously without the measurement of 

mechanical variables becomes a challenging problem. 

1.2 Literature Survey On Flux Observers 

Many researchers proposed their solution to solve the problems of sensorless 

control. Most of them are purely based on machine flux model. There are in general two 

flux based methods, voltage and current model of induction machine. In the literature, 

generally both voltage and current models of induction machine have been used 

together for flux estimation and then from those speed has been estimated [16][17]. 

Both current and voltage models of induction machine are needed to get flux 

information. Those methods imply the estimation of the time-derivative with subsequent 

integration. However, implementation of an integrator for motor flux estimation is no 

easy task. A pure integrator has dc drift and initial value problems. To solve the 

problems, the pure integrator has replaced by a low pass filter (LPF). To estimate 

exactly stator flux in a wide speed range, the LPF should have a very low cutting 

frequency. However, there still remains the drift problem due to the very large time 

constant of the LPF. A digital filter was proposed to solve the drift problem [18]. In 

[17][19], open loop observer structures based on voltage model of the induction motor 

are proposed and integration problem is attempted to be avoided by using different 
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programmable and/or digital low-pass filter structures. The proposed programmable low 

pass filter (LPF) has phase compensator to estimate exactly stator flux and solves the dc 

drift problem associated with a pure integrator and a LPF in a wide speed range.  

One approach to the sensorless control problem is to consider the speed as an 

unknown constant parameter and to use the techniques of adaptive control to estimate 

this parameter [20][21][22]. This idea is that the speed changes slowly compared to the 

electrical variables. This approach was first formulated by Shauder [23] and with some 

modification proposed by Peng and Fukao [21].  

Sliding mode control theory, due to its order reduction, disturbance rejection, 

strong robustness and simple implementation by means of power converter, is one of 

the prospective control methodologies for electrical machines. The basic concepts and 

principles of sliding mode control of electrical drives were demonstrated in [11] and 

some aspects of the implementation are illustrated in [12]. Furthermore, sliding mode 

observers [1][2][3][4][7][8][12] have been proposed for estimating the states of the 

control system. Sliding mode observers also have the same robust features as the sliding 

mode controllers. Zaremba [2] suggested a sliding mode speed observer in d-q 

coordinate with stability and robustness analysis for the system with constant speed. 

Benchaib et al. [4] proposed a control and observation of an induction motor using 

sliding mode technique. The observer model is a copy of the original system, which has 

corrector gains with switching terms. Parasiliti et al. [5] presents an adaptive sliding 

mode observer for sensorless field oriented control of induction motors. The observer 

detects the rotor flux components in the stationary reference frame by motor mechanical 

equations. An additional relation obtained by a Lyapunov function let us identify the 

motor speed. Şahin [1] proposed a convergence term for the rotor side of the observer 

by assuming that the estimated speed is equal to the actual one.Yan et al.[7] proposed a 

full order observer adding convergence terms to the rotor side but here the systematic 

how to find the convergence terms have not been mentioned. Dal [8] presented a new 

control selection with chattering free sliding modes [13] in the observer structure s.t. the 

calculated control can be directly used in the rotor side dynamics of the observer. 

Stability analysis was also given in this paper. In [10] by combining the variable 

structure systems and Lyapunov designs a new sliding mode observer algorithm for 

induction motor is developed. A Lyapunov function is chosen to determine the speed 

and rotor resistance of an induction motor simultaneously based on the assumption that 

the speed is an unknown constant parameter.  
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In this thesis, by combining the variable structure systems and Lyapunov designs 

a new sliding mode observer algorithm for induction motor is developed. The proposed 

method offers a solution for the initial condition mismatch and integration problem 

which has been discussed a lot in the literature. This method uses measurement of the 

stator currents and stator voltages to estimate the derivative of the rotor flux. Then a 

using the property of the vectors rotor flux and its derivative being orthogonal a 

convergence term is derived to compensate for the initial condition mismatch in the 

estimation of the rotor flux. Then using the estimated flux information, speed and rotor 

time constant of the motor is estimated.  

In the thesis first the state space vector model of the induction motor and the 

principles of the control of the electrical drives and the vector control theory is covered. 

Also the variable structure systems and the sliding mode control theory (SMC) is 

explained in this chapter. The proposed observer design and stability analysis is given in 

the third chapter. And finally the performance of the proposed method is investigated 

and verified via simulation and experimental results given in the last chapter. 
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2 MODELING AND CONTROL OF THE INDUCTION MACHINE 

2.1 State Space Vector Modeling and Dynamics of Electrical Machine 

For the purpose of understanding and designing torque controlled drives, it is 

necessary to know the dynamic model of the machine subjected to control. Such a 

model should be valid for any instantaneous variation of all the states (stator voltages, 

stator currents, rotor fluxes etc.) describing the performance of the machine under both 

transient and steady state operation and this kind of  a model can be easily obtained by 

the utilization of space vector theory [14]. The advantages of such a model is that it is 

physically more understandable, the modern control theory stems from this space vector 

modeling of the machine since the time dependencies of the inductances of the machine 

are removed during the transformation from 3 phase variables to 2 phase space vector 

variables and in the literature the observers required to estimate the unknown or 

unmeasured states of the machine are constructed based on this theory. During this 

chapter specifically the application of state space vector theory on the asynchronous 

electrical machine will be dealt since it is the plant on which the thesis work is done, but 

the same procedure can be easily adapted to the synchronous machine without so much 

work. 

2.1.1 Dynamics of Electromechanical Energy Conversion Systems 

The dynamic equations of motion of the electromechanical system can be 

determined from the basic physical laws such as [25]: 

 



6 

• Faraday's law and Kirchoff's law for electrical subsystem, 

• d'Alambert's principle for the mechanical subsystem. 

 

For quasi-static (low frequency) and low velocity operation of an 

electromechanical system the equations of motion may be expressed in terms of lumped 

parameters. Electrical subsystem does not have any energy storing elements and 

consists solely on the sources and dissipative (resistive) elements. So, it can be simply 

modeled as a resistive electrical circuitry supplied from the input sources and connected 

to the inputs of the coupling subsystem.  

For all rotating machines mechanical subsystem can be modeled as a single 

cylinder rotating around its axis. 

As a result of the energy conversion, at the input terminals of the coupling two 

subsystems which are the electrical and the mechanical subsystems two different 

reactions are present: 

• the induced voltage at the electrical terminals; 

• the mechanical forces at the mechanical terminals . 

 

This separation of the coupling system reaction is a starting point for the 

derivation of the equations of motion for overall system.  

When an electromechanical system coupled with single electrical and single 

mechanical inputs is investigated; Electrical subsystem is represented by the resistance 

connected in series with input source and to the electrical terminals to the coupling 

system. The mechanical subsystem is represented by the cylinder, which can freely 

rotate around its axis. The cylinder motion is influenced by the generated torque and the 

mechanical torque applied from the source of the mechanical energy. No losses are 

assumed in the mechanical subsystem. 

If u  is the source voltage, R  is the resistance of the dissipation in the electric 

subsystem, )(tψ  is the flux linkage representing the coupling field, dttd /)(ψ  is the 

induced electromotive force (e.m.f.) at the electric terminal of the coupling system, then 

current entering the coupling subsystem through electrical terminal, can be calculated 

as: 

( ) ( ) uRi
dt
LidRi

dt
td

=+=+
ψ

 (2.1)
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The generated torque can be expressed as: 

θ
ψ

θ ∂
∂

=
∂
∂

=
iiLTe 2

1
2
1 2  (2.2)

The mechanical subsystem exhibit simple rotational motion around the cylinder 

axis and, from d'Alambert's principle, equations of motion can be written as: 

ωθ
=

dt
d

 (2.3)

( )
Le TT

dt
Jd

−=
ω

 (2.4)

where J  is a moment of inertia of the rotor, LT is a torque applied to the system 

from the mechanical sources usually called load torque. 

The set of the equations (2.1) and (2.4) describes the behavior of 

electromechanical energy converters with one electrical and one mechanical terminal. 

Usual construction of the rotating electrical machines is such that there are more than 

one electrical terminals and only one mechanical terminal. Application of the developed 

mathematical model to such systems requires simple transformation into vector 

notation, while keeping the same form of all expressions. So, the general mathematical 

model of an electromechanical converter with rotational motion, n electrical inputs and 

one mechanical input to the coupling field can be written as: 

( ) uiR
dt

td
=+

ψ
 (2.5)

where [ ]m
T ψψψψ ...21=  is the linkage flux vector, [ ]m

T uuuu ...21=  is 

input the voltage vector, [ ]m
T iiii ...21=  is input current vector, { }iiRdiagR =  

(i=1,...,n) is the diagonal resistance matrix. For electrically linear system linkage flux 

vector can be expressed as linear function of the input current iLT =ψ  where matrix 

{ }ijLL =   (i,j=1,...,n), represent inductance matrix of the machine, and the mathematical 

model can be written as [ ] uiR
dt

iLd
=+ . Generated torque can be expressed as : 

θ
ψ

θ ∂
∂

=
∂
∂

=
iiLi TT

eT
2
1

2
1  (2.6)

The motion of the mechanical subsystem is described by the equations (2.3) and 

(2.4). For the application of this model the components of the linking flux vector and 

the resistance matrix R must be calculated. The calculation of matrix R and matrix L is 
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not going to be mentioned here instead the obtained matrix R and L for a 3-phase 

smooth air-gap machine will be given as below and an explanation about why it is 

required to model in 2-phase space vector will be given. 

An electrical machine consists of the stationary part, called the stator, and 

cylindrical rotating part, referred as the rotor. Electro-magnetically, a machine consists 

of two or more sources of magnetic excitation, which can be an electrical winding or 

permanent magnet, coupled magnetically by means of the magnetic circuit. The 

magnetic circuitry consists of the stator, air gap and rotor. 

Following the 3-phase model of the smooth air-gap machine will be given; 









=

r

s

R
R

R
0

0
; 








=

rrrs

srss

LL
LL

L  (2.7)

where indexes "s" and "r" denote stator and rotor parameters respectively, index 

"sr" and "rs" denote mutual inductances stator to rotor and rotor to stator respectively. 

Assumed symmetry of the stator and rotor windings is represented by the fact that 

all phase resistances on the stator are equal. The same property can be applied to the 

resistances of the phase windings on rotor. The resistance matrices for both stator and 

rotor windings are diagonal and, if the resistance of the stator winding is Rs the 

resistance of the rotor winding is Rr, resistance matrices can be written as 

{ } 33xss Rdiag=R  for stator circuit and { } 33xrr Rdiag=R  for rotor circuit. 

The inductance matrix L has four terms: matrix Lss represents the inductances of 

the stator windings, matrix Lrr represents the inductances of the rotor windings and 

matrices of mutual inductances between stator and rotor windings Lsr and Lrs. The 

windings on the stator are stationary to each other so the self and mutual stator-to-stator 

inductances for all windings are constant. The same apply to the self and mutual rotor-

to-rotor inductances of the windings. Denoting self inductance of the stator winding by 

Ls and Lr the self inductance of the rotor windings, the matrices Lss and Lrr can be 

expressed as: 

TL ssss LL =















=

1coscos
cos1cos
coscos1

3
2

3
4

3
2

3
2

3
4

3
2

ππ

ππ

ππ

  (2.8)

TL rrrr LL =















=

1coscos
cos1cos
coscos1

3
2

3
4

3
2

3
2

3
4

3
2

ππ

ππ

ππ

 

(2.9)
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Matrix T is equal for both stator and rotor due to the symmetry of the windings.  

Due to the angular rotation of the rotor, and the windings attached to it, the relative 

position of the corresponding stator and rotor windings changes and mutual stator-to-

rotor and rotor-to-stator inductances are function of the angle formed between axes of 

the corresponding windings. Matrix of the mutual stator-to-rotor inductances Lsr, and 

rotor-to-stator inductances Lrs, can be expressed as:  

( ) ( )
( ) ( )
( ) ( )

stsrsrsr LL TL =
















++
++
++

=
θθθ

θθθ
θθθ

ππ

ππ

ππ

coscoscos
coscoscos
coscoscos

3
2

3
4

3
2

3
2

3
4

3
2

 (2.10)

T
srsrrr L TL =  (2.11)

Here matrix srT depends on the mutual position of the stator-to-rotor windings. 

The elements of this matrix are periodic function of the angular position of the rotor.  

Mathematical model (2.3), (2.4) and (2.5), for this machine, with  

[ ]scsbsa
T
s iii=i stator current vector, [ ]rcrbra

T
r iii=i rotor current vector, 

[ ]scsbsa
T
s uuu=u stator voltage vector, [ ]rcrbra

T
r uuu=u  rotor voltage vector, 

becomes: 









=




















+
















+





















∂
∂

∂
∂

∂
∂

∂
∂

r

s

r

s

r

s

rx

xs

dt
d
dt
d

rrrs

srss

dt
d

rrrs

srss

r

s

u
u

i
i

i
i

R0
0R

LL
LL

LL

LL

i

i θ

θθ

θθ

33

33  (2.12)

[ ] 



















=+

∂
∂

∂
∂

∂
∂

∂
∂

r

s
rsL rrrs

srss

T
dt
dJ

i
i

ii LL

LL

θθ

θθω
2
1  

(2.13)

The analysis of the electromagnetic torque generation (2.6) reveals that the torque 

generated in the examined structures is due to the change of the self-inductance and/or 

mutual inductances as a function of the angular position of the rotor. The configuration 

of the magnetic circuitry of electrical machines determines the dependence of the 

inductances of the windings, located at the stator and rotor structures, as function of the 

angular displacement of the rotor. 

Here complexity of the equations of motion due to the time varying mutual 

inductances between stator and rotor windings is apparent. Further analysis of the 

dynamics of the machine with smooth air gap using this mathematical model is very 

complicated even using computers. 

If the inductance matrices given in (2.8), (2.9), (2.10), (2.11) is investigated, it can 

be easily realized that they depend on the rotor angular position which causes the 
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parameters of the mathematical description to be time varying for all operating 

conditions except steady state operation with zero speed. 

The state variables were selected to be a winding’s variables for the model given 

above. In the analysis of the dynamical systems transformations of variables is common 

tool to simplify the mathematical models and to make the analysis of the system 

simpler. The same procedure can be applied to the analysis of the electrical machines to 

overcome the time varying inductance problem in the modeling of the machine. 

During the simplification of the modeling of the asynchronous machine in state 

space following assumptions are made: 

• Air-gap flux distribution is sinusoidal 

• Motor magnetic circuit is operating in linear region without saturation 

• Stator windings are symmetric and star-connected and the neutral point 

between the phases is electrically isolated 

• Number of pole pairs in the stator windings is taken as 1, but the results can 

be easily adapted to more than 1 pole pairs. 

• Number of stator and rotor turns is assumed to be equal 

• Skin effect and the eddy current losses are neglected. 

2.1.2 State Space Vector Modeling of the Asynchronous Machine 

All the 3-phase state variables (voltages, fluxes, currents) related to the rotor and 

the stator circuit of the induction machine (IM) can be transformed to orthogonal space 

vectors which are a combination of an imaginary and a real part. 2-phase equivalent 

orthogonal components (e.g. 2-phase winding variables) of 3-phase rotor and stator 

winding variables are obtained by this transformation. For this transformation, proper 

frames of reference have to be chosen. There are generally 3 frames of reference 

existing which can be seen in figure 1 from which proper one is chosen so as to be used 

for the modern control approaches. These are: 

• Stationary frame of reference: The real axis of this frame is selected as 

collinear with one of the phases of the stator windings. 

• Rotor frame of reference: This frame of reference is rotating with the 

electrical speed (we) of the rotor where this speed is given as. Here p is the number of 

pole pairs and n is the rotor mechanical speed. 
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• Synchronously rotating reference frames: These frames can be chosen 

collinear with one of the stator flux vector, the rotor flux vector or the magnetizing flux 

vector. 

Instead of all the frames of reference given above a general frame of reference can 

be used and with the required transformation between the axes all the frames of 

reference mentioned above can be easily obtained. 

2.1.3 Transformation of three phase variables to two phase variables 

All the states defined previously (voltages, currents, fluxes) of three phase 

asynchronous motor with symmetric windings supplied from a symmetric three phase 

source can be transformed to either one of the frames of reference mentioned above or a 

general reference frame rotating with an arbitrary angular velocity of ωg To explain 

such general transformation; the transformation of stator currents (isa, isb, isc) of the 

machine from three phase to any reference frame will be explained and if the same 

procedure is applied to all the remaining states then the 2 phase model of the machine 

can be easily obtained. 

First step in transforming from 3-phase variables to a general frame of reference is 

to transform the 3-phase variables to the stationary frame of reference explained above. 

There is a 120o phase shift between each phase of the stator currents. If one of the phase 

currents is taken collinear with the α-axis of the stationary frame of reference as shown 

in figure 2.1 below, following equation can be written from figure1 for the stator current 

vector. 

 

scsbsa
j

sc
j

sbsas iaiaieieiii ⋅+⋅+=⋅+⋅+= − 23/23/2 ππ  (2.14)
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Figure 2.1: α-β stationary reference frame with stator current 

 

From Figure 2.1 for stator current vector following is obtained: 

βα ssscsbscsbsas jiiijijiiii +=−+−−=
2
3

2
3

2
1

2
1  (2.15)

(2.15) can also be given in matrix form as: 
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α ; cbsas iKi ,,, ⋅= sβα  (2.16)

Here si  is constant magnitude stator current vector rotating with the velocity of 

eω  where se pf ωπω ...2 ==  where p is the number of pole pairs and sω  is the velocity 

of synchronously rotating frame of reference. Ks used in (2.16) is the matrix gain used 

to enable power invariant transformation for 3/2 phase transformation. The inverse of 

the transformation (2.16) is also valid. 
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(2.17)
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In vector control applications all the states in the rotor and the stator circuits must be 

defined on the same frame of reference. An operator of e-jθg is used for this 

transformation. Here θg is the angle for general frame of reference shown in fig.2.2 

below. 

 

Figure 2.2: (α-β stationary frame) to (x-y arbitrary frame) transformation 

sysxs jiii +=  (2.18)

For the transformation in fig.2.2 following is used: 

sysxggs
j

ss
j

ss jiijiejiieii gg +=−=⋅+== ⋅
−−

⋅ )sin(cos)(' θθθ
βα

θ  (2.19)

Here we know that ss ii =' , the transformation in (2.19) can be given in matrix 

form as: 









⋅








−

=
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α

θθ
θθ

s

s

gg

gg

sy

sx

i
i

i
i

cossin
sincos

; isx,y = T(θg).isαβ (2.20)

Here T(θg) is the transformation matrix from the stationary frame of reference to 

general arbitrary frame of reference. Also the inverse transformation (x-y to α-β) can be 

obtained by inverting the given matrix T (θg) as: 









⋅







 −
=








sy

sx

gg

gg

s

s

i
i

i
i

θθ
θθ

β

α

cossin
sincos

; isαβ = T(θg)-1.isxy (2.21)

 

As mentioned before the same transformation is valid for the transformation of the 

stator voltage, stator flux, rotor current and rotor flux. Since the transformed variables 

and the original variables are describing the same system the power entering the system 
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must be the same regardless of the variables used to describe the system. Thus Ks value 

given in (16) and (17) can be calculated from the following equality: 

)()()()( ..
2
3.3 αβαβ BBabcBabcBB IUIUS =⋅=  (2.22)

Here )(abcBU  and )(abcBI are the 3 phase rms voltages and currents of the machine. 

Then if the transformations explained above (e.g. abc → α-β → x-y) for a general 

frame of reference rotating with the velocity  ggdt
d ωθ =  are applied to the model given 

in. (11), (12) and (13), then by defining the parameters sss LL 2
3= , rrr LL 2

3= , srm LL 2
3=   

mathematical model of the asynchronous machine can be written in the form: 

αβα
α ψω

ψ
ssgss

s uiR
dt

d
++−=  (2.23)

ααβ
β ψω

ψ
ssgss

s uiR
dt

d
+−−=  

(2.24)

( ) αβα
α ψωω

ψ
rrgrr

r uiR
dt

d
+−+−=  

(2.25)

( ) βαβ
β ψωω

ψ
rrgrr

r uiR
dt

d
+−−−=  

(2.26)

The components of the flux linkages vector [ ]βα ψψψ ss
T
s = , [ ]βα ψψψ rr

T
r =  

depend on the stator [ ]βα ss
T
s ii=i  and rotor [ ]βα rr

T
r ii=i  currents in the following way: 

rmsss iLiL +=ψ  (2.27)

rrsmr iLiL +=ψ  (2.28)

Electromagnetic torque can be expressed as: 

{ } { }rrssT ii ψψ −=×=  (2.29)

and mechanical motion can be described as: 

TT
dt
dJ L =+

ω ; ωθ
=

dt
d

 (2.30)

Model (2.23)-(2.30) does not have any time varying parameters but it is still 

nonlinear due to the presence of the product of different variables. This model is written 

in the orthogonal frame of references rotating with angular velocity gω with respect to 

the stator stationary frame of reference. In the analysis of the smooth gap electrical 

machines three frame of references are important as previously mentioned: 

• Stationary frame of references defined by 0=gω .  All electrical variables 

appears to have the same angular frequency equal to the frequency of the supply; 
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• Rotating frame of references stationary with respect to the rotor ωω =g . All 

electrical variables have angular frequency equal to the difference between 

angular frequency of supply and rotor angular frequency; 

• Rotating frame of references stationary with respect to any vector of electrical 

coordinates (flux or current or voltage). Steady state values of all electrical 

variables appear to be DC quantities. In the design of the control systems the 

frame of references with one axis collinear with the rotor flux vector is 

dominating since this transformation is the only one with full decoupling of flux 

and torque components. It is known as (d-q) frame of reference. 

 

After these transformations the model of the machine reduces to sixth order. By 

selecting 0=ru model describes the behavior of squirrel cage induction machine which 

is the plant used in the simulations and the experiments. Finally, considering the stator 

current and the rotor flux the model for the squirrel cage IM in the general frame of 

reference-after some manipulation of (2.23)-(2.30)-becomes: 
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TT
dt
dJ L =+

ω ; ωθ
=

dt
d

 
(2.32)

where 

)(
2
3

sxrysyrxe iipT ⋅⋅ −⋅⋅= ψψ  (2.33)

In (2.31) 
r

mrs

L
LLLL

2
. −

=σ   

Finally with (2.31), (2.32) and (2.33) 2-phase state space vector model of the 

squirrel cage induction machine (IM) is completed. Following chapter is dealing with 

the principles of vector control and its usage for the induction motor. 
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2.2 Vector Control of Induction Machine 

The main goal in field oriented vector control of an induction machine is to 

control the torque and flux independently-by decoupling them through required 

transformation which is explained previously- as in the separately excited DC machine 

[14]. In a separately excited DC machine the magneto-motive-force F  (MMF) 

generated by the armature current ia  and the flux ψ r  generated by the field current i f  

are orthogonal. The reaction of the rotor to the main flux ψ r  is compensated by the 

additional windings supplied by the armature current. Thus the 90o angle and the 

independence between and ia  are ψ r  held. Flux ψ r  is not only independent from ia  

but also from the rotor speedω r . Due to this fact, the electromagnetic torque T e  of a 

DC machine depends on the vector product of these two vectors both in the transient 

and steady state operation where the flux is in its linear region of operation. Since these 

two vectors are orthogonal the electromagnetic torque can be given as follows: 

afde ikT ..ψ=  (2.34)

In (2.34) kd
 is the DC machine torque constant. If. (2.34) is carefully 

investigated, it can be deduced that when the flux magnitude is kept constant then the 

electromagnetic torque of the machine can be controlled very fast by changing the 

armature current. Thus fast dynamics torque response can be easily obtained. 

 

Figure 2.3: Armature, field currents and flux vectors for DC machine 
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For the squirrel cage asynchronous induction motor (IM) the stator flux plus the 

rotor current consecutively the rotor flux are generated by the stator current. Following 

figure shows the instantaneous orientation of the stator current and the rotor flux in the 

stationary and rotating frames of reference. 

 

Figure 2.4: Rotor flux and stator current in the stationary (α-β) and the rotationary frame 

of reference (d-q) 

Here ωω =e is the stator current angular velocity and δ  is the angle between 

stator current and the rotor flux ψ r  and generally known as the load angle and in 

steady state this angle is constant (e.g. rotor flux angular velocity ω rf = stator flux 

angular velocityω s ). Thus both the rotor and the stator flux rotate with the same speed. 

Note that pes /ωω =  where p is the number of poles in the stator windings. 

As explained previously in the transformations and can be seen in figure.2.4: if 

the stator current is moved to the rotor flux rotating frame of reference (d-q) via proper 

transformation then isd and isq components of the stator current become dc quantities. 

For this case the electromagnetic moment of the IM is given as follows: 

δψ sinikT srme ...=  
(2.35)

where km is the induction machine torque constant and rψ  and si.  are the 

magnitudes of the rotor flux and stator current vectors consecutively. (2.35) is similar to 

(2.34) but although for DC motor it is easy to control the flux and the armature current 

independently for the IM this is a very hard task to accomplish. Because there is no 
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simple way to obtain the rotor flux information in the squirrel cage IM and the flux 

vector rψ  and the stator current si  are coupled. If the rotor flux position and the 

magnitude could be determined, then the rotor flux and the motor torque can be 

controlled independently with the two components of the stator current isd and isq given 

in figure 2.4 by transforming the stator current in the rotor flux frame of  reference. 

The electromagnetic moment of the IM in the d-q reference frame can be given 

from the eqn. (2.33) as following: 

)(
2
3

sdrqsqrde iipT ⋅⋅ −⋅⋅= ψψ  (2.36)

From (2.28) it can be written that: 

rrsmr iLiL +=ψ  (2.37)

and since in d-q reference frame the rotor flux rψ : 

rqrdr jψψψ +=  

rdrsdmrd iLiL +=ψ  

rqrsqmrq iLiL +=ψ  

(2.38)

Since the d-axis is collinear with the rotor flux vector then the q component of the 

rotor flux should be zero from eqn (2.38.a) we have: 

sq
r

m
rq i

L
L

i −=  (2.39)

then substituting (2.39) in (2.36) the following is obtained: 

sqrd
r

m
e i

L
LpT ⋅⋅⋅⋅= ψ

2
3

 (2.40)

since rdr ψψ =  (e.g the vector itself is the d component) the following is written: 

sqr
r

m
e i

L
LpT ⋅⋅⋅⋅= ψ

2
3

 (2.41)

After a careful observation it could be deduced that (2.35) and (2.41) are the 

same.Then from (2.31) 4th row it can be written that; 

0)( =⋅−++= ⋅ rdfr
rq

rqrrq
dt

diRu ψωωψ
 (2.42)

where slω = )( ωω −rf ( slω  is the slip frequency in rad / s) 

Substituting (2.39) into (2.42) with 0=rqψ  and calculating slω : 

sq
rr

mr
rfsl

sl i
L

LR
dt

d
⋅=−==

⋅

⋅

ψ
ωωωθ

 (2.43)
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From. (2.43) it can be written for the rotor flux angular velocity ( rfω ) that; 

sq
rr

mr
slrf

rf i
L

LR
dt

d
⋅+=+==

⋅

⋅

ψ
ωωωωθ

 (2.44)

Here ω is the rotor angular velocity and ωrf is the angle between the stationary 

reference frame and d-axis of the rotating reference frame. From (2.31) 3rd row it can be 

written that: 

0)( =⋅−−+= ⋅ rqe
rd

rdrrd
dt

diRu ψωωψ
 (2.45)

Then if the flux rrd ψψ =  in the motor is kept constant then the rate of change of 

the flux becomes zero (e.g. 0=
dt

d rdψ ). Then combining these considering that 0=rqψ , 

(2.45) becomes 0=⋅ rdr iR . Here since Rr can not be zero then 0=rdi . Then from (2.38.a) 

it can be obtained that: 

sdmrdr iL ⋅==ψψ  (2.46)

which means that rotor flux can be controlled with the d-component of the stator 

current. Then considering both of the (2.41) and (2.46) it can be concluded that with the 

d and q components of the stator current rotor flux and electromagnetic torque of the 

induction machine can be controlled independently as for the separately excited DC 

motor where stator current components isd and isq correspond i f
(field current) and ia

 

(armature current) of the DC motor consecutively. Controlling both the electromagnetic 

torque and the rotor flux independently is the main principle of the field oriented control 

of the IM. To achieve this goal the magnitude and the position of the rotor flux should 

be determined precisely. The required flux vector can be obtained through measurement 

or through proper observer design by estimation. In the measurement techniques first 

the air-gap flux is measured with hall effect sensors or by special windings in the stator 

then the rotor flux is calculated from the air-gap flux. [15]. In these techniques special 

motor design is required to mount the flux sensors and special windings which causes 

an increase in the cost and time spent in the design. Also the vulnerability and 

temperature dependence of these sensors are the other drawbacks. All of these 

drawbacks of the sensors prevent the IM to be used in the high performance servo 

sytems[15]. As mentioned before another way to get the rotor flux information is to 

design a proper observer. The developments in the digital signal processors and the 

power electronic devices enabled the observers to draw more attention in the high 

performance control of induction machine drives. There are actually two types of flux 
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observers that those including a mechanical sensor (e.g. encoder, tachometer) to 

measure the mechanical coordinates (e.g. position and/or speed of the shaft) of the 

motor and those having no mechanical sensors in estimating both the speed and the 

rotor flux of the motor. The IM drives that includes no mechanical sensors called 

“Sensorless Induction Machine Drives” in the literature. In this thesis as mentioned 

previously a novel sensorless flux, speed, rotor time constant observer is designed. The 

details about the observers design and the simulation and experimental results with the 

designed observer will be given in the 3rd chapters. Following is the general structure 

for a sensorless induction machine drive; 

 

Figure 2.5: Block diagram for the sensorless torque / flux control of the IM 

The position - the angle θrf - of the rotor flux vector is given is calculated 

following: 









= −

α

β

ψ
ψθ

r

r
fr tan

ˆ
ˆ1

ˆ  (2.47)

Here αψrˆ  and βψrˆ  are the components of the rotor flux in the stationary frame of 

reference as in figure 2.4. Thus after the correct estimation of the rotor flux; the required 

measured currents is converted from 3 to 2 phase as in (2.16) and with the flux angle θrf  

and the transformation βαθ ,, )..( srfqsd iTi =  the d-q currents are obtained to be used in the 

current controller in figure 2.5. After obtaining the reference stator voltages from the 

current controller in d-q frame; through well known transformation as in (2.20), the 

reference voltage in stationary frame of reference is obtained and applied to the motor. 

In the thesis space vector pulse width modulation (SVPWM) technique is used in the 
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implementation of the control while applying the reference voltage through a voltage 

source inverter which will be explained later in the implementation details. Again in this 

control scheme given in figure 2.5 the required torque of the motor is estimated through 

the following: 

sqr
r

m i
L
LpT e ⋅⋅⋅⋅= ψ̂

2
3ˆ  (2.48)

To have high performance IM electrical drives the following properties should be 

held (Murphy and Turnbull 1982, [14]): 

 

• High acceleration, high torque / inertia ratio, 

• High power density (e.g. maximum output power per mass of the motor), 

• Four region of operation 

• Fast transient response, 

• Short period overload capability, 

• Low speed operation without ripple in the torque produced, 

• Zero speed torque control 

 

When the model of the IM given in (2.31), (2.32), (2.33) is investigated it can be 

easily realized that the model is a 5th order (2 order for the stator current dynamics, 2 

order for the rotor flux dynamics and 1 degree for the mechanical dynamics), highly 

nonlinear and coupled system. Also the motor parameters vary considerably mostly 

with temperature and magnetic saturation, the supply voltage, supply frequency and 

load changes. Especially, the rotor resistance is effected too much from the temperature 

variations. Thus, traditional linear control techniques are not enough for the high 

performance low speed control of the IM. For the high performance control of the IM, 

the flux magnitude and angle should be determined precisely considering the effects of 

the motor parameter changes. Many researches have different approaches to this 

problem which was surveyed previously. In this thesis work with its well known 

robustness against parameter changes and unmodelled uncertainties and the property of 

order reduction in control design the sliding mode control (SMC) approach is used not 

only for the control system design but also for the observer design –sliding mode 

observer (SMO). In the next chapter the principles of sliding mode control will be 

explained. 
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2.3 Variable Structure Systems (VSS) 

In the design of variable structure systems (VSS) the principle in designing the 

control algorithm is to enforce the system to have sliding motion on a predefined 

manifold in the state space [11]. Due to the switch in the control during the control 

process these systems are named as the VSS systems. To indicate the importance of the 

sliding motion or “sliding mode” in the VSS these control systems are called “Sliding 

Mode Control”. The most important property of these systems is their robustness and 

invariance. The robustness and the invariance property stands for the insensitivity 

against the external disturbance, parameter uncertainties and modeling error or 

uncertainties. (Hung et al 1993). With these emerging properties the SMC has many 

application areas including the linear time invariant, linear time varying, nonlinear 

systems such as robotics, vibration control, power converters and electrical drives and 

etc. 

2.3.1 Structure and Fundamentals of VSS 

For a given n-dimensional state space representation (2.49) of any system the VSS 

control system design has two steps. 

utxBtxfx ).,(),( +=&  (2.49)

here x is the (n x 1) dimensional state and u is the (m x 1) control input vectors of 

the given system. 

• There exists m number of switching functions σi(x) designed representing 

the desired dynamics of the control system which is lower dimensional 

than the original system. Here σi(x) is the ith element in the switching 

vector σ(x). Thus the first step in the design is selecting these functions 

properly in the intersection of surfaces.   

• The second step is to find the discontinuous control to enforce sliding 

mode in the intersection of the surfaces selected in the first step. 

Partitioning of the overall motion into two motions of lower dimensions – the first 

motion precedes sliding mode within a finite interval (e.g. achieving the desired 
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dynamics in a finite time) and the second motion is sliding mode with the desired 

properties – may simplify the design procedure considerably. 

2.3.2 Switching Function (Sliding Surface) 

The structure of the VSS is determined by the switching function σ(x). Each 

switching function σi(x) defines a linear function between the states and their 

derivatives of the system passing through the origin of the plane determine by these 

states as shown in figure2.6 below. These lines dividing the phase plane into two called 

the switching line. Additionally, these lines defines the set of points where σ(x)=0 in the 

phase plane. This set is known as sliding or switching surface. 

 

Figure 2.6:Sliding Surface 

The aim in the sliding mode control is to push the system states to sliding surface 

and enforcing them to stay in this manifold. When the system states reaches the sliding 

manifold the error in the states converges to zero with the dynamics of the switching 

manifold to the states of the system under consideration [11]. 

Variable Structure Systems are originally defined in continuous-time for dynamic 

systems described by ordinary differential equations with discontinuous right hand side. 

In such a system so-called sliding mode motion can result. This motion is represented 

by the state trajectories in the sliding mode manifold and high frequency changes in the 

control. The fact that motion belongs to certain manifold in state space with a dimension 

lower that that of the system results in the motion equations order reduction. This 

enables simplification and decoupling design procedure to be employed. For sliding 
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mode application the equations of motion and the existence conditions shall be solved 

first [25]. 

2.3.3 Equations of motion 

Here again is the system under consideration; 

utxBtxfx ).,(),( +=&  (2.50)

where B(x,t) is an n×m matrix, x∈Rn, u∈Rm, f:R1xRn→ Rn . For such a system 

boundary-layer [11] regularization enables substantiation of so called equivalent control 

method that is used in deriving the sliding mode equations. In accordance with this 

method, in (2.50) the control u should be replaced by the equivalent control, which is 

the solution to }./{   ,0),(),( xGutxGBtxGf eq ∂∂==+= σσ& where σ=0, σ∈Rm is defining 

Sliding Mode Manifold while σi=0 describe so-called switching surfaces. For detGB≠0 

equivalent control for system (2.50) in manifold σ=0 can be calculated as 

GfGBueq
1)( −−= , and sliding mode equation is: 

.0    ,])([ 1 =−= − σfGGBIx&  (2.51)

From σ=0, m components (x2∈Rm) of the state vector x may be determined as 

functions of the rest (n-m) components (x1∈Rn-m) as x2=σ0(x1),σ0∈Rm and the order of 

the sliding mode equation (2.51) may be reduced by m: 

)(
.    )),(,(

102

110111
xx

xxxfx mn

σ
σ

=
∈= −R&

 (2.52)

2.3.4 Existence and Stability of Sliding Modes 

To derive sliding mode existence conditions in analytical form the projection of 

the system motion on manifold. 

{ } mn RxRxS ∈=∈= σσ ;0)(:  (2.53)

should be analysed. The conditions of existence of multidimensional sliding 

modes are in close relation with the convergence of motion toward the manifold S. 

Hence the solution of the considered task is based on the methods of the theory of 
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stability which are applied to the equations of projection of motion onto the subspace S 

expressed as: 

.   ,0),(),(
x

GutxGBtxGf eq ∂
∂

==+=
σσ&  (2.54)

The domain S is the domain of existence of the sliding mode if there exists such a 

continuously differentiable function V(x,σ,t) that: 

• For each x, σ and t that function is defined positively with respect to σ and 
 

0      0         sup          inf ====
==

RforhHVhV RR
R

RR σσ
 

(hR, HR depend only on R) 

The time derivative of the function V is a negative upper boundary on the set of 

all points of the sphere R=σ , with the exception of the points on the surfaces of 

discontinuity, where this derivative is undetermined. 

 

Since standard method for obtaining the function of Lyapunov for non linear 

systems does not exist, for arbitrary matrices in (2.54) no standard solution of finding 

the function V is known. 

2.3.5 VSS Control System Design 

Equations of motion in the sliding mode (2.51) depend on the mxn elements of 

matrix G, which consists of the gradients of function σ. Therefore, this motion can be 

influenced by changing the positions of the switching surfaces within the system state 

space. The synthesis of control in the systems with sliding modes is performed in the 

following order. The first step consists of the selection of switching surfaces so that the 

motion in the sliding mode has the required properties. The second step consists of the 

selection of such control input that the sliding mode exists on the entire domain S. 

Finally, the third task can be formulated as the finding of conditions for the state to 

reach the domain S from any initial position. 

 

Considering that the right side of the sliding mode equations (2.51) is continuous, 

the first stage of the synthesis is considered as the task of the synthesis of continuous 
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control. The second and the third stage of the synthesis are near to the task setting, 

because they consist of providing the stability of the system origin (2.54) in both small 

and large. It is necessary to consider the method of selecting the controls which provide 

for the existence of the sliding mode the intersection of all switching surfaces. The main 

difficulty in solving the formulated task is the lack of a universal method which would 

permit the splitting of the domain S into sub domains in which the sliding mode exists 

and into sub domains where this motion does not take place. At the same time, for a 

special form of the matrix GB it is possible to obtain the sufficient conditions for the 

existence of the sliding mode. In spite of the fact that reduction to such special cases can 

be done only through an appropriate selection of the matrix G, which has to provide for 

the required character of the sliding mode, these two tasks can be solved independently. 

2.3.5.1 Invariant Transformations 

The possibility of such separate consideration of the relevant tasks results from 

invariance of the sliding mode equations as compared with linear transformations of the 

switching manifold or control vectors given in the form: 

σσ σR=*    uRu u=*
 (2.55)

If the matrices Rσ  and Ru are non singular and continuously differentiable, the 

motion in the sliding mode will not change if already selected switching surfaces 

0=iσ  are replaced by new ones 0* =iσ  ( *
iσ - components of vector σ*), or if the 

surfaces 0=iσ  have the discontinuities of vector component u* instead of u.  In the 

same time, the equations describing the projection of the system motion on the 

subspace { } 0: ** =∈= σnRxS , in the first case, { } 0: =∈= σnRxS , in the second case, 

depend on Rσ  or Ru respectively. 

As a result of the demonstrated invariance for any matrix G, as already defined by 

the required equations of the sliding mode, by selecting Ru or Rσ it is possible to obtain 

the matrix preceding the control u or u* of an arbitrary form. In the method of 

diagonalization, permitting that the matrix preceding the control is reduced to diagonal 

form, Ru and Rσ_, are selected in the following way: 

1)( −= GBQRσ    )(1 GBQRu
−=  (2.56)
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where Q - is an arbitrary diagonal matrix with nonzero elements. 

In order to provide for the sliding mode in any point of the intersection σ=0, in 

the method of diagonalization it is necessary to select the components of vector  u with 

the discontinuities on the surfaces  σi* = 0 or the components of vector u* with the 

discontinuities on the surfaces σi=0 in compliance with (2.55). 

 
The task that the domain { } 0: =∈= σnRxS  be reached from arbitrary initial 

conditions can be solved in the analog method. Let a linear transformation of the 

switching surfaces be used: 
TGBR )(=σ  (2.57)

Select a function of Lyapunov as a positively definite quadratic form: 

2
σσ T

V =  (2.58)

The derivative of the function (2.58)on the system trajectories (2.50) is then equal 

to: 

( ) ( )[ ]uGfGBGBuGf
dt
dV TT +=+= −1*) σσ  (2.59)

In order to get a negatively definite derivative of the function V it is enough to 

select the components of vector u with discontinuities on surfaces σi*=0. with 

amplitudes of the control vector components satisfying relations ),( txdu ii 〉 , di(x,t)- the 

i-th component of vector [(GB)-1Gf]. With the last condition fulfilled, V and dV/dt have 

opposite signs, the origin of the subspace { }0: ** =∈= σnRxS  (or, due to regularity of 

Rσ, the origin of the subspace { }0: =∈= σnRxS ) is stable in large accordingly. 

 
In this way, the procedure of synthesis represents the selection of the required 

discontinuity surfaces and such a transformation of these surfaces (or the control 

vectors) for which it is possible to provide the existence of the sliding mode. 

2.3.5.2 Decoupling 

Decreasing dimensionality of the equations of motion with sliding mode and its 

independence on control permits to decouple the design problem into two independent 

ones of lower dimensionality, which make it easier to apply different synthesis methods 
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for high-dimensional systems. The design procedure of the sliding mode control will 

demonstrated on system (2.50) with control (2.52). This system can be represented in 

the regular form  

),,( 211
1 txxf

dt
dx

=  (2.60)

utxxBtxxf
dt

dx ),,(),,( 212212
2 += ; mrankBRxRx mmn =∈∈ −

221 ;;  (2.61)

In (2.60) vector x2 can be formally taken as control. The design of the desired 

motion is reduced to selection of the m-dimensional control for (n-m) dimensional 

system. Suppose the solution can be expressed as: 
mRxxx ∈= )(    );( 11112 σσ  (2.62)

The dimension of vector x2 is the same as the dimension of the control vector u, so 

in the sliding mode vector x2 can be forced to track its reference )( 11 xσ . Selecting the 

switching manifold 21121 )(),( xxxx −= σσ  equivalent control can be calculated as: 

( )
1

1
1211

1
2    ;

x
GffGBueq ∂

∂
=+= − σ

 (2.63)

And vector x2 will track its reference )( 11 xσ . The stability of the sliding mode can 

be proved as follows. Let scalar function F(x1,x2,t) be the upper bound of B2ueq. Then 

the time derivative of the Lyapunov function 2σσ TV =  on the trajectories (2.60), (2.61) 

with control [ ] 1;...;),,( 1
1

221 >=−= − ksignsignsignsignBtxxkFu T
mσσσσ is negative-

definite. That testifies the convergence of the state to the origin of the subspace S. 

One of the main problems in sliding mode control is the “chattering”. Chattering 

is the phenomenon of finite frequency, finite amplitude oscillations appearing in many 

sliding mode implementations. These oscillations are caused by the high-frequency 

switching of a sliding controller exciting unmodelled dynamics in the closed loop. 

Another cause of chattering appears from the digital implementations of control that has 

fixed sampling rate. In this thesis in the control and the observer design and 

implementation the chattering free sliding mode control based on the Lyapunov stability 

criteria approach which will be explained further has been used. 
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2.3.6 Chattering Free Sliding Mode Control 

As usual as for the continuous time systems the control system design procedure 

for the sampled data systems begins with a selection of the candidate Lyapunov 

function and the form which the time derivative of the candidate Lyapunov function 

should satisfy. From these two selections the control input is determined. In sampled 

data systems the satisfaction of the stability conditions is determined at the moment 

renewed control is applied (usually the beginning of the sampling interval) and at the 

end of the sampling interval in order to select the sampling interval and allowed 

computational delay. 

Reconsidering the plant given in (2.50): 

uxBtxfx )(),( +=
•

 
(2.64)

With rank (B) =m, x ∈ IRn, u∈IRm. As mentioned above In VSS control, the goal 

is to keep the system motion on the manifold S which is defined as: 

{ }0),(: == txxS σ  (2.65)

The solution to achieve this goal can be calculated from the requirement that 

σ(x,t)=0 is stable. The control should be chosen such that the candidate Lyapunov 

function satisfies Lyapunov stability criteria. The aim is to force the system states to the 

sliding surface defined by: 

σ=G(xd-x) (2.66)

Firstly, a candidate Lyapunov function selected: 

0
2

>=
σσ T

v  and 0<=
••

σσ Tv  (2.67)

It is aimed that the derivative of the Lyapunov function is negative definite. This 

can be assured if we can somehow make sure that: 

0<−=
•

σσ DTv  
(2.68)

D is always positive definite. 

Therefore (2.67) and (2.68) satisfy the Lyapunov conditions. From equation (2.67) 

and (2.68) can be written: 

σσ D−=
•

 
(2.69)
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If the equation (2.69) is taken and equated to zero, the resulting control is called 

as equivalent control. In other words, the control that makes the derivative of the sliding 

function equal to zero is called as equivalent control. Derivative of (2.66): 

( ) 0),( =+−
•

eqButxfG

d

xG  
(2.70)

As a result, the equivalent control can be written in the following form: 

)),((1)(
d

xtxfGGBueq
•

−−−=  
(2.71)

From derivative of (2.66) and using (2.71): 

))(( uuGB
dt

d
eq −=

σ
 (2.72)

then, another equation for equivalent control can be written as given below: 

dt

d
GBtutueq

σ1)()()( −+=  (2.73)

By using the definition given by (2.64) and (2.66) in (2.69): 

σDuxBtxf
d
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xG −=−−=− 
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)(),(  (2.74)

the control obtained as: 

( ) 
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σDtxf
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xGxGBu ),(
1

)(  (2.75)

using (2.63) the equivalent control can be written as: 

σDGBtutu eq
1)()()( −+=  (2.76)

In (2.76) the resulting control action is continuous (the equivalent control is 
continuous and function σ(x,t) is continuous by assumption) and ),(),( tt eq xuxu = for σ
(x,t)=0. In the implementation of algorithms (2.75) or (2.76) full information about 
system dynamics and external disturbances is required (for equivalent control 
calculation). Because of this, these algorithms are not practical for application. They are 
used here as intermediate results to show the procedure in the development of simpler 
and more useful control strategies. 

 
By looking (2.73) an estimation for ueq can be made using the property that u(t) is 

continuous and can not change too much in a short time as given below: 

dt

d
GBttutueq

σ
δ 1)()()(ˆ −+−=  (2.77)

where δt is a short delay time. 
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This estimation is also consistent with the logic that ueq is selected as the average 

of u. By putting the equation (2.77) into the equation (2.76), the last form for the 

controller becomes: 









+−+−=
dt

d
DGBttutu

σ
σδ 1)()()(  (2.78)

This form of expressing the control input is very instructive. It shows that in order 

to force the system to reach ε-vicinity of sliding mode manifold (2.65) and to stay 

within ε boundary layer the control input should be modified by the term 







 +−

dt
txdt ),(),()( 1 σσ xDGB  at every instant of time. The control (2.78) takes the value 

of the equivalent control for σ ( , )x t = 0 . 

 
Algorithm (2.78) can be easily modified for the application in the discrete time 

systems with no computational delay. In such a system relations between measured and 

computed variables are depicted in Fig.2.7 below where measurement taken before the 

calculation of new value of the control input are denoted as • −( )kT  and all variables 

immediately after new value of the control input is applied are denoted by • +( )kT , (from 

now on all variables will be written shorter so σ(kT) means σ(x(kT),kT)). Note that all 

continuous functions and variables satisfy • −( )kT =• +( )kT  

 

Figure 2.7: The relations between measured and calculated variables for discrete time 

systems without computational delay 

By taking into account the relationship depicted in Fig.2.7, algorithm (2.78) can 

be rewritten in the following form: 

))()(()()()( 1

dt
kTdkTkTkT

−
−−−+ +−=

σσDGBuu  (2.79)
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By using Euler interpolation: 

))()()1(()()()(
1

−+
−

−+ −+−= kTkTT
T

kTkT σσDGBuu  (2.80)

Finally with (2.80) the chattering free sliding mode controller is obtained that is 

proper for implementation in digital systems of which will be further used in the control 

system design of the IM below: 

2.4 Control System Design for IM 

The dynamical model and the structure of the induction motor supplied from a 

switching power converter is given below: 

      ),(
dt
d

dqz izfz
=  (2.81)

    ,, dqdqudqi
dq ),(),(

dt
d

uψziBψizf
i

+=  (2.82)

      , ),(
dt
d

dqizψfψ
φ=  (2.83)

( ) swMrdq sAFu θ=  (2.84)

In this model [ ]ωθ=Tz , (2.81) represents the mechanical motion, (2.82) 

represents stator current dynamics, (2.83) represents rotor flux dynamics and (2.84) 

represents the switching converter dynamics. 

 

Figure 2.8: Dynamical Structure of three phase induction machine 

From the structure of the IM given above the solution for the motion control may 

be decomposed into two problems: 
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• The first dealing with the control of the electromagnetic subsystem of the 

machine with the goal to generate necessary instantaneous torque / flux (e.g. inner loop 

current controller) to satisfy the requirements of the mechanical motion(outer loop).  

• The second dealing with the mechanical motion of the rotor and desired flux 

dynamics of the motor with control inputs (the instantaneous electromagnetic torque / 

flux) and the load torque as the disturbance. 

2.4.1 Current Controller 

Current control is based on the sliding mode existence in the manifold 

( )[ ] 0=−=
TrefT t iiσ  where vector [ ]Tqd

T σσ=σ  with ( ) d
ref
dd iti −=σ , ( ) q

ref
qq iti −=σ  and 

( ) ( )titi ref
q

ref
d    ,  are continuous functions to be determined later. Design of the current 

controller is based on the system description (2.82) dqudqidqdq dtd uBfi +=  where matrix 

udqB  is diagonal. The structure of function idqf  and matrix udqB  could be easily found 

from mathematical models given in the previous chapter. The time derivative of 

[ ]Tqd
T σσ=σ is determined as: 

[ ]qd
T
dqdqudqidq

ref
dqdq

ref
dq uu;   

dt
d

dt
d

dt
d

dt
d

=−=−= uuBf
iiiσ

 (2.85)

Equivalent control can be calculated as [ ] eqidq
ref
dqudq dtd ufiB =−−1  and (2.85) is 

expressed as: 

( )[ ] )9,...,1(,     ;= udq =− iS
dt

d
idqeq

dq uuB
σ

 (2.86)

Following design procedure explained before for the voltage vectors 

[ ]qd
T
dq uu=u  we have the following control inputs (e.g. output of the current 

controller) for the current vectors [ ]qd
T
dq iii = : 

))()()1(()()()(
1

−+
−

−+ −+−= kTkTT
T

kTkT dqdq σσDGBuu  (2.87)

where ( )[ ] 0=−=
TrefT t iiσ  and 

σL
1)( 1 =−GB   

the obtained control voltages are then applied to the motor via proper 

transformation and space vector pulse width modulation technique which will be 
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explained in the implementation further. T is the sampling time for the control 

implementation. 

After designing the proper current controllers next step is – by following the same 

procedure with the model of the IM obtained previously – to design controllers for 

speed and flux for completing the control system and to obtain the reference currents for 

the current controllers. 

2.4.2 Speed / Flux Controller 

Following the same procedure previously explained the required sliding surfaces 

for the reference currents of the speed and flux controllers can be as follows: 

{ }x))T()( kdqkdqi
ref

kdq
ref

kdq ∂∂=−+−= −
−

− σGσσDETGBii      ; ( )1()(
1

)1()(  (2.88)

where [ ]Tref
q

ref
d

ref
dq ii=i [ ]Tqddq σσ=σ  

ωωωωσ ω −=∆∆= ref
q C ;  ; ( ) φφφφφφσσ φ −=∆∆== refref

d   ;,  

The realization of the control explained above requires information on the sliding 

functions and the plant gain matrix. The speed / flux controller completes the control 

system design for the induction machine, the only remaining part is the design of the 

flux observer required to decouple the currents controlling the flux and torque of the 

machine independently which will be mentioned in the following chapter. Figure 2.9 

below indicates the overall sliding mode sensorless control structure of the induction 

motor. 

 

Figure 2.9: Overall structure of the control system for IM 
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3 OBSERVER DESIGN 

All the control system design methods for the IM electrical drive mentioned in the 

previous section were developed under the assumption that the rotor flux and the speed 

of the machine is available. Estimation or measurement of the rotor flux is the core 

point for the vector control of the IM to be used in the required transformations 

mentioned previously in order to decouple and control the torque and the flux of the 

machine independently. In practice, the rotor speed is available sometimes via 

mechanical sensors and the rotor flux can only be obtained via special techniques (e.g. 

special windings, sensors etc.) not proper for the standard type IM widely used in the 

industry or via proper observers. Due to the additional cost and the problems of 

reliability and ruggedness of these sensors, observer design is preferred by many 

researchers to estimate the rotor speed and rotor flux. In this chapter using the sliding 

mode control approach and Lyapunov design explained in the previous chapter a new 

sliding mode flux / speed observer is developed. The performance of the proposed 

observer is investigated and verified via simulations and experiments. 

3.1 Proposed Flux / Speed Observer 

The structure of the proposed observer can be seen in figure 3.1 below. For the 

observer design the motor model given in the previous chapter in the stationary frame, 

for the stator current observer controller chattering free-SMC and for the flux / speed 

observer Lyapunov design methodology are used. The observer proposed is of the full 

order and designed in two levels. First level is to design a stator current observer so that 

the estimated stator current tracks the measured one and the error in the current vector 

( is∆ ) is used as the input for the current observer controller. The control input 

calculated in the controller (u αβψ
) for the stator current observer is then directly applied 



36 

to the rotor flux and speed observer. This control has the information about the rotor 

flux, rotor time constant (e.g.
R
L

x r

r

r

=
1 ) and rotor speed inside. For the second level an 

important geometrical approach in vector control of IM drives is used to estimate the 

flux / speed observer shown in fig.3.1. The details about these observers are given 

below. 

 

Figure 3.1: Structure of the proposed observer 

3.2 Motor Model 

From the previous chapter (SSVM) the electrical side model of the IM can be 

written in stationary reference frame according to explained stator current observer and 

controller structure given in figure1 as follows: 
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iLL
R

L
Ru sm
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r
r ββαψβ ψψω −+−= ..  (3.6)

In (3.1)-(3.4) uu ss βα ,  and  ii ss βα ,  are the stator voltages and the currents 

consecutively, ψψ βα rr ,  are the rotor flux components in α-β reference frame, ω is the 

rotor electrical speed and uu ψβψα ,  are the defined variables in the stator current 

dynamics- including the rotor flux, the most varying variables; rotor time constant (1 / 

xr=Lr / Rr) and rotor speed – which is equal to the negative of the rotor flux dynamics. 

In (1)-(6) uu ss βα ,  and  ii ss βα ,  are the measurable variables, inductances of the motor 

are known. After some manipulation, (5) and (6) can be written as a vector product 

following: 
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From (3.7) it can be realized that if one of the parameter vectors T
rx 



 ω  or the 

rotor flux vector components 
T

rr 





βα ψψ  is known, then the other component can be 

easily calculated. Then the stator and the rotor side of the observer are designed as in 

the model considering this fact. 

3.3 Observer Model 
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Here “^” indicates the observed variables. uu ψβψα ,  are the control inputs for the 

designed observer which are chosen according to the (3.7) explained previously and 

these variables are directly used both in the stator current and rotor flux observers. 

3.4 Sliding Mode Observer Controller (Stator Current Observer) 

The aim of this controller is to suppress the effects due to the stator side dynamics 

by enforcing the error in the observed and the measured stator current ( is∆ ) to zero. 

Due to this reason the stator current observer is built depending on the current error 

dynamics. From (3.1), (3.8) and (3.2), (3.9) the error dynamics is calculated as follows: 
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Here, ααα sss iii ˆ−=∆ ; βββ sss iii ˆ−=∆  

To obtain the required control vectors ( uu ψβψα , ), the chattering free sliding mode 

control approach, which was explained previously, is used. The sliding surface 

(manifold) for this control is defined as follows: 

)ˆ.(.)( ,,, βαβαβασ iiGiGx −=∆=  
(3.14)

In (3.14) taking the derivative of both sides: 

)ˆ.()())((
,, βαβασσ iiGx

dt
xd &&& −==

 
(3.15)

As it was explained in the previous chapter, the necessary condition for the 

switching function in holding Lyapunov stability is to choose it as 

)(.)( xDx σσ −=& (chattering free SMC). The states (e.g. stator current) and their 

derivatives in (3.12), (3.13) become linearly dependent by this selection. Then using the 

definition of equivalent control – the control which drives the system to sliding 

manifold given in the previous chapter – the equivalent control can be calculated by 

substituting (3.8) and (3.9) in (3.15): 



39 



















+−−== uiRu

Lr
Lm

L
iGx

dt
xd

sss αβαβψαββα

σ
σσ ˆ.1.)())((

,&&
 

(3.16)

In (3.16) if the system is defined as in (2.50), from (3.8) and (3.9): 
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using the definition of the “equivalent control” (e.g. equux ψψαβσ =⇒= 0)(& ). For 

this case, the stator currents are used as reference signals and the error in the estimation 

( xxx ˆ−=∆ r ) becomes the error function for the controller designed. Then using the 

chattering free sliding mode approach explained previously the control input for the 

observer controller can be found from (3.16) as follows: 
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(3.18)

Here T is the sampling period for the observer implementation. The control vector 

calculated in (3.18) depends on the previous values of the control and the error in the 

estimation and drives the system to equilibrium point in which the error in the 

estimation and its derivative is enforced to converge to zero (e.g. 0, →∆ βαi  

and 0, →∆ βαi& ). In other words when the sliding mode occurs in the switching surface 

the error and its derivative converges to zero. Then from (3.12), (3.13) and the 

definition of equivalent control, again substituting 0, →∆ βαi  and 0, →∆ βαi& it can be 

found that: 
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For the chattering free sliding mode control, the equivalent controls obtained in 

(3.19) and (3.20) equal to the controls calculated in (3.18). If the rotor flux can be 

estimated correctly, from the controls in (3.19), (3.20) and the relation (3.7) the rotor 

speed and rotor time constant (Lr / Rr) can be estimated without any problem. This will 
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be explained later after the design of rotor flux observer. Another observation from 

(3.19) and (3.20) that after some manipulation the following relation can be obtained: 
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Here if the rotor speed and rotor time constant are measured / known and since the 

stator currents are measured, then rotor flux can be calculated (estimated) from (3.21) 

easily. Experiments about this approach are shown in the next chapter. But, since this 

approach requires a mechanical sensor to measure the speed for flux estimation it can 

only be used as a reference for the sensorless scheme which is the main goal in this 

thesis. 

3.5 Rotor Flux Observer 

For the rotor side of the observer model given in (3.10), (3.11) after a quick 

observation it can be easily realized that following the convergence of the estimated 

stator current to its real value there is nothing unknown left. The control given in (3.18) 

is equal to the negative of the rotor flux derivative. Thus, theoretically the rotor flux can 

be estimated through direct ideal integration of the negative of the control in (3.18). But, 

although the effects of the stator side dynamics can be suppressed by the stator current 

controller; due to the problems of initial condition mismatch, integration and the 

variation of the inductances of the machine the estimation of the correct rotor flux is 

problematic. Thus, the error in the flux estimation should be avoided. 

The success of an observer depends on its error dynamics, so the error dynamics 

of the rotor flux should be checked. From (3.3), (3.4) and (3.10), (3.11) the error 

dynamics for the flux is found as follows: 
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The error dynamics in (3.22) and (3.23) are also included in the stator current 

error dynamics and from the dynamics of this observer it is obtained that when the 

states reach the sliding surface (3.19) and (3.20) are valid. Then using (3.19), (3.20), 

(3.22) and (3.23) it is obtained that: 

0=∆
dt

d sψ α ; 0=∆
dt

d sψ β
 (3.24)

In (3.24) for the error in the derivative of the flux to be zero does not mean that 

flux error is zero. Due to this reason an additional convergence term to compensate for 

the error in the flux estimation caused by the initial condition mismatch and direct 

integration is unavoidable. 

3.6 Convergence Term 

To design the convergence term a geometrical approach is used. Note that in the 

vector control of IM the aim is to control the flux and the torque of the machine 

independently with two orthogonal components of the stator current. Also remember 

that another important fact is that the flux magnitude should be kept constant so that the 

fast torque response of the machine can be obtained by changing the stator current as for 

the separately excited DC machine. And finally in vector space any vector and its 

derivative should be orthogonal. Keeping in mind these facts following statement about 

the desired(actual) rotor flux vector and its derivative can be written in the stationary 

reference frame. 

ψψ & rr ⊥  (3.25)

(3.25) state that the rotor flux in the machine and its derivative is orthogonal. 

Then from (3.25) and orthogonality property of the vectors following can be written for 

the rotor flux and its derivative: 
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0.. ==+ Kψψψψ ββαα &&  (3.26)

(3.26) will be the basis for the sensorless flux estimator. (3.26) is nothing but just 

the simple scalar product of the flux vector and its derivative. Mathematically, this can 

be written as follows: 

0==• Krr ψψ &  (3.27)

The orthogonality of the two vectors can be seen in the figure below: 

 

Figure 3.2: Rotor flux and its derivative in (α-β) reference plane 

As explained previously; from the control calculated from the stator current 

tracking the position and the magnitude of the derivative of the rotor flux is well known. 

Here the problem exists in the estimation of the flux itself due to the problems explained 

previously. To solve this problem an additional term should be designed for the rotor 

flux to converge to its real value. This additional term is added to the rotor flux observer 

in (3.10) and (3.11) as follows: 

)(ˆ
rfudt

d r ψψ
ψ

∆+−=  (3.28)

In (3.25) all the state variables are in vector form with two components in 

stationary frame. The function f (∆ψr) should be determined s.t. the problems of initial 

condition mismatch in the integration and variation of inductances can be suppressed. 

When the rotor flux converges to its real value, then this function should converge to 

zero. 

In obtaining the convergence terms the relation given in (3.26) will be used. First 

let the relation between the estimated and the actual flux as follows: 
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ψψψ ααα ∆+= ˆ  and ψψψ βββ ∆+= ˆ  (3.29)

(3.26) can be written for the estimated flux as follows: 

K̂.ˆ.ˆ =+ ψψψψ ββαα &&  (3.30)

From (3.10) and (3.11) the control calculated can be substituted for the derivative 

of the flux: 

Kuu ˆ).ˆ.ˆ( =+− ψββψαα ψψ  (3.31)

Then if ψψ rr →ˆ  then 0ˆ →→ KK  (e.g when flux converges to actual one 

estimated scalar product converges to zero). The situation in (3.30) can be seen in the 

figure below 

 

Figure 3.3: Estimated and actual flux and the derivative in stationary frame 

To investigate the dynamics of the change of the variable K in (3.26) taking the 

derivative of both sides, the following relation is obtained: 

ψψψψψψ ββααβα &&&&&&& ..22 +++=K  (3.32)

Then an observer for K can be constructed s.t. when the estimated K̂  converges to 

its actual value K  then the estimated flux will converge to its real value. The observer 

constructed is as follows: 

KLuuuuK ∆+−−+= &&
&

ψββψααψβψα ψψ .ˆ.ˆˆ 22
 (3.33)

In (3.33) when constructing the observer since the derivative of the flux is known 

from stator current observer it is substituted with the negative of the control uψ  
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calculated previously (measurable in the sense of reduced order observers). Double 

derivative of the flux is also required and this can be calculated by taking the derivative 

of the first derivative via euler method and again this will be equal to the negative of 

u&ψ  which can be found using (3.18) as follows: 
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(3.34)

Also we can calculate error in the observer state as: 

KKKKK ˆˆ0ˆ −=−=−=∆  
(3.35)

To check for the convergence of the designed observer, the error dynamics should 

be investigated. For a positive constant L to be chosen and relations (3.32), (3.33), 

(3.34) and (3.35) the error dynamics becomes: 

KLuuK ∆−∆−∆−=∆ &&&
ψββψαα ψψ  (3.36)

Then using Lyapunov design methodology; select the positive definite Lyapunov 

candidate function V as: 

( ) 0
2
1 222 ≥∆+∆+∆= KV βα ψψ  (3.37)

(3.37) is zero only at the equilibrium point where all the errors in the flux and the 

fictitious variable K are zero. Taking the derivative of V becomes: 

KKV &&&& ∆∆+∆∆+∆∆= ψψψψ ββαα  (3.38)

Substituting (3.36) into (3.38) and from the previous knowledge that 0, =∆ψ βα&  

(3.38) becomes: 

( )uuKKLV &&&
ψββψαα ψψ ∆−∆−∆+∆−= 2

 (3.39)

From Lyapunov Stability Criteria it is known that the time derivative of the 

selected function should be negative definite. In order for the function in (35) to be 

negative definite choosing the adaptive law as: 

u
u
&

&

ψα

ψβ
βα ψψ ∆−=∆  (3.40)

It is obtained that: 
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02 ≤∆−= KLV&  
(3.41)

(3.41) means that under the chosen adaptive law (3.40), the selected Lyapunov 

function V in (3.37) is delaying until the fictitious variable error K∆  becomes zero: 

0=∆K  (3.42)

When this variable converges to its real value, substituting (3.42) in (3.36) it can 

be found that: 

0=∆+∆ uu && ψβψα ψψ βα  (3.43)

Also from (3.26), (3.30), (3.42), (3.10) and (3.11) it can be derived that: 

0.. =∆=∆+∆ Kuu ψβψα ψψ βα  (3.44)

Combining (3.43) and (3.44) in matrix form: 









=∆








+∆








0
0

ψψ βα
ψβ

ψβ

ψα

ψα

u
u
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If the analysis is made, it can be concluded that there exists only the trivial 

solution for the (3.45) which is a system of 2 eqns. with 2 unknowns. 

0.. , =∆→ ψ βαge  and ψψ rr→ˆ  (3.46)

The trivial solution for the system in (3.45) can be proved by assuming 

uu ψβψα , in the form below: 

eAuandeAu tjtj )2()( πφωφω
ψβψα

+++ ==  (3.47)

In (3.47) A  is the amplitude φ  is the phase and ω is the rotation angular speed 

of the signal. The derivatives ( uu && ψβψα , ) of the control can be easily calculated. 

Thus, to sum up for the observer in (3.33) under the adaptive law (3.40) the 

estimated rotor flux converges to its actual value with the additional convergence terms 

added to the two components (α-β).After the correct estimation of the rotor flux the last 

step is to estimate the rotor speed and rotor time constant which is given in the next 

part. 
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3.7 Rotor Speed / Time Constant Observer 

For the estimation of the rotor speed (ω) and time constant (Lr / Rr), (3.7) can be 

used. From (3.7) using the estimated flux obtained from the flux observer, the 

equivalent control from the stator current observer controller and the measured currents; 

following can be written: 
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Taking the inverse of matrix A above the rotor time constant and the speed can be 

calculated as: 
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Using the relation that A-1= AT / det (A): 
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(3.49)

(3.49) completes the design of the full order observer and finally with the 

designed observers, the overall sensorless vector control scheme shown in figure (2.9) 

has been finished. The performance of the overall sensorless control design scheme and 

the proposed observer structure is verified via simulation and experiments. 
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4 SIMULATION AND IMPLEMENTATION RESULTS 

4.1 Implementation Issues 

The proposed control scheme shown in figure 2.9 is implemented. In this scheme 

there is the IM as a working plant with the given data in Table1, voltage source inverter 

(VSI) operating with the space vector pulse width modulation technique (SVPWM), a 

tachogenerator to measure the speed, the DSPACE1103 board which includes 

TMS320F240 digital signal processor to calculate the proposed control and observer 

schemes and 2-LEM current sensors to measure the AC current going through the stator 

windings. Also the 3-phase transformer and variac are used to isolate the system 

galvanically from the mains. The processor works in 100µs sampling time, the system 

was tested with no-load. 

Pn = 370 W Rs = 24.6 Ω 

In = 1.5 A Rr = 16.9 Ω 

Fn = 50 Hz Lm =1.46 H 

Nrpm = 2280 

rpm 

Ls = 1.499 H 

# of poles = 2 L r= 1.499 H 

Figure 4.1: Table for the nominal parameters of the IM plant 
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4.2 Space Vector Modulation 

Pulse Width Modulation technique is used to generate the required voltage or 

current to feed the motor or phase signals.[24] This method is increasingly used for AC 

drives with the condition that the harmonic current is as small as possible and the 

maximum output voltage is as large as possible. Generally, the PWM schemes generate 

the switching position patterns by comparing three-phase sinusoidal waveforms with a 

triangular carrier. 

In recent years, the space vector theory demonstrated some improvement for both 

the output crest voltage and the harmonic copper loss. The maximum output voltage 

based on the space vector theory is 2/3 = 1.155 times as large as the conventional 

sinusoidal modulation. It enables to feed the motor with a higher voltage than the easier 

sub-oscillation modulation method. This modulator allows having a higher torque at 

high speeds, and a higher efficiency. 

 

Figure 4.2: A Three Phase Inverter Fed by 3 PWM Signals Sa, Sb, Sc and Their 

Respective Complementary Sa’, Sb’, Sc’ . 

For a better understanding of the space vector process and to represent the 

switching state of the inverter we define a switching function Sa for phase A as follows: 

Sa = 1 when the upper transistor of phase A is on, and Sa = 0 when the lower transistor 

of phase A is on. Similar definitions can be made for phase B and C. 
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The signals Sa’ Sb’ Sc’(complementary) controlling the lower transistors, are the 

opposite of Sa Sb Sc  with an addition of dead-bands. For our case the dead-band is 

added by the hardware. Thus there is no need to for soft dead-band implementation. 

Dead-band is the name given to the time difference between the commutations of 

the upper and lower transistor of one phase. The two transistors of each phase are then 

never conducting at the same time. The aim of the dead-band is to protect the power 

devices during commutation by avoiding conduction overlap and then high transient 

current. 

In the following graph vectors, Uxxx are represented with their corresponding 

switching states between brackets, Uxxx ( Sa, Sb, Sc ). 

 

Figure 4.3: Space Vector combination of i 

In the space vector theory the motor voltage vector is approximated by a 

combination of 8 switching patterns of the 6 power transistors shown in figure 2 above. 

Us is decomposed as follows: 

 
(4.1)
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where Ux and Ux are two consecutive vectors. The third vector O (0.0.0 ) or O 

(1.1.1 ) is chosen in a way to minimize the number of switching commutations. This can 

be expressed with the formula: 

 
(4.2)

 

Figure 4.4: PWM S states with 600 ≤≤ θ  deg 

In the above case which is a symmetrical PWM generation, the first half period of 

a PWM is built with the two PWM configurations U0 and U60 characterized by the 

switching states (0,0,1) and (1,1,0) and the vector O (1,1,1). The second half of the 

period has the same sequence but inverted related to time. This PWM scheme describe a 

vector Us with an angle θ as 0 ≤  θ ≤ 60 deg . 

The torque / speed and flux control loops are executed in every 100 µs. The 

system is operated under no-load. Low speed control is challenging, with the proposed 

control scheme and open-loop flux observer [12] very good results were obtained (0.1 

rpm). The controller parameters for the idq current, speed and flux controllers are given 

in Tables 2, 3 and 4 consecutively below. 
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with error 
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manifold slope 

Kui = 0.01 
Integrator 
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T =1e-4 s. 
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Figure 4.5: Current Controller Parameters 

Cψ =7 
Multiplied 

with error 

Dψ =500 
Sliding 

manifold slope 

Kuψ = 1 
Integrator 

gain 

T =1e-4 s. 
Sampling 

time 

Figure 4.6: Flux Controller Parameters 

Cw =1 
Multiplied 

with error 

Dw =500 
Sliding 

manifold slope 

Kuw = 

0.0005 

Integrator 

gain 

T =1e-4 s. 
Sampling 

time 

Figure 4.7: Speed Controller Parameters 

Following are the experimental results of the torque / speed and flux control 

explained previously with the given controller parameters. 
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4.3 Experimental Results 

4.3.1 Torque Flux Control 
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Figure 4.8: 0.1 Hz sinusoidal torque reference and 0.5 to 0.9 V.s step flux reference 
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Figure 4.9: 1 Hz sinusoidal torque reference and 0.5 to 0.9 V.s step flux reference 
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Figure 4.10: 10 Hz sinusoidal torque reference and 0.9 to 0.5 V.s step flux reference 
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Figure 4.11: 10 Hz pulse torque reference and 0.5 V.s constant flux reference 
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Figure 4.12: 2 Hz pulse torque reference and 0.5 to 0.9 V.s step flux reference 
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4.3.2 Speed Flux Control 
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Figure 4.13: 1 rpm speed reference and 0.5 V.s constant flux reference 
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Figure 4.14: 0.5 rpm step speed reference and 0.5 to 0.9 V.s step flux reference 
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Figure 4.15: 25rpm pulse speed reference and 0.7 V.s flux reference 
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Figure 4.16: 2.5 rpm pulse speed reference and 0.9 V.s flux reference 
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Figure 4.17: 1 Hz sinusoidal speed reference and 0.6 V.s flux reference 
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4.4 Simulation Results 

The proposed control scheme was first simulated using MATLAB. In the 

simulation, pulsewidth modulation (PWM) technique is not used and the dynamics in 

the voltage-source inverter are also ignored. The proposed sensorless algorithm was 

tested under no-load, big initial condition for the flux (comparing to the magnitude of 

the actual flux) and low speed where control is very challenging. Outer loop control was 

not shown in the simulation results since the main goal was to look for the convergence 

of the rotor flux, speed and time constant to converge to its actual values. The motor 

was driven open loop. Here are the simulation results obtained. 

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1
x 10-4 stator current tracking errors

A

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

x 10-4 rotor flux tracking errors

V
.s

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8
shaft speed

ra
d/

s

s

 

Figure 4.18: 1 Hz, 100 V stator voltage 



63 

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

2

3
x 10-5 stator current tracking errors

A

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15
x 10

-5 rotor flux tracking errors

V
.s

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8
shaft speed

ra
d/

s

s

 

Figure 4.19: 0.1 Hz, 100 V stator voltage 
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Figure 4.20: Sensorless observer results under no load, low speed conditions 
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5 CONCLUSION 

In this thesis, a novel adaptive sliding-mode observer/controller algorithm has 

been developed for the estimation of the rotor flux, the angle speed and the rotor time 

constant and for the torque/speed and flux control of an IM without measurement of any 

mechanical variables, such as speed and torque. Stability analysis of the observer has 

been performed, which shows that, for any initial condition and from zero to nominal 

speed, the asymptotic stability of the observer can be achieved. The system is also 

implemented using a DSP and showed its performance through laboratory experiments. 

The algorithm has been also tested with simulations which show the convergence of the 

estimated flux, speed and rotor time constant even for low speed operation. The 

experiments show that the proposed sliding-mode controller/observer works well for a 

wide speed range, and the controller itself is very promising for a low-speed situation. 

The rotor flux is estimated through the adaptive law and using the flux estimated 

and the sliding mode current observer, the rotor speed and time constant observer is 

constructed. The rotor time constant estimation is useful to overcome the rotor 

resistance variation, which is the most varying parameter with temperature. The overall 

scheme is very useful in sensorless operation in different environmental conditions, and 

it is cost and maintenance free. 

Also, an experimental system with a speed sensor to estimate the flux is 

constructed to be used as a reference for the sensorless scheme. In the future the 

convergence rate of the estimated flux should be improved although it is below 1 s by 

revising the designed observer structure. 

The idea developed in this thesis is a novel approach and it is expected to be 

helpful for the researchers to develop new algorithms who are working in the field of 

sensorless control of IM. 

 



65 

REFERENCES 

[1] Şahin, C., Sabanovic, A., Gökasan, M., “Sliding Mode Flux Observer based Robust 

Vector Control for Induction Motor”, Proc. Int. Aegean Conf. on Elec. Machines and 

Power Elec.,ACEMP’95, Vol.2,pp.399-404, Kuşadası-Turkey,1994 

[2] A. Zaremba, \ Reduced order sliding mode speed observer of induction motors," 

Technical Report, Ford Company, 1995. 

[3] T. Furuhashi, S. Sangwongwanich and S. Okuma, \A position and velocity 

sensorless control for brushless DC motor using an adaptive sliding mode observer," 

IEEE Trans. on Ind. Electronics, vol.39, pp.89-95 1992. 

[4] A. Benchaib, A. Rachid, E. Audrezet and M. Tadjine, \Real time sliding mode 

observer and control of an induction motor," IEEE Trans. on Ind. Electronics, vol.46, 

pp.128-137 1999.5 

[5] F. Parasiliti, R. Petrella and M. Tursini, \ Adaptive sliding mode observer for speed 

sensorless control of induction motors," in IEEE/IAS Ann. Meet. Conf. Rec., 1999. 

[6] Y. Zheng, H. A. A. Fattah and K. A. Loparo, \Non-linear adaptive sliding mode 

observer-controller scheme for induction motors," Int. J. Adapt. and Signal Process., 

Vol14, pp.245-273, 2000. 

[7] Yan, Z., Jin, C. and Utkin, V.I, “Sensorless Sliding Mode Control of Induction 

Motors”, IEEE Trans. on Ind.Elec., Vol.47, No.6, pp.1286-1297,Dec.2000 

[8] Dal, M., Sabanovic, A.,”A New Approach for Flux and Speed Estimation in 

Induction Motor”, AMC’02 

[9] Yan, Z., Utkin, V.I, “Sliding Mode Observers for Electric Machines-An Overview”, 

IECON’02, Volume: 3 , 5-8 Nov. 2002 

[10] Derdiyok, A.; Zhang Yan; Guven, M. Utkin, V.; Industrial Electronics Society, 

2001. IECON '01. The 27th Annual Conference of the IEEE, Volume: 2, 29 Nov.-2 

Dec. 2001 Pages:1400 - 1405 vol.2 

[11] V. I. Utkin, \ Sliding mode control design principles and applications to electrical 

drives," IEEE Trans. on Ind. Electronics,vol.40, pp. 23-36, Feb. 1993. 



66 

[12] V. I. Utkin, J. G. Guldner and J. Shi, Sliding Mode Control in Electromechanical 

Systems, Taylor & Francis, 1999. 

[13] Sabanovic, A. Chattering Free Sliding Modes, First Turkish Automatic Control, 

Istanbul-Turkey, 1994 

[14] Vas, P., Sensorless Vector and Direct Torque Control, Oxford University Press, 

U.S., 1998 

[15] Bose, B.K., Power electronics and Variable Frequency Drives, IEEE Press, 

U.S.,1997 

[16] L. Ben-Brahim, S. Tadakuma and A. Akdag, \Speed Control of Induction Motor 

Without Rotational Transducers," IEEE Trans.on Industry App., vol.35, pp.844-849, 

July 1999. 

[17] H. Tajima and Y. Hori, “Speed Sensorless Field Orientation Control of the 

Induction Machine".  IEEE Trans. on Industry App., Vol.29, pp.175-180, Jan. 1999. 

[18] M. Shin, D. Hyun, S. Cho and S. Choe, \ An Improved Stator Flux Estimation for 

Speed Sensorless Stator Flux Orientation Control of Induction Motors," IEEE Trans. on 

Power Electronics, vol.15, pp. 312-317, March 2000. 

[19] B. K. Bose and M. G. Simoes, \Speed sensorless hybrid vector controlled induction 

motor drive," in IEEE/IAS Annu. Meet. Conf. Rec., 1995, pp.137-143. 

[20] J. Hu and B. Wu, \ New Integration Algorithms for Estimating Motor Flux over a 

Wide Speed Range," IEEE Trans. on Power electronics, vol.13, pp.969-977, Sep. 1998. 

[21] F.Z. Peng and T. Fukao, \ Robust speed identification for speed sensorless vector 

control of induction motor," IEEE Trans. on Industry App., vol. 30, pp.1234-1240, Sep. 

1994. 

[22] S. Sastry and M. Modson, Adaptive Control Stability and Convergence and 

Robustness, Prentice Hall, 1989. 

[23] C. Shauder, \ Adaptive speed identification scheme for vector control of induction 

motors without rotational transducers," IEEE Trans. on Industry App., vol. 28, pp.1054-

1061, Sep. 1992. 

[24] TI, “Digital Signal Processing Solution for AC Induction Motor” application note 

BPRA043,1996 

[25] Sabanovic, A. “Lecture Notes on Variable Structure Systems and Electrical Mach.” 



65 

REFERENCES 

[1] Şahin, C., Sabanovic, A., Gökasan, M., “Sliding Mode Flux Observer based Robust 

Vector Control for Induction Motor”, Proc. Int. Aegean Conf. on Elec. Machines and 

Power Elec.,ACEMP’95, Vol.2,pp.399-404, Kuşadası-Turkey,1994 

[2] A. Zaremba, \ Reduced order sliding mode speed observer of induction motors," 

Technical Report, Ford Company, 1995. 

[3] T. Furuhashi, S. Sangwongwanich and S. Okuma, \A position and velocity 

sensorless control for brushless DC motor using an adaptive sliding mode observer," 

IEEE Trans. on Ind. Electronics, vol.39, pp.89-95 1992. 

[4] A. Benchaib, A. Rachid, E. Audrezet and M. Tadjine, \Real time sliding mode 

observer and control of an induction motor," IEEE Trans. on Ind. Electronics, vol.46, 

pp.128-137 1999.5 

[5] F. Parasiliti, R. Petrella and M. Tursini, \ Adaptive sliding mode observer for speed 

sensorless control of induction motors," in IEEE/IAS Ann. Meet. Conf. Rec., 1999. 

[6] Y. Zheng, H. A. A. Fattah and K. A. Loparo, \Non-linear adaptive sliding mode 

observer-controller scheme for induction motors," Int. J. Adapt. and Signal Process., 

Vol14, pp.245-273, 2000. 

[7] Yan, Z., Jin, C. and Utkin, V.I, “Sensorless Sliding Mode Control of Induction 

Motors”, IEEE Trans. on Ind.Elec., Vol.47, No.6, pp.1286-1297,Dec.2000 

[8] Dal, M., Sabanovic, A.,”A New Approach for Flux and Speed Estimation in 

Induction Motor”, AMC’02 

[9] Yan, Z., Utkin, V.I, “Sliding Mode Observers for Electric Machines-An Overview”, 

IECON’02, Volume: 3 , 5-8 Nov. 2002 

[10] Derdiyok, A.; Zhang Yan; Guven, M. Utkin, V.; Industrial Electronics Society, 

2001. IECON '01. The 27th Annual Conference of the IEEE, Volume: 2, 29 Nov.-2 

Dec. 2001 Pages:1400 - 1405 vol.2 

[11] V. I. Utkin, \ Sliding mode control design principles and applications to electrical 

drives," IEEE Trans. on Ind. Electronics,vol.40, pp. 23-36, Feb. 1993. 



66 

[12] V. I. Utkin, J. G. Guldner and J. Shi, Sliding Mode Control in Electromechanical 

Systems, Taylor & Francis, 1999. 

[13] Sabanovic, A. Chattering Free Sliding Modes, First Turkish Automatic Control, 

Istanbul-Turkey, 1994 

[14] Vas, P., Sensorless Vector and Direct Torque Control, Oxford University Press, 

U.S., 1998 

[15] Bose, B.K., Power electronics and Variable Frequency Drives, IEEE Press, 

U.S.,1997 

[16] L. Ben-Brahim, S. Tadakuma and A. Akdag, \Speed Control of Induction Motor 

Without Rotational Transducers," IEEE Trans.on Industry App., vol.35, pp.844-849, 

July 1999. 

[17] H. Tajima and Y. Hori, “Speed Sensorless Field Orientation Control of the 

Induction Machine".  IEEE Trans. on Industry App., Vol.29, pp.175-180, Jan. 1999. 

[18] M. Shin, D. Hyun, S. Cho and S. Choe, \ An Improved Stator Flux Estimation for 

Speed Sensorless Stator Flux Orientation Control of Induction Motors," IEEE Trans. on 

Power Electronics, vol.15, pp. 312-317, March 2000. 

[19] B. K. Bose and M. G. Simoes, \Speed sensorless hybrid vector controlled induction 

motor drive," in IEEE/IAS Annu. Meet. Conf. Rec., 1995, pp.137-143. 

[20] J. Hu and B. Wu, \ New Integration Algorithms for Estimating Motor Flux over a 

Wide Speed Range," IEEE Trans. on Power electronics, vol.13, pp.969-977, Sep. 1998. 

[21] F.Z. Peng and T. Fukao, \ Robust speed identification for speed sensorless vector 

control of induction motor," IEEE Trans. on Industry App., vol. 30, pp.1234-1240, Sep. 

1994. 

[22] S. Sastry and M. Modson, Adaptive Control Stability and Convergence and 

Robustness, Prentice Hall, 1989. 

[23] C. Shauder, \ Adaptive speed identification scheme for vector control of induction 

motors without rotational transducers," IEEE Trans. on Industry App., vol. 28, pp.1054-

1061, Sep. 1992. 

[24] TI, “Digital Signal Processing Solution for AC Induction Motor” application note 

BPRA043,1996 

[25] Sabanovic, A. “Lecture Notes on Variable Structure Systems and Electrical Mach.” 


