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ABSTRACT 

Two approaches were developed to surface-functionalize commercially available 

injection molded isotactic polypropylene tubes: 

 

Non-reactive method: A novel technique, in which organosiloxane films were 

fabricated and anchored on low-surface-energy polymer without invoking chemical 

pretreatment of the surface, was developed to surface-functionalize injection molded 

polypropylene tubes. In envisaging a non-reactive approach, polypropylene tubes were 

incubated in solutions that encouraged inter-molecular chain separation of surface-

positioned polymeric chains and entry of small, monomeric silane precursors into the 

sub-layers. During precursor activation, the reaction conditions encouraged activated 

silane species potentially in and above the plastic matrix to crosslink, in principle 

affording a thin coating whose bulk was partially submerged and entangled within the 

plastic matrix. The binary network afforded, for example, polyaminopropylsiloxane 

entangled within polypropylene, described a system in which two interconnected 

polymers shared no formal covalent bonds but nevertheless were inseparable. 

 

Reactive method: In surface-engineering of injection-molded polypropylene tubes by 

oxidative activation, native, mesoscopically flat tubes were oxidized using aqueous 

ammonium peroxydisulfate. When evaluated in the context of the conditions employed 

for oxidation, FTIR-ATR spectral analysis indicated that the activated plastics 

predominantly bore carboxyl, ketone and possibly hydroxyl groups as major surface 

products and an approximate uniform increase of matrix-bound oxidation products up to 

16 hours reaction time. Scanning electron microscopy analyses showed insignificant 

changes of mesoscale topology up to 8 hours reaction time, sparsely distributed bulges 

of approximate 400nm diameter developed by 12 hours reaction time, and a sudden and 

marked transformation thereafter to give the sponge-like mesoscale topology. The main 

mechanisms envisaged to rationalize the topology included organized pitting of the 

surface, oxidation-mediated phase separation, or a combination of the two. While 
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degradative loss of polymer chains clearly pointed to the former mechanism, it by itself 

could not rationalize the topology, as pitting would have been anticipated gradually in 

time. In fact, the dramatic change of topology, which suddenly developed late in the 

oxidation process, could only be consistent with a phase separation. This deduction was 

corroborated in conducting the parallel experiment with gradually oxidized melt-blown 

fibers. Mesopatterning induced by oxidation described an alternative to current methods 

based on lithography, self-organization and solvent casting. 
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ÖZET 

Enjeksiyonla kalıplanmı� izotaktik polipropilen tüp yüzeyi reaktif olan ve reaktif 

olmayan iki yöntem ile modifiye edilmi�tir. 

 

Reaktif olmayan yöntem. Enjeksiyonla kalıplanmı� polimerlerin yüzey 

modifikasyonunda çalı�ılmamı� bir strateji olarak, reaktif öncü monomerlerin polimer 

matrisi içine sokulması ve bunu takiben aktive edilip kendi içinde çapraz ba�lanmasının 

sa�lanması esasına dayalı bir yakla�ım takip edilmi�tir. Enjeksiyonla kalıplanmı� 

polipropilen tüpler, yüzey zincirlerinin moleküller arası seviyede ayrılmasını ve öncü 

silan monomerlerin bu zincirler arasına girmesini te�vik eden bir kimyasal olan toluen 

ile ısıtılmı�tır. Bir sonraki basamakta suyun ortama sokulmasıyla polimer zincirlerinin 

arasına girmi� olan aminopropiltrimetoksisilan gibi öncü organosilan monomerleri aktif 

silanole dönü�türülmesiyle aktif monomerlerin  polipropilen matrisi içerisinde çapraz 

ba�lanaca�ı ortam hazırlanmı�tır. Bunun sonucunda polipropilen ile 

poliaminopropylsiloxane, kovalent ba� içermeyen, birbirinden ayrılamaz durumda, iç 

içe geçmi� ikili a� olu�turmu�tur. Ninhidrin analizleri tüp yüzeyinde amino gruplarının 

varlı�ını göstermi�tir. Di�er yüzey modifikasyon yöntemlerinden farklı olarak, 

polipropilenin kimyasal yapısını de�i�tirmeden yüzeyine fonksiyonel gruplar eklenmesi 

sa�layan yeni bir yöntem sunmu�tur. 

 

Reaktif yöntem. Enjeksiyonla kalıplanmı� izotaktik polipropilen tüpler, amonyum 

peroksidisülfat çözeltisi kullanılarak kimyasal yolla modifiye edilmi�tir ve bu i�lemi 

takiben yüzeyde olu�an desenin temel nedeni ve potansiyel uygulamaları ara�tırılmı�tır. 

Oksidasyon i�lemi yüzey boyunca sadece polar fonksiyonel gruplar de�il, daha 

önemlisi, topolojide mezoskopik seviyede önemli de�i�ikli�e yol açmı�tır. FTIR-ATR 

spektroskopik analizleri sonucunda yüzeye  ba�lı oksidasyon ürünlerinde 16 saatlik 

reaksiyona kadar düzgün bir artı� oldu�u gözlemlenmi�tir. Buna kar�ın, taramalı 

elektron mikrografları analizleri göstermi�tir ki, 8. saate kadar topolojide önemli 

de�i�iklikler olmamakta; 8 ve 12 saat  arasında, seyrekçe da�ılmı�, yakla�ık 400nm 

çaplı tümsekler �ekillenmeye ba�lamakta ve ilerleyen a�amalarda mezoskopik seviyede 
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süngerimsi görünümler olu�maktadır. Topolojide meydana gelen bu de�i�ikli�in 

açıklanmasında yüzeyin kimyasal reaksiyon sonucu oyulması, oksidasyon sonucu faz 

ayrımı olu�umu gibi mekanizmalar öngörülmü�tür.  Polimer zincirlerinin reaksiyon 

sonucu kaybı, önerilen ilk mekanizmaya i�aret etse de oyma i�lemi zamanla kademeli 

olarak beklendi�i için, topolojideki de�i�ikli�in nedenini tek ba�ına açıklamaya yeterli 

de�ildir. Oksidasyon sonrası topolojide meydana gelen çarpıcı de�i�iklikler faz 

ayrımıyla ve stresin serbest kalmasıyla tutarlıdır. Bu çıkarım, polipropilen fiberlerle 

yapılan paralel  deneyle kuvvetlendirilmi�tir. Olu�an yeni topolojinin altında yatan 

mekanizmanın açıklanması kimyasal olarak aktif yeni yüzeyler elde edilmesinde ve 

yüzey modifikasyonunda alternatifler sunmaktadır. 
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ABSTRACT 

Two approaches were developed to surface-functionalize commercially available 

injection molded isotactic polypropylene tubes: 

 

Non-reactive method: A novel technique, in which organosiloxane films were 

fabricated and anchored on low-surface-energy polymer without invoking chemical 

pretreatment of the surface, was developed to surface-functionalize injection molded 

polypropylene tubes. In envisaging a non-reactive approach, polypropylene tubes were 

incubated in solutions that encouraged inter-molecular chain separation of surface-

positioned polymeric chains and entry of small, monomeric silane precursors into the 

sub-layers. During precursor activation, the reaction conditions encouraged activated 

silane species potentially in and above the plastic matrix to crosslink, in principle 

affording a thin coating whose bulk was partially submerged and entangled within the 

plastic matrix. The binary network afforded, for example, polyaminopropylsiloxane 

entangled within polypropylene, described a system in which two interconnected 

polymers shared no formal covalent bonds but nevertheless were inseparable. 

 

Reactive method: In surface-engineering of injection-molded polypropylene tubes by 

oxidative activation, native, mesoscopically flat tubes were oxidized using aqueous 

ammonium peroxydisulfate. When evaluated in the context of the conditions employed 

for oxidation, FTIR-ATR spectral analysis indicated that the activated plastics 

predominantly bore carboxyl, ketone and possibly hydroxyl groups as major surface 

products and an approximate uniform increase of matrix-bound oxidation products up to 

16 hours reaction time. Scanning electron microscopy analyses showed insignificant 

changes of mesoscale topology up to 8 hours reaction time, sparsely distributed bulges 

of approximate 400nm diameter developed by 12 hours reaction time, and a sudden and 

marked transformation thereafter to give the sponge-like mesoscale topology. The main 

mechanisms envisaged to rationalize the topology included organized pitting of the 

surface, oxidation-mediated phase separation, or a combination of the two. While 
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degradative loss of polymer chains clearly pointed to the former mechanism, it by itself 

could not rationalize the topology, as pitting would have been anticipated gradually in 

time. In fact, the dramatic change of topology, which suddenly developed late in the 

oxidation process, could only be consistent with a phase separation. This deduction was 

corroborated in conducting the parallel experiment with gradually oxidized melt-blown 

fibers. Mesopatterning induced by oxidation described an alternative to current methods 

based on lithography, self-organization and solvent casting. 
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ÖZET 

Enjeksiyonla kalıplanmı� izotaktik polipropilen tüp yüzeyi reaktif olan ve reaktif 

olmayan iki yöntem ile modifiye edilmi�tir. 

 

Reaktif olmayan yöntem. Enjeksiyonla kalıplanmı� polimerlerin yüzey 

modifikasyonunda çalı�ılmamı� bir strateji olarak, reaktif öncü monomerlerin polimer 

matrisi içine sokulması ve bunu takiben aktive edilip kendi içinde çapraz ba�lanmasının 

sa�lanması esasına dayalı bir yakla�ım takip edilmi�tir. Enjeksiyonla kalıplanmı� 

polipropilen tüpler, yüzey zincirlerinin moleküller arası seviyede ayrılmasını ve öncü 

silan monomerlerin bu zincirler arasına girmesini te�vik eden bir kimyasal olan toluen 

ile ısıtılmı�tır. Bir sonraki basamakta suyun ortama sokulmasıyla polimer zincirlerinin 

arasına girmi� olan aminopropiltrimetoksisilan gibi öncü organosilan monomerleri aktif 

silanole dönü�türülmesiyle aktif monomerlerin  polipropilen matrisi içerisinde çapraz 

ba�lanaca�ı ortam hazırlanmı�tır. Bunun sonucunda polipropilen ile 

poliaminopropylsiloxane, kovalent ba� içermeyen, birbirinden ayrılamaz durumda, iç 

içe geçmi� ikili a� olu�turmu�tur. Ninhidrin analizleri tüp yüzeyinde amino gruplarının 

varlı�ını göstermi�tir. Di�er yüzey modifikasyon yöntemlerinden farklı olarak, 

polipropilenin kimyasal yapısını de�i�tirmeden yüzeyine fonksiyonel gruplar eklenmesi 

sa�layan yeni bir yöntem sunmu�tur. 

 

Reaktif yöntem. Enjeksiyonla kalıplanmı� izotaktik polipropilen tüpler, amonyum 

peroksidisülfat çözeltisi kullanılarak kimyasal yolla modifiye edilmi�tir ve bu i�lemi 

takiben yüzeyde olu�an desenin temel nedeni ve potansiyel uygulamaları ara�tırılmı�tır. 

Oksidasyon i�lemi yüzey boyunca sadece polar fonksiyonel gruplar de�il, daha 

önemlisi, topolojide mezoskopik seviyede önemli de�i�ikli�e yol açmı�tır. FTIR-ATR 

spektroskopik analizleri sonucunda yüzeye  ba�lı oksidasyon ürünlerinde 16 saatlik 

reaksiyona kadar düzgün bir artı� oldu�u gözlemlenmi�tir. Buna kar�ın, taramalı 

elektron mikrografları analizleri göstermi�tir ki, 8. saate kadar topolojide önemli 

de�i�iklikler olmamakta; 8 ve 12 saat  arasında, seyrekçe da�ılmı�, yakla�ık 400nm 

çaplı tümsekler �ekillenmeye ba�lamakta ve ilerleyen a�amalarda mezoskopik seviyede 
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süngerimsi görünümler olu�maktadır. Topolojide meydana gelen bu de�i�ikli�in 

açıklanmasında yüzeyin kimyasal reaksiyon sonucu oyulması, oksidasyon sonucu faz 

ayrımı olu�umu gibi mekanizmalar öngörülmü�tür.  Polimer zincirlerinin reaksiyon 

sonucu kaybı, önerilen ilk mekanizmaya i�aret etse de oyma i�lemi zamanla kademeli 

olarak beklendi�i için, topolojideki de�i�ikli�in nedenini tek ba�ına açıklamaya yeterli 

de�ildir. Oksidasyon sonrası topolojide meydana gelen çarpıcı de�i�iklikler faz 

ayrımıyla ve stresin serbest kalmasıyla tutarlıdır. Bu çıkarım, polipropilen fiberlerle 

yapılan paralel  deneyle kuvvetlendirilmi�tir. Olu�an yeni topolojinin altında yatan 

mekanizmanın açıklanması kimyasal olarak aktif yeni yüzeyler elde edilmesinde ve 

yüzey modifikasyonunda alternatifler sunmaktadır. 
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CHAPTER 1 

 
 

SELECTED METHODS OF SURFACE ENGINEERING APPLIED TO 

MATERIALS SCIENCE 

 
 
 

1.1 Overview of surface engineering 

Surface engineering, as a strategy of general scope, is a method to rationally 

modify the surface-pendant functional groups of starting materials, yielding products 

with altered surface characteristics and predictable macroscopic properties. It can be 

broadly classified into processes that improve corrosion resistance and wear resistance  

to extend useful component life; impart special properties such as lubricity 

enhancement; improve electrical conductivity, solderability; provide shielding for 

electromagnetic and radio frequency radiation [1-12]. Engineering surfaces or interfaces 

has become important in areas as diverse as biotechnology, chromatography, catalysis, 

construction, electrochemistry, electronics, photography, separation, gas storage, 

separation, synthesis and automobile industry, to name a few [13-28]. 

In most cases a surface layer comprised of functional groups constitutes a tiny 

fraction of the total material, however, the performance of metals, polymers, inorganics, 

composites and related products is reflected in part by the physico-chemical 

characteristics of such groups. Surface-related features such as adhesion strength, 

corrosion resistance and chemical reactivity are often manipulated by modifying the 

surface and in principle almost any surface trait is tunable [1-12]. By modifying 

surfaces, one can combine a material that may have useful bulk properties (e.g. 

mechanical, optical) with appropriate surface properties (e.g. corrosion resistance, low 

wear, low friction, biocompatibility, hydrophobicity). Therefore, the potential to 

improve the quality of materials by chemically transforming surfaces has attracted 

interest from industry. 
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1.1.1 Commercial areas of interest 

(i) Biotechnology 

Surfaces play a vital role in biology and medicine since most biological reactions 

occur at surfaces and interfaces. After the introduction of modern surface methods to 

study and modify materials and surfaces of biological interest, contemporary surface 

science has had considerable impact on biology and medicine. Three areas, in particular, 

have been influential in advancing biological applications for surface science: 

chromatographic separations, blood compatibility and cell culture. Implant biomaterials, 

blood oxygenators, hemodialysis, affinity chromatography, surface diagnostics, cell 

culture surfaces and biosensors as examples of surface technology applied to biological 

problems [29-32]. 

(ii) Synthesis 

In catalysis, the surface properties of inorganic supports, predominantly oxides, 

influence the activity of supported catalyst and properties of product obtained. The 

morphology as well as the type, concentration and arrangement of ion sites over the 

oxide surface, inclusive of OH groups, can be changed by varying the conditions of 

their thermal pre-treating and by the chemical modification [33-35]. 

(iii) Engineering, processing 

In metallurgy, the performance and service life of metal parts, e.g. cutting tools, 

machinery parts such as bearing pins for motor timing chains, punch pins, tooth of root 

of spur gears depends on the surface characteristics. Upon modification of the surface 

by means of various techniques, higher wear resistance and longer service life is 

achieved. In some cases abrasive and impact resistance is improved [36,37]. 
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1.2 Surface modification of polyolefins 

1.2.1 Overview 

Polymers are becoming increasingly attractive materials for a series of 

applications so far dominated by metals, semiconductors and glasses due to their 

mechanical characteristics, chemical stability, light weight and design possibilities.  

Surface chemistry and structure play a significant role in defining the physical 

properties and ultimate uses of polymers. Interfacial chemistry of polymers is relevant 

to many applications of polymer materials, such as adhesion, wetting, compatibility, and 

gas/liquid permeability. However, their surface properties often do not meet the 

demands of engineering and biotechnological applications.  Therefore, in order to fulfill 

the requirements for some applications, e.g. medical applications, surface modification 

is often employed to achieve desired properties, while maintaining the characteristics of 

the bulk. As a consequence, the possibility of selective surface tailoring while keeping 

bulk characteristics unchanged extends the application of polymers. The chemistry of 

polymer surfaces is important also in terms of polymer degradation and fabrication of 

biocompatible devices. Therefore, surface modification of polymers is an important 

field both in applied as well as in basic research and it is an area of scientific and 

commercial interest.  

 Polyolefins display relatively poor adhesivity due to low-surface-energy. Relative 

low surface energy and relative high chemical resistance of polyolefins impede their 

materials applications, particularly those which require adhesive bond between a 

polyolefin and another condensed phase. Thus, the modification of polyolefins to impart 

polar functionality has been a long standing scientific challenge and an industrially 

important area. High polarity is important for the use of polyolefins in solution 

(dispersancy) or in the solid phase (adhesion, printability). Polypropylene, for instance, 

exemplifies many features that are shared amongst the polyolefins, in particular, low 

surface tension and chemical reactivity due to absence of polar surface groups. The 

dearth of polar, chemically reactive groups, in turn precludes the formation of covalent 

bonds, resulting in weak surface interactions and the familiar problem of poor surface 

adhesion. Therefore, modification of the surface that produces a more polar surface is 

obligatory  to improve properties such as wettability, adhesion, dyeability and 

printability or to provide functionalities for further reactions. However, in some 
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applications such as paper release mechanisms, surface of polypropylene need to be 

modified to reduce the wettability and adhesion. Such a modification can be achieved 

by hydrosilylation of terminal double bonds in polypropylene through reactive 

processing [38-41]. 

The surface treatment of polymers can be accomplished by various methods 

ranging from wet chemical process to dry processes. At present, several established 

methods of surface modification such as plasma treatment, light and radiation initiated 

grafting, chemical etching and controlled oxidation, peroxide initiated radical 

transformation, electron bombardment, surface grafting and corona discharge have been 

used to introduce polar functional groups that are capable of substantial interactions 

with adhesive molecules yielding improved wetting and adhesive. A recently reported 

perfusion-activation-crosslinking approach also shows potential. Persulfate-induced 

oxidation of polypropylene, in particular, has been used successfully [41-43]. 

Most of these surface modification methods lead to the introduction of different 

functional groups in different extent and the resulting surface is chemically and 

structurally heterogeneous. Even in the case of chemical treatment, often the modified 

surface is chemically heterogeneous. Most of the reactions used are often accompanied 

with some side reactions and it is not possible to remove these side products from the 

surface. Further, the mechanism of the surface reaction may differ from the analogous 

solution reaction. Thus, in order to extend the applicability of established organic 

reactions to polymer surfaces, it is important to characterize the modified surface in 

terms of the nature of functional groups introduced on the surface, chemical 

environment of the functional groups and occurrence of any side reactions. This 

information greatly increases understanding of the interfacial reactions partially in 

relation to the reactivity of surface functional groups. This information, in turn, may be 

used to design better surface reactions.  

 

1.2.2 Types of surface modifications 

The principles of physically modifying polymer surfaces involves chemically 

altering the surface layer and deposition an extraneous layer on top of existing material, 

thereby generating a well-defined interphase. As polymer surfaces have a low chemical 

activity, generation of high energy species such as radicals, ions, molecules in excited 
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electronic states is required to chemically alter the surface. Methods that generate high 

energy species include flame treatments, corona and plasma treatments. Coating via 

physical treatment involves generation of fundamental materials, such as atoms or 

atomic clusters, to be deposited on polymer surface. Suitable techniques involve 

plasmas (sputtering, plasma polymerization) or energy-induced sublimation (e.g. 

thermally or ion beam-induced evaporation) [44]. Methods are described below in 

detail. 

 

(i) Flame treatments 

Flame treatments, which introduce oxygen-containing functions at the polyolefin 

surfaces, are widely applied in industry mainly to improve printability and 

paintability(adhesion properties). Flame treatment can be used to oxidize extremely thin 

layer of (~5–10 nm) the polymer surface in a controlled way. A large number of studies 

on flame-modified polyolefin surfaces has appeared in the literature [45-50]. 

Oxidation at the polymer surface is attributed to high flame temperatures 

(1000˚C-2000˚C) or reaction with excited species in the flame. These active species, 

which include radicals, ions and molecules in excited states, are formed by the high 

temperatures. The combined XPS/SIMS study of Garbassi et al on flame treated 

polypropylene revealed oxygen containing functional groups such as hydroxyl, 

carbonyl, carboxyl along the surface and a consequent improvement in adhesion and 

wettability [51]. 

From the literature, it is clear that the surface chemistry of a flame modified, as 

well as of a plasma modified or electrical-discharge modified polyolefin surface, is very 

complex and under certain conditions susceptible to changes. The likely oxidation 

mechanism by these flame treatments as well as by the other oxidation processes can be 

described by initiation, propagation and termination. A new computational model, 

SPIN, was used to determine the chemical composition of the impinging flames used to 

modify polypropylene. The SPIN model indicated that the species primarily responsible 

for the surface oxidation of the polypropylene are OH, H2O2, and O2. Atomic force 

microscopy study of flame treated polypropylene indicated generation of a 'nodular' 

surface topography which is probably the result of the agglomeration of intermediate-

molecular-weight materials [45-47]. 
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(ii) Corona Treatments 

Corona treatment is widely used in industry to increase the wettability or the 

adhesion of polymer films or fibers. The improvement achieved in adhesion after 

corona treatment is related to both chemical and physical changes. Several important 

facts about oxidation and adhesion of polyolefins can be found in the studies of Owens, 

Briggs et al and Lanauze et al in which ink adhesion and self-adhesion after corona 

treatment have been studied [52-54]. 

Corona treatments exploit the corona effect, i.e. formation of high energy 

electromagnetic fields close to charged thin wires or points, with consequent ionization 

in their proximity. This process involves a dielectric barrier controlled discharge (DBD) 

which develops between two parallel electrodes. One of these electrodes is in the form 

of a bar and the other is a cylindrical roller of radius large enough to treat the gas gap as 

constant. The material to be treated is placed on the roller. To treat polymer, at least one 

of the two electrodes is covered by a solid dielectric barrier (silicone rubber or ceramic), 

which controls the discharge. To simplify the utilization of the process, the discharge is 

usually carried out in atmospheric air.  

In the ion-rich region, excited species, (e.g. ions, radicals, electrons, molecules in 

excited states, etc) can react with surface groups  to form radicals. These radicals 

rapidly react with oxygen and functionalize the polymer surface with and without chain 

scission. In the literature it has been reported that during air corona treatment, chain 

scission produces low molecular weight oxidized materials on the surface of 

polyolefins. On severely corona treated samples, the formation of roughening is 

attributed to the agglomeration of low molecular weight oxidized materials at relatively 

high humidity. Despite those risks, the corona treatment can be used to promote further 

surface chemistry, namely graft polymerization. 

The reason why the corona treatment is so widely employed is because of its 

facility to be implemented in a film production line at the end of the forming process, or 

just before an inking or coating device enters into action. However, there are some 

drawbacks: such surface treatment is surface ageing, uniformity and the control of the 

treatment is limited due to a lack of discharge homogeneity, and the nature of the 

surface transformations are limited due to the use of air as the plasma gas. The major 

transformations taking place are surface cleaning and oxidation, which are not always 

the most desirable of chemistry. To minimize such problems, industrial systems that 

allow careful control of the atmosphere have been developed [41, 44, 55-57]. 



 7 

(iii) Plasma treatments 

Plasma treatments have been used in a range of applications, from improving the 

poor adhesion associated with hydrocarbon polymers, to optimizing the surface 

properties of potential polymeric biomaterials [58-60]. 

A plasma can be broadly defined as a gas containing charged and neutral particles, 

including electrons, positive ions, negative ions, radicals, atoms and molecules resulting 

from ionization, fragmentation, and excitation processes. Reactions between gas-phase 

and surface species produce functional groups and crosslinking at the surface. Plasma 

treatment grants the flexibility to use different types of gas which results diverse 

chemical functionalization of the surface. Examples gases include argon, ammonia, 

carbon monoxide, fluoride, hydrogen, nitrogen, nitrogen dioxide, oxygen and water. At 

the present time most of the plasma treatments of polymers are run with oxygen which 

is used widely in industry for hydrophilic surface modification of. Air, oxygen, 

nitrogen, argon, water, carbon dioxide, CF4, plasmas have been used to modify 

polypropylene surfaces to provide the required physical and chemical surface properties 

for various applications [41,44, 61-66]. 

The major reactions known to occur along the polymer surface are etching, 

cleaning, crosslinking, grafting and other classic reactions leading to addition, 

substitution, formation of functional groups. Under certain conditions, surface 

functionalization is not the only modification; a morphologic transformation is also 

noticed. With semicrystalline polymers, it is known that the amorphous phase is 

preferentially removed during an oxygen-mediated etch. Besides the obvious chemical 

changes caused by the plasma, it has been shown that the surface roughness of 

polypropylene increases substantially after air-plasma treatment, possibly as a result of 

preferential attack of the amorphous regions of the polypropylene. In principle, a gas 

plasma treatment used to etch selectively can be used to tailor the surface structure of 

phase-separated polymeric systems, i.e., semicrystalline homopolymers, polymer 

blends, or block copolymers. For example, plasma processes have been optimized to 

sterilization and to transfer geometric micro-patterns at the surface of biomedical 

polymers with the aim of driving the behavior of the cells in tissue engineering. The 

architecture of the resulting surfaces is ultimately determined by the initial phase-

separated surface/bulk structure and the difference of etching rate between the two 

polymer phases. Using this approach, it follows to reason that surfaces can be created 
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which contain tubular or spherical holes, ridges, or tubular or spherical protuberances. 

The size of these holes/protuberances will likely be determined by the domains present 

in the phase-separated polymer system and can vary between tens of nanometers and a 

few micrometers [41, 67-70]. 

The possibility of altering the surface of polymer materials at room temperature 

and uniqueness of the modified surfaces are the particularly appreciated advantages of 

low-pressure plasma processing for the surface modification applications. Many studies 

have been devoted to the characterization of plasma-treated polymer surfaces, but much 

remains to be learned about the complex interactions at the plasma-polymer boundary 

during plasma treatment processes. 

Other types of related modifications are low-pressure plasma treatments, electron 

beam treatment, UV treatments, ion beam treatments, laser treatments, metallization and 

sputtering [71-77]. 

(iv) Wet chemistry 

Wet treatments were the first modification techniques used in order to improve 

surface properties of the polymers. The most common wet treatment of polymer 

surfaces are sodium etching of fluoropolymers and oxidation of several different 

polymers based on chromic acid solutions, methane sulfonic acid and nitric acid 

solutions. Strong oxidants such as CrO3/H2SO4, K2Cr2O7/H2SO4, KClO3/H2SO4, 

KMnO4/H2SO4, HNO3 and H2SO4 can provide surface functionalization. Sulfuric acid 

and chromic-sulfuric acid treatments introduce sulfonic acid, carboxylic acid and other 

less oxidized functional groups. Sulfonation, using fuming sulfuric acid or using 

gaseous SO3 introduces SO3H groups on the polymer surfaced by. In the former case, 

there can be substantial polymer degradation. A more controlled method of surface 

sulfonation involves the use of latter method, suitably diluted with nitrogen to moderate 

the reactivity of the sulfonating agent. Gas phase sulfonation of polyethylene is 

industrially practiced to impart superior hydrocarbon barrier properties to high-density 

polyethylene (HDPE) and to improve the gas barrier properties of polyethylene. Early 

investigations showed that oxidation of polypropylene and ABS with sulphuric acid 

solution saturated with chromium trioxide at 80˚C yields strongly adhesive 

polypropylene surfaces [41,78-85]. 
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1.3 The relative oxidation rates of polymers 

Hydrocarbon polymers vary in their inherent resistance to oxidation. Principal 

determinants include chemical structures and their physical and morphological 

characteristics. Increased chain branching, for example, leads to more rapid auto-

oxidation, and indeed polypropylene is the most oxidizable polymer of the major 

commercial polyolefins, rendering the use of heat and light stabilizers mandatory in 

commercial plastic preparations. Oxidative degradation processes of polypropylene are 

normally accelerated under the influence of temperature, ultraviolet light and other 

factors such as mechanical stress, atmospheric pollutants, adventitious metal ion 

contaminants. The effect of the first two parameters is, by far, the more important.  

The different reactivity of chemically related polymers, such as polyolefins 

towards the etching solution has been investigated in literature. The surface of 

polypropylene, low density polyethylene, high density polyethylene has been reacted  

with chromic acid solution and the effect of etching solution was assed by scanning 

electron microscope, transmission electron microscope, FTIR-ATR and contact angle 

measurement. The result of relative oxidation studies showed that polypropylene was 

etched more readily than other polymers and an explanation of this result was related to 

the solution chemistry. It was observed that tertiary hydrogens were attacked much 

more rapidly than primary hydrogen and the relative rate of reaction  of �C−H, −CH2− 

and −CH3 is about 4600:75:1. According to the information about the relative rate of 

reaction given in the literature, the number of tertiary carbons on the molecular chain is 

the rate determining feature, at least during the onset of reaction [86,87].  

 

1.4 Thermal degradation of polypropylene 

Degradation may occur at all stages of the lifecycle of polypropylene 

(polymerization, storage, processing fabrication an in-service) but its initiation is most 

pronounced during high-temperature, high shear conversion processes (extrusion, 

injection molding, blow molding, internal mixing). Such processes, which include 

reprocessing and recycling, are used to produce the final fabricated article, including 

reprocessing and recycling processes. The high temperatures required to achieve these 
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polymer conversion processes are detrimental to the stability of the macromolecular 

structure [88]. 

With due consideration to the fact that different polymers have different physico-

chemical traits, a considerable number of decomposition pathways may be envisaged. 

Decomposition is seldom a one step process, and it typically describes a reaction series 

in each pathways. For instance, decomposition usually proceeds via reactions between 

various oxidation products such as aldehydes and hydroperoxides. Hydroperoxides may 

also decompose via acid catalysis or thermolysis. Special structures can be formed in 

polyethylene as well as in polypropylene. Their contribution can be important in 

explaining chain scission and some of the final oxidation products. Ultimately, product 

distribution depend not only on the polymer type, e.g. polyethylene, polypropylene, but 

also on the conditions of the oxidation. In this respect significant differences are 

expected between oxidation of the polymer melt and oxidation of solid phase polymers, 

both at low and high temperature. 

The oxidation mechanisms of polymers and low molecular weight analogs share 

many essential features, however, additional constraints imposed by polymeric state 

influence the former process. To better understand this statement, a look at thermal 

oxidation is required. Thermal oxidation of polypropylene is a free radical chain process 

characterized by three basic steps: 

 

1.  initiation, leading to the production of the first free radicals in the chain sequence; 

2. propagation, giving the most important molecular product of oxidation, the 

hydroperoxide; and 

3.  termination, eliminating the radical species and sometimes leading to crosslinking of 

polymer chains. 

  

In a polymer, any reaction may proceed either inside the same molecule or 

between two neighboring molecules. With oxidative chain propagation, for instance, an 

intra molecular reaction results in formation of the structure in which the hydroperoxide 

group and the free radical group are positioned within a short distance  of the same 

molecule. These can easily react with each other in the confines of the polymer matrix. 

The nature of the primary oxidative insertion reaction of molecular oxygen with 

polypropylene is complicated by other reactions such as hydroperoxide initiation or 

metal catalysis (Figure 1.1, Reactions 1,4). The propagation reaction (Reaction 3) is 
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typically 20% faster at a tertiary carbon atom than at a secondary carbon atom. 

Furthermore, this reaction, which is the most important accelerator of auto-oxidation 

and the rate determining step, is particularly facilitated by intramolecular hydrogen 

abstraction, affording adjacent peroxides along the polymer chain. These products are 

less stable than isolated hydroperoxides and lead to an increased rate of initiation. 

Consequently, the kinetic chain length (i.e. the average number of oxidation cycles, 

reactions 3 and 4, that precede termination) for polypropylene oxidation is quite high, 

i.e. approximately 100. Polyethylene, in contrast, displays a kinetic chain length one 

order of magnitude less and a correspondingly higher oxidative stability. 

 
Figure 1.1. Free radical chain reaction involved in polypropylene thermal oxidation. 

 

Thermal oxidation of polypropylene and polyethylene yields significant 

hydroperoxide concentrations. In polypropylene these hydroperoxides accumulate to a 

large extent as clusters of two to six groups. There is much less intramolecular hydrogen 

abstraction by peroxy radicals in polyethylene than in polypropylene. As a consequence, 

the labile structures formed in polyethylene and polypropylene are often significantly 

different. The ultimate fate of hydroperoxides is related to intramolecular and 

intermolecular pseudo-monomolecular decomposition modes involving a carbon–

hydrogen bond from the polymer. The latter mode normally does not contribute below 
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300 °C. Other  hydroperoxide decomposition modes include bimolecular reactions that 

can be intermolecular as well as intramolecular [41,88-95]. The yield of hydroperoxides 

in polypropylene oxidation depends on oxygen pressure among other conditions and 

never reaches the relative value of 1. Competing reactions and radical migration 

introduces a structural dependency to the formation of  hydroperoxides particularly 

including the rate constant of its decomposition, and on oxygen pressure at which the 

hydroperoxide has been prepared [90]. 

 

1.5 Tailoring surfaces with silanes 

Silanes have been used to modify surfaces both to reduce nonspecific adsorption 

and to provide moieties suitable for covalent attachment. Silane coupling agents are 

capable of providing chemical bonding between an organic material and an inorganic 

material. Depending on the type of silane coupling agent used and the purpose of the 

material to be obtained, the surface properties vary between hydrophilic and 

hydrophobic. This advantageous property of silanes is widely utilized to treat the 

surfaces of glass products, particularly to improve the performance of reinforced 

plastics, paints, adhesives, other coating materials and inorganic fillers. Silanes are also 

used to prime various substrate materials. 

Surface silylation with chloro- and alkyl silanes has become established over the 

last two decades as a method  to enhance the applicability of the product a number of 

high-tech areas such as chromatography, catalysis and proteomics. In biochemistry, it is 

used  to immobilize enzymes. In the analytical field it is used to adsorb organic 

compounds and metal ions selectively, whereas in chemical field it is used to 

immobilize metal complexes for use as catalysts. The choice of  chemical  modification 

depends on the target molecule to be immobilized and the specific application in which 

the modified surface will be used [96-101]. 

Silane reactions can be used to modify hydroxylated or amine-rich surfaces. Since 

glass, silicon, germanium, alumina, and quartz surfaces as well as many metal oxide 

surfaces, are all rich in hydroxyl groups, silanes are particularly useful for modifying 

these materials. Direct evidence for surface modification on these substrates is observed 

by an increase of contact angles, particularly when alkyl and fluoroalkyl silanes are 
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used. A wide range of different silanes are available, permitting many different 

functionalities to be incorporated on the surfaces.  

Organofunctional silanes are best suited to attach biological moieties onto 

surfaces. Organofunctional groups have an advantage over comparable organic 

compounds in the sense that the silanes can potentially bond via several mechanisms.  

To attach biological materials, such as DNA and proteins, to surfaces, the major 

approach involves the reaction with organofunctional silanes followed by covalent 

attachment of the biological molecule to the newly introduced functional group on the 

surface. Examples of organofunctional silanes used this way include (3-

glycidyloxypropyl)trimethoxysilane (3-GPS), (3-aminopropyl)triethoxysilane, 

aminophenyltrimethoxysilane, (3-mercaptopropyl)trimethoxysilane (3-MPTS), and the 

general class of haloacetamidosilanes. All of these have been successfully employed to 

modify glass surfaces and formed a basis to immobilize oligonucleotides via various 

cross-linking reagents [102-104]. 

 

1.5.1 Silanization Procedures 

The primary procedures used to silanize solid supports are based upon liquid 

phase and gas phase methods. In the liquid phase method, substrate is immersed into 

solutions silane and solvent, i.e., water, water/ethanol or water/acetone. In the vapor 

phase method, vapor deposition and curing of the silane onto the solid support takes 

place at elevated temperatures. 

In hydrated solvents, silanes undergo hydrolysis and partial condensation before 

deposition on the surface. In contact with water halogen or alkoxy groups are 

hydrolyzed. The incrementally forming silanol groups engage in hydrogen-bonding 

interactions with neighboring hydrolyzed silane molecules and surface hydroxyl groups. 

Siloxane bonds eventually form with the release of water. The molecular coat does not 

describe a monolayer, in fact, a three-dimensional polymeric silane network is formed 

along the surface. Trichlorosilanes or trialkoxysilanes are typically used in this type of 

modification. 

Apart from the alkoxy or chloro group, the rate of hydrolysis of silanes is 

influenced by the functionality of the organic group. The stability of the silanol groups 

increases with increasing size of the organic group. Acyloxyl- and aminofunctional 
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silanes are far more susceptible to hydrolysis than other alkoxysilanes. They hydrolyze 

in minutes in water, whereas others are stable in water for several hours. The increased 

rate of hydrolysis of the former is due to the acid or basic character of the functional 

group. Hydrolysis of the other alkoxysilane molecules may be catalyzed by the addition 

of a base or an acid. Covalent bond formation is not an immediate process. The silane 

pre-coat bears a considerable amount of chemisorbed molecules. These chemisorbed 

molecules, which are typically hydrogen-bonded, condense slowly. To accelerate 

chemical stabilization of the coating layer, a post-reaction curing step is often employed 

in which the modified substrate is thermally treated at temperatures in the range of 353-

473 K.  

If a modification with silanes is performed in fully dry conditions (dry organic 

solvent, dehydrated surface), hydrolysis is prevented. Chemical bonding with the 

substrate should result from the direct condensation of the chloro- or alkoxy groups with 

the surface groups. From experiments using methoxymethylsilanes, it has been 

concluded that direct condensation does not take place. Post-reaction curing only results 

in evaporation of the adsorbed molecules. Alkoxysilanes may only bond chemically to 

the silica surface if water is present at the interface. Hydrolysis, however also causes 

polymerization and therefore non-monolayer coverage are obtained. Aminosilanes 

contain the catalyzing amine function in the organic chain. The reaction of aminosilanes 

with substrates in dry conditions are therefore self catalyzed. They show direct 

condensation even at completely dry conditions. Upon addition of aminosilane to the 

silica substrate, the amine group may form hydrogen bonds or proton transfer 

complexes with surface silanols. This results in a very fast adsorption, followed by 

direct condensation. This reaction mechanism of aminopropyltriethoxysilane with silica 

gel in dry conditions is illustrated in Figure 1.2 given below. 
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Figure 1.2. Modification of silica gel with aminopropyltriethoxysilane [9]. 

 

The polymerization reactions are hard to control and a layer of irreproducible 

thickness results. The control is ameliorated with the addition of a variable amount of a 

polar organic solvent such as ethanol or acetone. A number of strategies have been 

developed to limit the formation of heterogeneous polymeric layers relative to 

homogeneous monolayers. These include limiting the concentration of alkoxysilane 

prior to surface modification by performing silanization in the vapor phase, the use of 

anhydrous conditions, post-silanization curing, and the use of monoalkoxysilanes. 

However, monoalkoxysilanes are readily cleaved from modified surfaces due to rapid 

hydrolysis. Dialkoxysilanes have been shown to possess the disadvantages of both, i.e., 

the polymerization associated with trialkoxysilanes and the instability to hydrolysis of 

monoalkoxysilanes. Therefore, despite the problems of heterogeneity, trialkoxysilanes 

are the most extensively used silanization reagents. While postsilanization curing has 

been shown to limit the hydrolysis of silane films by cross-linking of the free silanols, 

these silanol groups are also free to polymerize and hence form heterogeneous silane 

layers, unless conditions favoring curing and limiting polymerization are rigorously 

enforced [9,105,106]. 
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1.6 Oxidation Induced Patterning of Polypropylene 

1.6.1 Polymer Mixtures 

One of the fundamental problems of polymer science is to establish the 

mechanism of self organization in polymer systems under non-equilibrium conditions. 

A large part of application-oriented research is devoted to the study of polymer blends, 

since mixing provide a means to incorporate different properties. The properties of 

polymer blends (mechanical strength, surface bonding, and resistance) have a strong 

dependency on blend morphology. This morphology and the associated phase behavior 

in turn depend on the miscibility between the components of the blend. Thus, a 

fundamental understanding of the miscibility of the components in the blend is crucial 

to effectively design the end applications. 

It is generally difficult or even impossible to correctly predict the mechanical 

properties of a mixture. The factors that determine if the polymer is in a one phase or 

multiple phase system include polymer molecular weight, blend composition, and 

molecular-level physico-chemical. In semicrystalline polymers, the phase behavior is 

even more complicated since these polymers crystallize between their glass transition 

and melting temperatures. The rates of phase separation and the resulting morphology 

depend on many parameters, e.g. time of heat treatment, temperature, concentration, and 

physical properties of the blend constituents. Understanding polymer miscibility will 

thus better define the conditions two polymers might form a homogeneous phase or a 

two-phase structure, will introduce the possibility to better control and manipulate the 

morphology of polymer blends [107-111]. 

 

1.6.2 Thermodynamics of polymer mixtures 

The criterion that determines whether two species will mix or not is the free 

energy of mixing. Suppose a single phase has a compositionφ 0. At equilibrium the 

system assumes a state of minimum free energy, so if there existed a pair of 

compositions φ 1 and φ 2 such that the total energy is lowered, then the system will 

separate into two phases, and the single phase at composition φ 0 would not be stable.  
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The figure given below shows the free energies of mixing as a function of 

composition for conditions under which two species are miscible and immiscible. As it 

is shown in the Figure 1.3.a, if the relationship of free energy with composition has a 

convex-down shape, then every single composition has a lower total free energy than 

the phase-separated composition. The free energy curve would have a single minimum 

and the original total free energy of mixing is F0. The hypothetical free energy of the 

intermediate composition can be found by drawing a straight line between the free 

energies of the two constituent phases. Thus, the total free energy of mixing of the 

equivalent system can be equated to F'0. 

On the other hand, in Figure 1.3.b the free energy profile is different. Between a 

certain range of intermediate compositions the curve is convex-down; a system of 

compositionφ 0 will lower its free energy from F0 to F'0 by separating  into two phases 

with compositions φ 1 and φ 2. The lowest possible free energy is obtained when the 

phase separated compositions are defined by the points at which a line is tangential to 

the free energy curve in two places; these extremes define the limits of composition 

within which a single phase is not stable [110]. 

 
Figure 1.3. Free energies of mixing as a function of composition for conditions under 

which two species are miscible (a) and immiscible(b) [110]. 

 

1.6.3 Phase separation phenomena 

Phase separation is important in the field of applied polymer chemistry and the 

behavior of number of different polymers has been studied in several different solvents. 

In experimental biochemistry this phenomenon has found widespread application in the 

separation and purification of organelles. Recent studies of protein solutions have 
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provided new and promising insights into the structural properties and phase behavior 

of soft matter [112-113]. 

Phase separation is induced when a sample is transferred from one-phase region 

into miscibility gap. Usually this is accomplished by a change in temperature, upward or 

downward depending on the system under study. There are many ways of starting with 

a single phase and arriving at a phase-separated structure. The schematic diagrams in  

Figure 1.4 illustrates the different paths which may lead to phase separation. The Figure 

1.4.a shows a phase diagram that has both one phase and two phase regions of the phase 

diagram at an experimentally accessible temperature. The sample is prepared in the one-

phase region of the phase diagram as a homogeneous mixture and then the temperature 

is suddenly changed to bring the sample into two-phase region. Phase separation is 

initiated by the mechanism of spinodal decomposition or nucleation and growth, leading 

to the formation of domains of one phase in a matrix of the other. In Figure 1.4.b, a 

phase diagram of ternary solution of the two polymers in a suitable solvent that 

dissolves both well is shown. At low polymer concentration the unfavorable polymer-

polymer interactions are diluted by the solvent, and the system forms a single phase. 

When the solvent is removed, the system phase separates. In Figure 1.4.c, one or both 

components are originally present as low relative molecular mass unit. An example of 

the former case might be a polymer of high relative molecular mass dissolved by 

monomers of a second polymer. As monomers are polymerized, the relative molecular 

mass of the second component reaches a value such that the degree of incompatibility 

exceeds and a critical value and phase separation is initiated. Among the typical 

methods of reaching a phase separated state, temperature quench induced phase 

separation is simple to deal with theoretically. Consequently, it is has been most 

extensively studied [114-117].  

 
Figure 1.4. Schematic phase diagrams illustrating the different pathways which may 

lead to phase separation A. Temperature quench, B. Removal of common solvent, C. 

Polymerization of one or both of the components [110]. 
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The phase-separated structures that result are normally characterized by the 

presence of interfaces between the coexisting phases. However, with polymer mixtures,  

it would be very rare indeed to achieve the situation in which the phase separation is 

complete and  two macroscopic domains of the two phases are separated by a single 

interface. Rather, as a result of the slow dynamics of the polymers, an equilibrium 

situation will not be reached and the structure will yield a more complicated 

morphology consisting of much smaller domains of the two phases, which, although not 

at full equilibrium, may be considered stable for practical purposes. 

 

1.6.4 Phase Separation Mechanisms 

The mechanisms of phase separation is different in regions of metastability and 

instability of the phase diagram. Inside each region, depending on the closeness to 

binodal, spinodal or critical point, qualitative and quantitative distinctions in the kinetics 

of phase separation is observed. Two mechanisms of phase separation is usually 

considered: nucleation and growth, and spinodal decomposition. Nucleation and growth 

occurs if the unmixing is induced at a temperature near to the binodal, where the system 

is still stable with regard to small concentration fluctuations. Further away from the 

binodal this restricted ‘metastability’ is lost and spinodal decomposition sets in. 

 

(i) Nucleation and Growth 

The transition of the system from one-phase to two-phase state is related to  

amplification of fluctuations in composition and the development of microregions of 

new phase. This transition proceeds when the system is quenched into metastable region 

of the phase diagram. In the metastable part of the phase diagram, a small fluctuation in 

composition raises the free energy and the phase separation proceeds according to the 

mechanism of nucleation and growth.  

The diffusion flows of components in the metastable region are directed towards 

diminishing fluctuations. The evolution of a new phase starts in this region. The 

energetically unfavorable effect of the appearance of a new interface determines the 

system instability only in relation to fluctuations whose sizes exceed some critical 

values. The composition of fluctuations is close to composition for a new phase. In 
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order to begin the phase separation process a droplet of minority size, which is greater 

than a critical size, has to be nucleated. Thus this mechanism of phase separation is 

called nucleation and growth. 

 

(ii) Spinodal decomposition 

Under the spinodal line, any small fluctuation in composition will lead to a 

lowering of the free energy. Under these conditions, phase separation will proceed 

immediately by mechanism of amplification of random composition which is called 

spinodal decomposition.  

The theory of spinodal decomposition of homogeneous system at the initial stages 

of the process was developed in the fundamental works done by Cahn and Hillard. 

According to this theory at the initial stages of phase separation, the concentration 

fluctuations appear. They can be considered as a set of sinusoidal waves with fixed 

wavelength. Wavelengths represent the dimensions of the structures formed during the 

course of spinodal decomposition. Cahn theory forms the fundamental basis for 

studying kinetics of phase separation by spinodal mechanisms in aging of metal alloys, 

inorganic glasses, etc.  

 

Uphill diffusion 

The mutual diffusion of a polymer mixture is important for the mechanism that is 

operative in the unstable part of the phase diagram. 

 

 Dmutual  = D0φ (1-φ ) 

 

The prefactor D0 which contains all the information about the dynamics of the two 

polymers is always positive. The curvature is negative within the spinodal line thus the 

mutual diffusion within the spinodal line is negative and it changes sign as the spinodal 

line is crossed. According to Fick’s first law of diffusion, the negative mutual diffusion 

means that the material diffuses from regions of low concentration to high concentration 

(uphill diffusion). Any random, thermally generated, concentration fluctuation will not 

die away, as it would in the one-phase of the phase diagram; rather it will grow to form 

domains of the two coexisting phases. However, concentration fluctuations on different 

d2F 

dφ 2 
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length scales do not grow at equal rates. In the case of a fluctuation with a very long 

wavelength (Figure 1.5.b), the composition fluctuations can only grow by transport of 

material from the troughs to the peaks. Atoms have to diffuse over long distances as the 

wavelength becomes longer thus in the case of a fluctuation with a very long 

wavelength the composition fluctuation grows  more slowly. On the other hand, for a 

fluctuation with a very low wavelength (Figure 1.5.c) there will be additional 

contributions to the free energy beyond simple Flory-Huggins terms. The concentration 

gradients which are steep compared with the length scale of the radius of gyration of a 

chain carry free energy penalty and this has the effect of suppressing fluctuations of 

very short wavelength. Thus there is some intermediate length scale of fluctuations that 

will grow the fastest and the morphology of the phase separating structure will be 

dominated by this length (Figure 1.5.a).  

 

 
Figure 1.5. Spinodal decomposition. A. In the unstable part of the phase diagram, 

random concentration fluctuations are unstable and grow in amplitude. Long-

wavelength fluctuations (b) grow slowly because of the large distances through which 

material needs to be transported, while short fluctuations (c) are suppressed, because of 

the free energy penalty associated with sharp concentration gradients [110]. 

 

The picture of spinodal decomposition assumed in Figure 1.5, in which 

composition fluctuations grows in amplitude but remaining with constant wavelength, 

cannot be sustained for long. As the peak coexisting compositions, the amplitude of 

composition wave cannot go on increasing, yet the system is still very far from 

equilibrium. The only possibility for the size of the domains is to grow.  The process of 

spinodal decomposition consists of three stages: early, intermediate, and late. As shown 

in Figure 1.6, R characterizes the size of domains and their average separation, and w 

which characterizes the width of the interface between the domains. During early stage, 

both R and w are essentially constant and are related to the fastest growing wavelength 

�max. when the peak compositions approach the coexisting compositions we enter a 

complicated, intermediate stage of phase separation, during which R increases while the 
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interfacial width decreases towards its equilibrium value. During the late stage of phase 

separation, discrete domains with compositions close to the coexisting compositions are 

separated by interfaces essentially at the equilibrium width wI. The only length scale 

characterizing the morphology is R, which characterizes both the average size and the 

separation of the domains. 

The fact that the morphology at this late stage is characterized by only one length 

scale leads to the important idea that the domain pattern itself is self-similar in time. 

Statistically, the domain pattern at a later time is simply a blow-up of the patter at an 

earlier time.  

 

 
Figure 1.6. The behavior of the interface width w and the average domain size R at 

various stages of spinodal decomposition: (a) early stage, (b) intermediate stage, (c) late 

stage [110]. 

 

 
1.6.5 Surface directed phase separation 

The presence of a surface profoundly modifies the mechanism of phase 

separation. The process of spinodal decomposition leads to superposition of 

composition waves of given wavelength but at random directions and phases; the effect 

of surface is to fix the direction and the phase of the waves at the surface, leading to the 
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real-space concentration wave near the surface. Material diffuses from regions of low 

concentration to high concentration, thus the depleted region is made deeper and deeper 

and a second layer of higher concentration is formed near the surface. However, in the 

presence of a surface with a preferential attractive interaction for one of the component 

to the surface, and in turn, propagation of a coherent concentration wave with a 

dominant wave vector normal to the surface is induced. In this way an oscillatory 

concentration profile is formed near the surface [110-118].  
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Chapter 2 
 

SYNTHESIZING AND ANCHORING ORGANOSILOXANE FILM ON 

INJECTION MOLDED POLYPROPYLENE BY INTERCALATION 

STRATEGY 

 

2.1 Introduction 

 
One limitation to the formation of ceramic-polymer composites is the high 

processing temperature required to sinter organoceramics, during which time any 

organic component is typically destroyed. A promising amelioration is derived from the 

technique of hydrothermal processing, which permits formation of ceramics oxides 

from ceramic-hydrates at much lower temperatures and moderate pressures. 

Hydrothermal processing, involving the formation of materials in an aqueous medium, 

enables the processing of ceramics like BaTiO3 and (Ba,Sr)TiO3 below 200˚C, for 

electronic applications [119]. By this method, even preformed plastics can in principle 

undergo ceramic processing as passive bystanders. Another potential limitation to the 

formation of reliable composites is achieving good interfacial bonding. With low-

surface-energy polymers in particular, improved interfacial bonding leading to specialty 

materials typically requires surface pre-activation using various physico-chemical 

methods.  

Polymerized pre-glass laid upon polypropylene, for instance, may in principle be 

covalently anchored at the interface via a strategy in which bridging molecules bearing 

organic and inorganic moieties such as vinylic organosilanes are free-radical grafted 

onto the plastic surface through their vinylic moiety. In a following step, the hydrolysis 

products of tetraethoxysilane can be deposited and cured along the new surface, 

affording bonds with surface silanol adducts and adjacent hydrogen-bonded 

tetraethoxysilane hydrolysis products. It follows that the resultant pre-glass surface 
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could be hydrothermally processed to afford a  glass surface and a successful 

composite. Each activation step, however, carries with it some drawback. Free-radical 

and oxidative methods do improve bondability for example, but they also potentially 

introduce peroxide intermediates into the matrix, thus accelerating the degradation of 

the polymer. It follows that a non-reactive approach which does not necessitate surface 

pre-activation is needed to alleviate polymer deterioration. 

 One strategy which has not been attempted in preformed polymers and which can 

be very useful to promote bonding is an intercalation-activation approach in which 

perfusion-based strategy was envisaged to promote interfacial bonding on low-surface-

energy polymer without necessitating surface pre-treatment. The basic advantage over 

the free-radical method is that the latter would require no covalent modification of the 

plastic. In this non-reactive approach, polymerizable precursors would be co-perfused 

into the matrix alongside solvent molecules. The precursors, activated by reaction with 

an appropriate agent, would spontaneously polymerize to create an entangled network 

intertwined  within the polymer. It follows that this strategy would not only preclude a 

need to covalently alter the surface, but it would also prevent modification-related side 

effects such as peroxide incorporation. 

2.2 Materials 

Injection-molded isotactic polypropylene tubes (2ml capacity) were purchased 

from Eppendorf Company. Analytical reagent grade toluene and propanol were 

purchased from Aldrich. Ninhydrin and 1,3-diaminopropane were obtained from Merck. 

Toluene was dried over 4Å molecular sieves. 

 

2.3 Methods 

2.3.1 Rationale 

The veracity and potential merit of a perfusion-crosslinking approach was tested 

upon the standard injection molded isotactic polypropylene Eppendorf tube using an 

organosilane precursors of the type YSi(OR)3, where Y is an appropriate organic 

functional moiety and OR is an appropriate hydrolyzable alkoxide moiety. 
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Aminopropyltrimethoxysilane was preferred for a number of reasons in place of other 

organosilanes or tetraethoxysilane, the latter being a common precursor in sol-gel 

processes and of glass. Firstly, the hydrolysis and crosslinking of amine-bearing silanes 

in the presence of even trace moisture is autocatalytic. Secondly, the primary amino 

moiety is testable using propanolic ninhydrin solution, permitting easy visualization and 

localization of precursor-containing products in the pre-formed plastic.  

The methodology devised is illustrated in Figure 2.1. In approach A 

(Figure23.1.a), aminopropyltrimethoxysilane is co-perfused into polypropylene ahead 

of water, whereas in approach B, (Figure 2.1.b), co-perfusion, activation, and 

presumably crosslinking are simultaneously operative. Toluene, which is an established 

and mild matrix-swelling solvent of polypropylene, was used to encourage precursors to 

perfuse into polypropylene (Step 1 of Approach A). It was also used to deliver water to 

aminopropyltrimethoxysilane (Step 2 of Approach A; Step 1 of Approach B), the 

rationale being that water associated to toluene would also be carried into the polymer. 

Thus, trace water would be made available to sub-surface sites containing precursors as 

well as surface sites adsorbing precursors. It follows that dissolved, intercalated and 

surface adsorbed precursors should undergo hydrolysis to the active form and 

participate in siloxane bond formation. More importantly, if permitted to cross-link, the 

activated precursors should afford an aminopropylsiloxane-type network intertwined 

within the matrix of polypropylene and along its surface (Step 3 of Approach A; Step 2 

of Approach B). Even though no formal covalent bond would exist across elements of 

the two networks, resultant double network would be bonded like two spider webs 

constructed within each other. 
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Figure 2.1. Two approaches to anchor organosilanes onto plastics using intercalation 

and activation. A. Aminopropyltrimethoxysilane in dry toluene is co-infused into the 

matrix (Step 1); water-saturated toluene is delivered to intercalated and surface-residing 

organosilanes (Step 2); reactive organosilanols form siloxane bridges to one another 

with heating and concomitant loss of toluene (Step 3). B. Simultaneous co-infusion and 

activation of aminopropyltrimethoxysilane (Step 1) followed by decantation and heat-

induced cross-linking (Step 2). 

 

It follows that if the mechanism of Figure 2.1 is operative, the interfacial bond 

fastness displayed by ensuing film should be comparable to that obtained using surface 

pre-treatments, and in the case of free-radical grafted vinylsilanes. However, the 

difference is that, no alteration of polymer functional groups would be required and no 

covalent bond would exist across the elements of the two networks. In the case of 

polypropylene, the anticipated pre-glass layer should describe a thin sub-surface zone 

composed of polymer and pre-glass materials, and a second zone supra to the surface 

composed entirely of pre-glass. A logical progression would be to cure the hydrolysis 

products of silanes thereon and to hydrothermally process the material under mild 

conditions. In this manner, inorganic-organic glass hybrids or pure glass coatings may 

be bonded onto heat-sensitive, low-surface-energy polymers and molded plastics 

without necessitating surface pre-treatments to activate surface. In the particular case of 

the Eppendorf tube, greatly reduced oxygen permeability would be anticipated. 

Alternatively, high-temperature stable polymers such as Teflon could be processed at 
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atmospheric pressures and moderately high temperatures to afford glass surfaces. In this 

preliminary investigation, the veracity and feasibility of intercalating, activating and 

self-crosslinking of aminopropylsiloxane precursors as interfacial linker molecules are 

examined. 

 

2.3.2 General methods 

(i) Ninhydrin Reaction 

The reaction between certain amino acids and ninhydrin results in formation of a 

brightly colored compound called Ruhemann’s Purple [121]. In our case, ninhydrin 

color analysis can be used to detect the presence of surface accessible amino groups, 

thus the tubes that were reacted with aminosilanes were tested with ninhydrin solution. 

Tubes containing the one-percent propanolic ninhydrin solution were incubated for 

40min at 70°C. 

 

 2.3.3 Synthetic Methods 

In order to establish the prospect of a perfusion-activation-crosslinking 

mechanism four related experimental designs were devised. In the tube distention 

experiments, the ability of hot toluene to perfuse into the walls of an Eppendorf tube 

was established. In a second experiment, the ability of toluene to facilitate the perfusion 

of solvated aminopropylsiloxane precursors was also established. A third and fourth 

type of experiment was devised to show that intercalated aminopropylsiloxane 

precursors, once activated, were retained via crosslinking as opposed to physical 

entrapment or any other non-covalent association. Lastly, in order to identify the 

contribution of intercalation and crosslinking, a set of reaction tubes were incubated 

with a series of solutions and compared with the set of control tubes which were treated 

in a parallel way, the difference being that propanol was use in place of toluene. 
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(i) Characterizing tube extension due to toluene perfusion   

The top-to-bottom length of native Eppendorf tubes containing toluene (1.8ml, 

70°C) was measured (30min intervals, 3h total duration) with a Mitutoyo brand CD-6 B 

model digital caliper in order to determine tube expansion by solvent intercalation. The 

top-to-bottom length of propanol incubated Eppendorf Tube was also measured in the 

same way. Elongation versus time was graphed using Microsoft Excel and the graphical 

analyses were used to characterize the intercalation process. The images of Eppendorf 

Safe-Twist tubes, treated with toluene or propanol, was captured by laying the tubes 

upon a HP ScanJet 6300C scanner. 

 

(ii) Verifying the co-perfusion of aminopropyltrimethoxysilane-toluene.  

Tubes containing the reaction solution (2.0ml, 1:99 (v/v) 

aminopropyltrimethoxysilane/water-reduced toluene) were incubated (70°C, 3h) and 

flushed thereafter under a jet of distilled water to promote the removal of mechanically 

fixed surface residues. After a quick rinse with propanol, amino groups residing in the 

wall of the tubes were visualized by incubation with a propanolic solution of 1% 

ninhydrin (1.8ml, 70°C, 40min). The experiment was redone using propanol in place of 

water-reduced toluene for comparison. As propanol is incapable of distending 

polypropylene, a marked difference in color yield was anticipated.  

 

(iii) Characterizing the product of co-perfusion and subsequent activation-

crosslinking (Figure 2.1.A) 

The extent that amino groups were retained in control tubes treated with 

aminopropyltrimethoxysilane/water-reduced toluene (2.0ml, 1:99 (v/v), 70°C, 3h) was 

compared to trial tubes treated initially with aminopropyltrimethoxysilane/water-

reduced toluene (2.0ml, 1:99 (v/v), 70°C, 3h) and afterwards with water-saturated 

toluene (2.0ml, 70°C, 3h). All tubes were rinsed after with propanol, cured by heat 

treatment (70°C, 3h), flushed with water, dried, and tested with ninhydrin (1.8ml, 70°C, 

40min).  
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(iv) Characterizing the product of concurrent co-perfusion-activation-crosslinking 

(Figure 2.1.B) 

The extent that amino groups were retained in control tubes treated with 

aminopropyltrimethoxysilane/ water-reduced toluene (2.0ml, 1:99 (v/v), 70°C, 3h); no 

successive incubation in wet toluene) was compared to trial tubes treated with 

aminopropyltrimethoxysilane/water-saturated toluene (2.0ml, 1:99 (v/v)). All tubes 

were rinsed after with propanol, cured (70°C, 3h), water-flushed, dried, and ninhydrin-

tested (1.8ml, 70°C, 40min). Images were captured by laying the tubes directly upon a 

scanner. 

 

(v) Validating non-adsorptive mode of product retention. 

 To verify that aminopropyltrimethoxysilane hydrolysis products were indeed 

retained by covalent crosslinking, native tubes were treated with a non-crosslinkable 

diaminopropane in water-saturated toluene (2.0ml, 1:99 (v/v), 70°C, 3h). The non-

crosslinkable diamine, with two amino groups instead of one amino and silane group, 

served to estimate the fraction of non-crosslinked aminopropyltrimethoxysilane 

hydrolysis products that might be retained by an adsorption only mechanism. The 

diamine, bearing a rough physico-chemical similarity to the activated target molecule, 

was anticipated to crudely mimic the retention profile of non-crosslinked 

aminopropyltrimethoxysilane hydrolysis products, which resided in the matrix. 

Following incubation, control tubes were rinsed with propanol and set aside, while trial 

tubes were rinsed and incubated in water-reduced toluene (70°C, 3h). Matrix-perfused 

diamine was anticipated to leach back into solution during the second incubation. In 

order to control the contribution of crosslink-promoted retention, native tubes were 

similarly treated in a parallel experiment using the crosslinkable target molecule, 

namely, aminopropyltrimethoxysilane with in place of diamine. Control and trial tubes, 

and contents remaining from spent solutions were tested using ninhydrin (1.8ml, 70°C, 

40min). A potential revision to this experiment might have been to examine the degree 

to which aminopropyltrimethoxysilane perfused into the matrix and partitioned back 

into solution under anhydrous-only conditions. In practice, however, traces of water in 

toluene or the polypropylene matrix caused the experiment to be impractical. 
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2.4 Results 

Top-to-bottom measurement of Eppendorf tubes by a digital caliper showed that 

the length of the native tube increased gradually during incubation with toluene and the 

change of length had stabilized after 3 hours of incubation. The incubation of Eppendorf 

tube with propanol did not result in increase of length. The length of a native tube 

treated with propanol (left) and another treated with toluene (right) is compared in 

Figure2.2.a. After 3 hours of toluene incubation, a final length increase of 

approximately 5% was noted in the tube (Figure 2.2.b). Accordingly, an arbitrary 

reaction time of 3 hours was adopted for all subsequent experiments. Weight gains due 

to matrix-perfused toluene were approximately 4-5%. The original mass and length of 

tubes were restored most conveniently by heating in vacuo. No length increase was 

observed during treatment with propanol (graph not shown). 

 

 
Figure 2.2. Distention of polypropylene during solvent treatment is depicted. A. Image 

of Eppendorf Safe-Twist tubes treated (3h) with propanol control (left) and water-

reduced toluene (right); B. Graph of elongation versus time in toluene, reporting the 

top-to-bottom length of an Eppendorf Safe-Lock tube. 

 

The ninhydrin yield of the experiment designed to verify the intercalation of 

toluene-reagent solution is shown in Figure 2.3. The solution-treated tubes were flushed 

with water and propanol. Matrix-perfusion was then tested using propanolic ninhydrin. 

The ninhydrin negative results were obtained for a native tube (Figure 2.3.A) and a 

control tube pre-incubated with aminopropyltrimethoxysilane in non-perfusing propanol 

(Figure 2.3.B). The trial tube (Figure 2.3.C), previously incubated in a water-reduced 

toluene solution of aminopropyltrimethoxysilane, tested ninhydrin positive and the 
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color was fixed in the walls of the tube. The ninhydrin reaction shows the ability of 

matrix-swelling toluene to facilitate entry of low-molecular-weight aminopropylsilyl 

species into polypropylene. 

 

 
Figure 2.3. A. Native tube; B. Control tube incubated with 

aminopropyltrimethoxysilane in non-perfusing propanol; C. Trial tube incubated with 

aminopropyltrimethoxysilane in water-reduced toluene. 

 

The ninhydrin color yields of tubes that were pre-treated in water-saturated or 

water-reduced toluene solutions containing aminopropyltrimethoxysilane are illustrated 

in Figure 2.4. The ninhydrin yield of native tube was negative (Figure 2.4.A). The walls 

of tubes treated aminopropyltrimethoxysilane in water-reduced toluene solution tested 

ninhydrin positive (Figure 2.4.B). Tubes treated with the silane dissolved in water-

saturated toluene (Figure 2.4.C) were consistently more ninhydrin positive. Moreover, a 

fair portion of the total color was noted in solution. 

 

 
 

Figure 2.4. A. Native tube; B. Control tubes treated with aminopropyltrimethoxysilane 

in water-reduced toluene solution; C. Trial tubes treated with 

aminopropyltrimethoxysilane in water-saturated toluene solution. 

 



 33 

In a last experiment, several tubes were incubated using a hydrated toluene 

solution of diaminopropane, and then rinsed with propanol. Those analyzed 

immediately with ninhydrin afforded a positive result along the walls and in solution 

(results not shown). Those re-incubated instead in water-reduced toluene afforded a 

ninhydrin negative result. The spent, water-reduced toluene solution tested ninhydrin 

positive. By comparison, native tubes incubated with aminopropyltrimethoxysilane in 

hydrated toluene solution not only afforded significant ninhydrin yields in the walls 

before the secondary treatment with water-reduced toluene, but also afterwards, in 

direct contrast to the result noted for the diamine perfusate. The water-reduced toluene 

solution tested ninhydrin negative. 

 

2.5 Discussion 

(i) Evidence supporting perfusion of toluene and co-perfusion of aminopropylsilyl 

species. 

Figure 2.2 confirmed the polypropylene tubes had distended in the presence of 

hot toluene. The graphic profile reported a linear increase until 2 hours incubation time, 

followed by a plateau. These results indicated that toluene under the influence of heat, 

was able to perfuse into the plastic matrix. It followed that perfusion had increased the 

inter-chain separation of the polymer. Furthermore, a point was reached where a net 

influx of solvent was prevented by strains associated with the inter-chain separation. 

The results also implied that suitable solutes, such as silanes or toluene-associated 

water, might co-perfuse into the plastic by this approach. This deduction was supported 

by the results shown in Figure 2.3, which indicated that co-perfusion had occurred. The 

fact that tubes incubated with toluene/amimosilane solution tested ninhydrin positive, 

whereas those incubated with propanol/aminosilane solution tested negative proved that 

aminopropylsilyl species could only co-perfuse if a matrix-swelling solvent was 

applied.  

More evidence related to establishing the matrix-localization of 

aminopropylsilane species may be inferred from the ninhydrin test. In particular, the 

chromophore produced with primary amines detaches during formation and is free to 

enter solution [121]. The fact that color remained fixed in the walls of the tube as 

opposed to freely dissolved in ninhydrin solution indicated that the ninhydrin reaction 
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likely occurred with matrix-perfused amino groups, affording a trapped chromophore. 

The color noted was red instead of violet, which may implicate constricted packing of 

chromophores in the confines of the matrix, solid-phase trapping of ninhydrin reaction 

intermediates, or any other matrix effect. All indications, therefore, supported perfusion 

of toluene and co-perfusion of aminopropylsilyl species into the polymer walls.  

 

(ii) Evidence supporting co-perfusion, activation and crosslinking of 

aminopropylsilyl species in the matrix and pendant to the surface 

 

The crosslinking of silane precursors along and under the polypropylene surface 

appeared influenced by water content, temperature, perfusability into the matrix, and 

leaching or partitioning of matrix-associated compounds back into solution. The 

stepwise perfusion-activation approach (Figure 2.1.A) apparently suffered from 

leaching of silane precursors. However, the likely formation of intra-matrix crosslinks, 

and a thin, if not negligible surface film, was nonetheless shown. While leaching of 

matrix species was not deemed an issue with the concurrent perfusion-activation 

attempt (Figure 2.1.A), findings suggested that surplus activation-crosslinking of 

precursors in solution could curb, for steric reasons, the effective penetration of anchor-

forming units into the sub-layers of polypropylene. The overall results left little 

probability that a surface film had anchored only mechanically as opposed to having 

bonded chemically. Of the scenarios envisaged in Figure 2.1.A, the second approach 

proved more amenable in practice. However, either approach appeared to yield a surface 

potentially suitable to further modification. 

Polypropylene that was co-perfused by aminopropyltrimethoxysilane in water-

reduced toluene and treated subsequently with water-saturated toluene (Figure 2.1.A) 

afforded a lower color yield than polypropylene treated by the concurrent approach 

(Figure 2.1.B), particularly in the solution phase (results not shown). This finding was 

anticipated, as the potential for aminopropylsilyl species to associate without hydrolytic 

activation (i.e., Figure 2.1.A, Step 1) was unlikely. In the concurrent approach, the 

ninhydrin yield of tubes treated with aminopropyltrimethoxysilane in water-saturated 

toluene (Figure 2.4.C) was higher than tubes treated in water-reduced toluene (Figure 

2.4.B). This superior color yield was an indication and consequence of more widespread 

activation by water. While some color entered solution, the rest remained fixed to the 
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plastic. This finding would likely be consistent for an aminopropylsiloxane coating that 

was part surface pendant and part buried. In the case of the water-reduced control 

experiment (Figure2.4.B), the growth and immobilization of a surface coating was 

clearly limited by low water content, consistent with a ninhydrin positive yield in the 

matrix and a negative or near-negative yield in solution. In the case of all tailored tubes, 

ninhydrin positive results were obtained despite numerous pre-washings using water, 

further suggesting that surface-anchored populations (if applicable) and sub-surface 

anchor-like populations of activated monomers had collectively bonded together. A 

question remaining to be addressed was whether the aminopropylsilyl species had 

attached solely by non-covalent means. 

 

(iii) Evidence ruling out non-covalent modes of aminopropylsilyl retention in the 

matrix and along the surface 

The results of the diaminopropane-retention experiments indicated that 

diaminopropane had leached from the polypropylene matrix into water-reduced toluene. 

This finding supported the crosslinking idea, as it implied that non-covalent bonding 

alone should not be strong enough to retain activated yet non-crosslinked variants of 

aminopropyltrimethoxysilane in the polymer. Clearly, another mode of retention was 

likely operative that was consistent with the chemistry of hydrolyzed 

aminopropyltrimethoxysilane. Retention could be conceived, for instance, by the intra-

matrix formation of dimeric to oligomeric anchor groups. The fact that tubes treated 

with aminopropyltrimethoxysilane in hydrated toluene gave similar ninhydrin yields 

after subsequent incubation with water-reduced toluene (comparison not shown), 

supported the likelihood that crosslinking facilitated the retention of aminopropylsilyl 

species within and along the matrix of the plastic. This finding was further supported by 

virtue that spent toluene recovered after the incubation tested ninhydrin negative. In 

view of the reversed partitioning that was noted for diaminopropane, tubes pre-treated 

in water-reduced toluene solutions of aminopropyltrimethoxysilane were also 

anticipated to show highly decreased matrix-phase color yields when subsequently 

incubated in water-reduced toluene. In practice, however, the principle was 

contradicted. The key reason is likely related to residual water and uncontrollable 

crosslinking. 
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2.6 Conclusion 

The veracity of an intercalation-crosslinking approach as a novel means of 

activating and tailoring the surfaces of polypropylene without resorting to chemical 

modification of polymer surface groups was supported by experimental results. First 

advantage is that the original material is unaltered in the chemical sense, as the process 

physically combined two polymer networks, presumably by intertwining a growing 

polymer amidst individual chains of the plastic. Therefore, the surface formed is likely a 

thin layer as opposed to a monolayer. All the other methods chemically alter the 

polymer surface and this fact will potentially affect material longevity, particularly if 

the method introduces local regions bearing reactive meta-stable functional groups. A 

second very significant advantage is that the choice of surface modification is not 

limited to amino groups. In fact, several different functional groups may be deposited 

simultaneously and in precise ratios. One disadvantage of this method is that it is not 

particularly amenable to continuous flow processes. Another disadvantage is that this 

method is not as rapid as plasma methods. 

The approach has great potential for polymers bearing relatively inert surfaces. 

The process is not dependent on any specific chemical reactivity but rather on choosing 

a suitable matrix-swelling solvent, thus if the procedure is generalized, it could be used 

to achieve organic-inorganic bonding in polymers regardless of the polymer. It follows 

that non-reactive bonding to surface functional groups could form a technology by 

which diverse surface-pendent functional groups in any organo-ceramic coating may be 

engineered.  
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CHAPTER 3 
 

CHEMICAL MODIFICATION OF POLYPROPYLENE SURFACE BY 

AMMONIUM PEROXYDISULFATE OXIDATION AND OXIDATION 

INDUCED MESOPATTERN FORMATION 

 

3.1 Introduction 

Polypropylene, has excellent physico-chemical properties and it is becoming 

increasingly attractive materials for a series of engineering and biotechnological 

applications. Surface properties of polymers often do not meet the demands of 

industrially important applications and it is necessary to tailor the surface selectively 

while keeping the bulk characteristics unchanged. Typical methods to activate surfaces 

are based on nitrogen plasmas, oxidative/acidic chemical activation conditions, and free 

radical grafting and photografting. In the case of polypropylene, some chemical 

activation methods rest on treatment with nitric acid, chromic acid, 

peroxytrifluoroacetic acid, peracetic and aqueous peroxydisulfate. 

 In this study, not only the chemistry but also the topology after oxidation is 

under study since the topology of the surface in nanoscale is important in biological 

applications and also for the hydrophobicity studies. Nanoscale engineering of topology 

is severely limited with respect to many materials. Common methods of achieving 

small-scale topologies have required template approaches such as micro- and 

nanolithography. On the other hand, high loadings of surface functional groups are also 

desired, however plasma modifications, for example, typically quote sub-µmole/cm2 

derivatizations. This defines an effective upper limit in approaches that do not graft 

preformed multifunctional polymer chains onto a surface or do not polymerize 

monomers thereon. It follows that in the case of oxidation of polypropylene tubes under 

study, one way to manipulate mesoscale topologies and increase loading capacities 
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while maintaining original size constraints might be to roughen the accessible surface 

via chemical degradation. In this respect, treatment with aqueous ammonium 

peroxydisulfate was envisaged as a convenient method to simultaneously activate 

surfaces and roughen topologies at the mesoscale. Therefore, the strategy not only 

precludes costly equipment but also introduces the ability to subsequently attach a very 

diverse assortment of functional groups upon the activated topology. 

 

3.2 Materials 

Eppendorf Safe-Lock brand tubes (2ml capacity) were obtained from Eppendorf 

Company. Melt-blown polypropylene was obtained from Proctor and Gamble. Reagents 

were obtained from Sigma-Aldrich. Distilled water was produced in-house and reagent 

grade solvents were obtained from commercial suppliers. 

 

3.3 Methods 

3.3.1 Reaction method 

The reactions were performed using a standard laboratory oven, a Savant 

Speedvac with the vacuum accessory disabled and an Eppendorf brand thermomixer. 

The chosen temperature was 70˚C which is suitable for the activation of the ammonium 

peroxydisulfate and not so high as to potentially alter the morphological properties of 

PP. 

 

(i) Time course reactions 

The inner surface of commercial injection-molded isotactic polypropylene tubes 

was exposed to aqueous ammonium persulfate solution (1.8ml, 1M, 70° C) for 0h, 2h, 

4h, 6h, 8h, 10h, 12h, 14h, 16h, 18h or 24h. Negative controls, which accounted for 

potential thermal oxidation at 70° C, were prepared by treatment with ammonium 

sulfate (1.8ml, 2M, 70° C, 16h). All tubes were rinsed thoroughly with distilled water 

and isopropanol, and dried in a vacuum oven (40° C, 2h). Melt-blown polypropylene 

fibers were oxidized for 16h and worked up in a parallel manner. 
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(ii) Gravimetric Analysis 

The weight of Eppendorf tubes before and after oxidation with ammonium 

peroxydisulfate was compared in order to asses the loss by gravimetric analysis. 

Eppendorf tubes (10×2ml) were washed with distilled water and then dried in vacuum 

oven (70° C, 6h). Tubes were transferred to a desiccator to prevent them absorbing 

moisture while cooling down to room temperature. After tubes were weighed 

collectively, APS solution (1M, 1.8 ml) was delivered to each tube and allowed to react 

(70° C, 16h). The tubes were washed thoroughly after reaction, dried and weighed 

again. 

 

3.3.2 General Methods 

(i) Preparation of Persulfate and Control Solutions 

Ammonium peroxydisulfate solution was prepared by dissolving the required 

amount of solute in deionized water and with the help of an ultrasonic bath. The control 

solutions were prepared by dissolving ammonium sulfate in deionized water. In the 

control solution there was no active agent but it maintained counter ions for 

comparability. The solutions were prepared freshly before each experiment to maintain 

consistency. 

 

(ii) Washing and Drying Method for Modified Samples 

At pre-selected times, samples were taken from the heating device and allowed to 

cool down to room temperature. The tubes were emptied and flushed thereafter under a 

jet of water to promote the removal of mechanically fixed surface residues. Samples 

were dried in a vacuum oven prior to analysis to remove potential moisture and other 

volatiles from the matrix of the polymers. 

 

(iv) Preparation and ATR-FTIR Analysis of Samples 

Samples were prepared in such a way that avoids incidental damage to the plastic 

matrix and permits the effective analysis using the attenuated total reflectance 
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equipment of the Fourier Infrared Instrument. As excessive bending of samples during 

the sample preparation yielded poor ATR-FTIR spectra, this modification to the method 

was introduced to protect the crystal structure of the polymer. For preparation of tube 

samples, a cylindrical piece with an approximate height of 3mm was cut just above the 

base of the tube using a heated razor blade. These ring-shaped pieces from the sample 

were immersed in liquid nitrogen and shattered while frozen, the effect being that 

undesirable cracking of the polymer was avoided. The cutting steps are illustrated in 

Figure 3.1 shown below. The pieces chosen for analysis by FT-IR typically bore 

dimensions of 2x3mm. These pieces were then were dried in a vacuum oven (400C, 2h)  

prior to analysis to remove potential moisture and other volatiles from the matrix of the 

plastic. The samples prepared in this way had little or no damage to the crystal structure 

but nevertheless some bore thick edges with scuff as a result of the cutting action with 

hot blade.  These regions were carefully cut with a flat edged razor blade. Clear, scuff-

free appearing regions were clamped over the window of the ATR accessory of a 

Bruker model Equinox 55 infrared spectrophotometer. Twenty scans were averaged 

using a 70-point rubber-band correction option that was part of the Bruker OPUSV 3.1 

software package. 

 

 
Figure 3.1 Cutting steps for sample preparation for ATR-FTIR. 

 

(v) Preparation and Scanning Electron Spectroscopic Analysis of Samples 

Sample tubes for SEM analysis were prepared by method used for the ATR-FTIR 

sample preparation. For melt-blown fibers and samples in sheet form no special sample 

preparation was done. Carbon coatings were employed in the case of the Eppendorf 

brand tubes and a tungsten-platinum mix was employed in the case of the melt-blown 

fibers. Either coating greatly improved the air to surface contrast. Scanning electron 

micrographs were obtained using a beam voltage of 5, 10 and 15kV. At least four areas 

per sample were examined at resolutions up to 70kX and analyzed using windows-
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based imaging software. The former samples were analyzed using a JEOL model JSM-

6500F instrument, whereas the latter were analyzed in a Hitachi S5200 Field Emission 

Scanning Electron Microscope. 

 

3.4 Results 

(i) FTIR measurements of time course and concentration course samples 

The attenuated total reflectance signal of an Eppendorf Tube before and after 

reaction is shown in Figure 3.2. It should be noted that wavenumbers are generally 

shifted to lower frequencies and all high frequency absorbances are reduced in ATR 

mode of FTIR in comparison to transmission infrared spectroscopy. In case of our 

instrument, this shift was calibrated at 9cm-1 for native polypropylene. The 

wavenumbers reported in the results were not corrected by this amount in order to 

remain consistent with their spectral profiles, however, functional group assignments 

were made only after applying this correction.  
 

 
 

Figure 3.2 ATR FTIR spectrum of vacuum dried samples before (dashed line) and after 

(solid line) reaction (1M, 70˚C, 16h). 
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Control and blank surfaces afforded spectra with methylene stretches at 2916cm-1 

and 2838cm-1 and methyl stretches at 2949cm-1 and 2868cm-1, as expected for 

polypropylene. The methine absorption is generally weak and obscured, however in this 

case a peak lying immediately to the left of 2868cm-1 was tentatively assigned to this 

stretch. In the fingerprint region, an asymmetric deformation was ascribed to the peak at 

1379cm-1 for the methylene group. In fact, given that the starting material appeared pure, 

all absorptions below 1500cm-1 in the spectra were attributed to different vibrational 

modes of alkyl groups of varying hydrogen multiplicity, namely, deformation, rocking, 

torsion, scissoring, wagging and twisting. The peak at 1770cm-1 was previously 

identified as –CHCH3 absorbance mode and the peak at 975cm-1 was assigned to a 

methyl group absorbance. The spectral mode responsible for strong absorbance at 

appeared at 998 cm-1 is rather complex and it disappears in low molecular weight 

polypropylenes. 

Spectral profiles differed notably in the functional group region (4000-1300cm-1), 

fingerprint region (1300-900cm-1) and remaining low-frequency region (900-600cm-1). 

Native surfaces revealed a minor dip in the O-H stretching region from 3600cm-1 to 

3050cm-1 which corresponds to surface bound and intermolecular H-bonded water. Two 

other possibilities for this absorbances are carboxylic acid and alcohol groups. 

However, O-H stretching is extremely broad for carboxylic acids, moreover a carbonyl 

stretch and C-OH deformation absorbance at 1440-1400cm-1 were expected but they are 

not observed on the spectra profile. Similarly, strong C-OH stretching would be 

anticipated in the presence of significant alcohol groups, with the highest frequencies of 

1150-1130cm-1 attributed to tertiary alcohols. A C-H frequency of an unsaturated carbon 

would be expected just above 3000cm-1 and C=C stretch in the range of 1680-1600cm-1, 

but such were not the case, so it can be concluded that carbon-carbon unsaturations 

were also not apparent. The peak at 2721cm-1 could have been attributed to one of the 

Fermi doublets of an aldehyde group, however the carbonyl stretching region was 

completely clean and moreover this peak would certainly be consumed by persulfate 

initiated tertiary peroxides. This peak remains unvalidated, but it was observed in many 

different polypropylene preparations. There were no carbonyl absorbances ruling out 

the presence of any significant amount of aldehyde, carboxylic acid, ketone and ester. 

Following persulfate treatment, a broad absorbance spanning the region from 

1300cm-1 to 1000cm-1 was noted. Similar spectral profiles were afforded in the 
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photochemical oxidation of polypropylene and ethylene-propylene-diene monomer as 

measured by transmission infrared spectroscopy and in related thermooxidative 

investigations. In interpreting the spectrum between 3640cm-1 and 3200cm-1, 

consideration was given to the scenario that both hydroperoxide groups and hydroxyl 

groups may be present, with their absorbances potentially superimposed and displaying 

comparable extinction coefficients. Under the mediation of persulfate, the net content of 

isolated and hydroperoxide-, hydroxyl- or otherwise associated hydroperoxides was 

presumed to accumulate during the course of a reaction. Therefore, the absorbance from 

3640cm-1 to 3200cm-1 was assigned to hydroxylation of the polypropylene and the 

absorbance continuing to the right of 3200cm-1 and extending down to 2400cm-1 was 

assigned to O-H stretching absorbance of carboxylic acids. The strongest stretching 

frequencies amongst the derivatives were found in the carbonyl region, of which the 

expanded spectra clearly showed a composite peak bearing at least three populations of 

carbonyl groups, namely, a main peak centered at 1706cm-1 and two apparent shoulders 

centered at 1728cm-1 and 1765cm-1. These peaks potentially described ketone, 

carboxylic acid and ester products. 

  

 

 

Ruling out candidates such as peracid, peroxide, hydroperoxide and aldehyde, the 

products most likely formed alcohol, ketone, carboxylic acid, ether and ester. The 

immediate goal was to summarize by means of an overly simplified mechanism that the 

products stated above could in fact be afforded. 

Figure 3.3 shows the carbonyl region FTIR spectra of a tube that was oxidatively 

activated for up to 24 hour. The increase of signal was gradual and the maximum 

intensity was reached after 16 hours of oxidation (Figure 3.3, balls & solid lines). At 

least three signals, denoting three types of carbonyl products, were apparent. On the 

basis of the measurements, products likely formed included alcohol, ketone, carboxylic 

acid and possibly ether and ester. The products obtained were consistent with 

established radical-induced transformation pathways, which could potentially be 

accelerated or altered via aqueous acid catalysis. The contribution of potential ether and 

ester products along solvent-accessible regions was deemed inconsequential in the 

matter of affecting surface adhesion. In fact, the existence of solvent-accessible ether 

and ester groups was essentially discounted in view of the highly reactive conditions at 
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the surface, which might have discouraged their formation and certainly encouraged 

their removal through secondary transformations. In keeping with this logic and the fact 

that aqueous persulfate is ultra-reactive, only surface carboxyl, ketone, and possibly 

hydroxyl groups were anticipated in significant number. 

 
Figure 3.3 ATR- FTIR spectra of the time course reaction. 

 

(ii) Scanning Electron Microscope Analyses 

Surface of native, ammonium sulfate and ammonium persulfate treated Eppendorf 

tubes were analyzed by scanning electron microscope in order to investigate the change 

in the topology after each treatment. The micrograph of oxidized Eppendorf Tubes (1M 

APS, 70˚C,  16h) showed the development of parallel cracks along inside walls of the 

tube (Figure 3.4.C). On the other hand, the micrograph showed no such cracks for 

native tube surface heated for 16 hours (Figure 3.4.A)  and for the polypropylene tube 

treated with ammonium sulfate (Figure 3.4.B). However, small cracks appeared on  

both surfaces which resulted from sample preparation step for scanning electron 

microscopy analysis. The beam of electrons is highly negative, so during analysis it will 

cause the sample to become negatively charged and this charging will deflect the beam 

resulting disruption of image quality. Thus, in order to avoid this problem, all the 

samples were coated with a thin layer of either with carbon, gold or tungsten that will 

conduct the electrical charge on the surface to ground. However, in the case of carbon 
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coating when the coating is not thin and formation of cracks on the carbon coating is 

observed. This condition explains the presence of small cracks on native and 

ammonium sulfate treated polypropylene surfaces.  

 
Figure 3.4 SEM image of  A. Native Eppendorf tube; B. Eppendorf Tube treated with 

ammonium sulfate(1M, 70˚C, 16h) ; C. Eppendorf Tube treated with ammonium 

persulfate (1M, 70˚C, 16h). 

 

In polypropylene, the incident light is scattered on crystallites, spherulites and 

also the interface between the amorphous and the crystalline phases having different 

refractive phases and as a result light scattered on different units of the structure makes 

this polymer opaque in its native form. The opacity of the polypropylene tube increased 

after oxidation reaction, as a result of change on the surface. The cracks formed upon 

oxidation resulted in loss of optical clarity yielding increased opacity which is easily 

observable by naked eye. The photograph taken on a dark background  opacity (Figure 

3.5) clearly shows that the oxidized Eppendorf tube is more opaque compared to native 

tube.  
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Figure 3.5 Photograph of  A. Native Eppendorf tube; B. Oxidized Eppendorf Tube, 

showing the change in optical clarity after oxidation  

The Figure 3.6.A shows the schematic drawing of an Eppendorf tube half-full 

with persulfate solution. A piece of sample from the middle of the tube bearing the air-

solution boundary cut and analyzed by optical microscope to investigate the changes on 

surface where one part is oxidized and the other not. The fact that the crack formation is 

dependent on oxidation is clearly seen in Figure 3.6.B, illustrating the air-solution 

boundary of an Eppendorf Tube where the changes on both the oxidized and non-

oxidized part of the surface are observable. Upper half of the image, showing the part of 

the tube surface which was not in contact with the APS solution, appeared normal. In 

contrast, the densely clustered cracks are observed on the surface which was in contact 

with persulfate solution (lower part of the image). This figure clearly shows that cracks 

were restricted to areas having had direct contact with the persulfate solution.  

 

 

 
Figure 3.6 A. Schematic drawing of an Eppendorf half-full with the oxidant solution 

ammonium peroxydisulfate; B. Optical microscope image of oxidized Eppendorf Tube 

showing the air-solution boundary 

 

Scanning electron micrograph given in Figure 3.7  shows the depth of the cracks 

along the broken edge of APS treated tube. The image shows that the cracks are limited 

to depth of 20�m, which represents the skin layer of the injection molded 

polypropylene. 
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Figure 3.7 Scanning electron micrograph of APS treated Eppendorf tube taken from the 

cross-sectional viewpoint, tilted slightly towards the inner face 

 

 Figure 3.8 given below shows the scanning electron micrograph of an oxidized 

Eppendorf tube (1M APS, 70˚C, 42h) at four different magnifications in increasing 

order. As the magnification was increased, a mesoscopic pattern formation between the 

cracks were observed. 

 

Figure 3.8 Scanning electron micrographs of gold-coated surfaces of Eppendorf tubes   

oxidized with APS (1M, 70°C, 42h) at different magnifications. 

 

Scanning electron micrographs in Figure 3.9 illustrate the development of 

mesoscale topology during the course of oxidizing Eppendorf Tubes. No  significant 

change of appearance was noted at early times of oxidation. The topology appeared to 
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remain native like after 8 hours of oxidation (Figure 3.9.A). On the other hand, minor 

changes had developed by 10 hours, in the form of sparsely distributed bulges of 

approximate 400nm diameter (Figure 3.9.B). These two images implied a latent period 

of oxidation, in which topological changes were suppressed for the most part. In 

contrast, a relatively brief period of dramatic change was noted thereafter, vis-à-vis the 

sponge-like mesoscale topology shown at 12h reaction time (Figure 3.9.C). Further 

reaction did not appear to alter the landscape (Figure 3.9.D).  

 

 
Figure 3.9 Scanning electron micrographs of injection-molded polypropylene oxidized 

for: (A) 8h; (B) 10h; (C) 12h; and (D) 16h. The negative reaction control surface 

appeared identical to the 8h time point (A). 

 

Oxidized melt blown fibers were also analyzed by SEM to observe the changes 

following oxidation.  Figure 3.10.A and Figure 3.10.B showed that material formation 

had occurred above the surface of the melt blown polypropylene fibers following 

oxidation. The material formed above the surface also has a sponge-like appearance 

(Figure 3.10.C). In order to assure that the material observed on the surface is not 

adsorbed but  connected to surface, the fibers were rinsed very well with water  and 

analyzed again by SEM. The presence of material on the surface was observed on the 

micrographs after washing (result not shown). 

C 
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Figure 3.10 Scanning electron micrographs of oxidized melt-blown polypropylene at 

different magnifications 

 

The elemental composition of the melt blown polypropylene fiber at three 

different points; base, amorphous part, particles, namely, was analyzed by means of 

energy dispersive X-ray analysis (SEM-EDS) (Figure 3.11). The elemental composition 

of the base fiber and amorphous part was same. The intensity of hydrogen, carbon, and 

oxygen on these sites had same magnitude. On the other hand, analysis of the elemental 

composition of the particles on the surface showed that the intensity oxygen peak was 

higher corresponding to this area was higher compared to base fiber. The fact that the 

oxygen content of the particles is higher indicates the presence of higher amount of 

oxygen containing groups in this area. This implies that the oxidized fiber, having a 

lower surface energy than base fiber segregates to surface and form as a phase 

containing hydrophilic groups and phase separates.  
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Figure 3.11 Scanning electron micrographs and EDS analysis of oxidized PP fiber; 

lines intensities corresponding to: yellow line: base fiber; redline: amorphous, green 

line: particles on the surface. 

 

The micrographs in Figure 3.12 shows the surface of oxidized melt blown 

polypropylene fiber and polypropylene Eppendorf Tube. Both micrographs captured, 

the presence of two structures separated by a boundary on the oxidized surface.  A 

transition zone in which structures have developed along the lower portion of the 

photograph, whereas, others are about to emerge along the upper portion, is shown in 

both case. The topology shown in Figure 3.12.A is also patterned, although substantially 

different than in the case of the tubes. The difference of appearance was attributed to the 

inherent morphological differences between the top layers of injection-molded and 

melt-blown polypropylene. Figure 3.12.B clearly shows the surface-pendent 

mesostructures from a slightly oblique angle. 
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Figure 3.12 Scanning electron micrographs  A. Polypropylene fiber, B. Polypropylene 

tubes, treated with APS showing two structures  separated  by a boundary. 

 

3.5  Discussion 

(i) Persulfate-initiated surface reactions and spectroscopic characterization 

The chemistry employed and FTIR spectra of oxidized tube was consistent with a 

number of functional groups. The oxidation may be generally viewed as a partially 

ordered, weight-averaged summation of radical-mediated propagation, transfer, 

scission, and termination pathways, as well as radical, thermal and acid-catalyzed 

peroxide decomposition pathways. The immediate goal was to show that the products 

stated in results of FTIR interpretation could be afforded as a result of several 

mechanism taking place during oxidation. 

The Figure 3.13 outlines several immediate products and hydroperoxide 

intermediates. Thermal decomposition of persulfate ion yields sulfate radical and it 

abstracts hydrogen from water molecule, affording hydroxyl radical. The hydroxyl 

radical generated affords several products and hydroperoxide intermediates (Figure 

4.16.A). After generation of hydroxyl radical, tertiary carbon center is generated as a 

result of abstraction of hydrogen preferentially from the tertiary carbon center (Figure 

4.16.B). The relative rate of  hydrogen by bromine are for primary, secondary and 

tertiary hydrogens are given as 1:82: 1640 respectively. The relative rates in hydrogen 
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abstraction vary considerably with the attacking agent but the given abstraction rates 

can still be used to compare relative hydrogen abstraction rates during oxidation since 

the activation energies for the reaction of bromine atoms with hydrocarbons are 

comparable to activation energy for the reaction of oxidizing agent, chromic acid, with 

hydrocarbons.  

 
Figure 3.13 A. Homolytic decomposition of persulfate B. Hydrogen abstraction from a 

tertiary carbon. 

Under anoxic conditions tertiary radical affords vinylidene group and a secondary 

carbon radical as a result of chain scission. 

 
Figure 3.14 Chain scission under anoxic conditions. 

 

In the propagation step, peroxyl radical formation and a subsequent 

hydroperoxidation predominates in the presence of an oxygen and accessible hydrogen 

source such as water or a neighboring polymer moiety. The oxygen is present as a result 

of hydroxyl radical disproportionation. The reaction of the alkyl radical with the oxygen 

afford peroxyl radical and then it abstracts hydrogen either from water or neighboring 

polymer moiety. In this respect, the ability of oxygen to diffuse into sublayers would 

govern the ease by which radical reactions can propagate via the hydroperoxide way. 

Propagation can lead either isolated or clustered hydroperoxides. The extent of 

clustering is influenced by the efficiency of an intramolecular backbiting reaction that 

leads to the generation of new tertiary, secondary and primary radicals. Secondary 

carbon centers may be converted into hydroperoxide in a similar way. 
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.  

Figure 3.15 Hydroperoxidation of primary and secondary carbon centers. 
 

Hydroperoxide decompositions appear to be potentially them most important 

sources of free radicals in the initial stages of polypropylene oxidation. Hydroperoxide 

decompositions may proceed by thermal decomposition, acid catalyzed decomposition, 

radical decomposition and radical abstraction of �-carbon hydrogen. Unimolecular and 

bimolecular thermolysis are both plausible pathways for thermal decomposition. 

Thermolysis of hydroperoxides result in efficient cleavage to give hydroxyl and tertiary 

macroalkoxyl and macroperoxyl radical. In solution, alkoxy radicals are known to 

abstract hydrogen from many substrates to combine with available free radicals and to 

decompose by �-scission processes which will play important role in backbone scission 

and alkyl radical formation.  

 
Figure 3.16 A. Unimolecular thermolysis of hydroperoxides B. Bimolecular 

thermolysis of hydroperoxides C. Decomposition of alkoxyl radical by �-scission. 
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Acid catalyzed heterolytic bond cleavage affords chain scission, ketone and 

primary alcohol groups or dehydration with in-chain ketone. Under the reaction 

conditions, it is conceivable that the alcohols oxidize further to the carboxylic acid via 

an aldehyde intermediate. Acid-catalyzed rearrangements of hydroperoxides have been 

observes  in polar and non-polar solvents. Protic solvents are the most effective 

catalysts of the rearrangement. The Figure 4.20 shows the most general reaction 

sequence for acid-catalyzed hydroperoxide rearrangement. 

 

 
Figure 3.17 General acid catalyzed hydroperoxide decomposition. 

 

Protonation of the hydroperoxide is a rapid and reversible reaction. It is followed 

by the rate-determining rearrangement where the electron density is redistributed and 

the nucleophile is migrating to one of the peroxide atoms. It has been found that acids 

can decompose primary and secondary hydroperoxides according to two different 

pathways shown in Figure 3.18. Heterolytic bond cleavage via acid catalysis affords 

chain scission, an end-chain ketone fragment and end-chain alcohol fragment (Figure 

3.18.A), or dehydration with in-chain ketone(Figure 3.18.B). 
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Figure 3.18 Acid catalyzed decomposition of polypropylene hydroperoxides. 

 

Hydrogen abstraction by peroxyl radical leads to spontaneous free-radical induced 

hydroperoxide decomposition and affords ketone formation. The tertiary hydrogen atom 

of secondary hydroperoxides is labile and easily abstracted by free radicals such as 

peroxyl and alkoxyl radicals. The reaction yields �-alkyl-hydroperoxy radical, and after 

scission of the peroxy bond a ketone and hydroxyl radical is generated(Figure 3.19.A). 

It follows that a similar reaction mediated by hydroxyl radical or alkoxyl radical may 

occur in selected regions of polypropylene(Figure 3.19.B). 
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Figure 3.19 Decomposition of peroxides induced by A. peroxy radical B. hydroxyl 

radical. 

 

 As hydroxyl radical and ketone are co-produced, they could promote the 

formation of carboxylic acid. The effectiveness of this transformation is anticipated as 

the two components maybe unable to separate quickly and therefore mimic the cage 

effect that is known for viscous polymer melts. By a similar transfer process, esters can 

be produced. In addition to ester and ketone formation, the alkoxyl radical contributes to 

formation of alcohol via hydrogen abstraction and radical transfer. 

 
Figure 3.20 Reaction model illustrating formation of carboxylic acid , ester and alcohol 

via transfer pathway 
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In general, radicals have to terminate bimolecularly. Polymer radicals may decay 

intramolecularly with another radical situated at the same polymer molecule or 

intermolecularly with a radical at another polymer molecule. With a large number of 

radicals at the same macromolecule, such as are produced at the high dose rate of pulse 

radiolysis with low polymer concentrations, the former process is usually favored. The 

recombination of radical with hydroxyl, alkyl, alkoxyl and peroxyl radical also results 

in termination. The recombination of alkyl radicals with alkoxyl radicals yield ethers 

(Figure 3.21.A) whereas the recombination with hydroxyl radicals yield alcohols 

(Figure 3.21.B). Secondary and tertiary peroxyl radicals may co-terminate to afford 

alcohol and ketone (Figure 3.21.C). Intermolecular hydrogen abstraction by alkoxyl 

radical at �-carbon of a secondary hydroperoxide affords alcohol, ketone, aldehyde, 

with concomitant chain scission (Figure 3.21.D). Secondary alkoxyl radicals in 

particular can also terminate via hydroxyl-assisted dehydration (Figure 3.21.E). 

 
Figure 3.21 Important reactions of termination step. 

 

The observed yields are of course subject to variation by any number of alternate 

pathways. Alcohol, for example, may be transformed by oxidation to carbonyl and even 

to carboxylic acid. Short-lived aldehydes are known to easily proceed to the carboxylic 

acid. Esters can also be produced by reaction of aldehyde and hydroperoxide precursors. 

Persulfate concentration, local oxygen availability, pH, temperature and polymer 

structure are some parameters that can influence the absolute and regional distribution 

of the four radical types (vide infra) and the final product distribution. The initiation, 

propagation, termination and other important reaction mechanisms are outlined in 

Figure 3.22.  
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RH + ·OH → R· + H2O    (1) initiation 

R· + O2 → R-OO· → R-OOH + ·R’    (2)  propagation                       

R-OOH → R-O· + ·OH   (3)  thermal decomposition     R-OOH + 

HOO-R’ → R-O· + ·OO-R’ + H2O  (4)  thermal decomposition        R-O· → 

R’=O + ·R”     (5) scission 

R-OOH � R’=O + HO-R”    (6)       acid catalyzed decomposition 

HR-OOH → R=O + H2O    (7) acid catalyzed decomposition 

HR-OOH + ·OOR’ → R=O + ·OH + HOO-R’ (8)  radical decomposition        HR-

OOH + ·OH → R=O + ·OH + H2O  (9)  radical decomposition   R=O + ·OH 

→ R’(=O)OH + ·R”   (10)  transfer                           R=O + ·OR’ → 

R”(=O)OR’ + ·R”’   (11)  transfer                            RH + ·O-R’ → R· 

+ HO-R’    (12)  transfer                                 R· + ·O-R’ → 

R-O-R’     (13)  termination                        R· + ·OH 

→ R-OH     (14)  termination                        R-OO· + 

·OO-R’H → R-OH + O=R’ + O2  (15)  termination                      RO· +  �-

HR’OO· → R-OH + O=R” + O=R’”  (16)  termination                     HR-O· + 

·OH → R=O + H2O    (17)  termination 

Figure 3.22 Reaction model illustrating formation of functional groups in 

polypropylene during oxidation. 
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(ii) Rationalizing Cracking Mechanism 

The scanning electron micrographs revealed the presence of crack formation 

along the oxidized polypropylene surface after certain oxidation time had passed. The 

crack formation can be rationalized by three mechanisms: release of internal stress, 

chemicrystallization, coalescence of voids. 

In a solid, just as in a liquid, the bounding surfaces posses a surface tension which 

implies the existence of a corresponding amount of potential energy. If a crack is 

formed as a result of applied stress, or a pre-existing crack is caused to extend, 

therefore, a quantity of energy proportional to the area of the new surface must be 

added. The condition that this shall be possible is that such addition of energy shall take 

place without any increase in the total potential energy of the system. This means that 

the increase in the potential energy due to the surface tension of the crack must be 

balanced by the decrease in the potential of the strain energy and the applied forces. The 

Griffith’s energy release rate criteria states that the crack growth can occur if the energy 

required to create new crack surface area can be delivered by the system.  

In the system under study, the crack formation may be related to the release of 

stress which may preside in polymer during its manufacture or accumulate gradually 

over time under the influence of external factors. The injection molded polypropylene 

may be subjected to stress during its processing. It is known that during injection 

molding, very complex thermal and flow conditions prevail in the cavity. The surface 

layer of the flowing melt is subjected to extensional stresses, and the subsurface layers 

are subjected to shear stresses. This results in a molecular orientation in the melt flow 

direction and a skin-core morphology where little or no orientation can be detected in 

the core. The skin has a complex morphology and its characteristics depend on 

processing parameters including the heat transfer conditions in the mold. The injection 

molded Eppendorf tube particularly the skin layer may have accumulated stress during 

the heat transfer when the polymer is quenched against a cold mold an processing. The 

hot isotactic polypropylene melt contacting with the cold walls of the die experiences 

high stresses, strain rates and cooling rates and subsequently the final structures are 

inhomogeneous and anisotropic. 

Another possible explanation is that, during oxidation the wall was etched away to 

the point of structural failure. The gravimetric analysis of test tubes before and after 

oxidation indicated loss of 2.6mg on the average. This value corresponds to 4�m loss of 
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skin thickness and when compared to the thickness of wall, 900�m, it is not significant 

enough to weaken the tube wall to the point of failure. However, when the cracking 

mechanism is explained in terms of coalescence of voids mechanisms, this amount of 

mass loss becomes important. 

Oxidative degradation leading to creation and coalescence of voids is another 

mode of stress generation. In oxidized Eppendorf tubes, the depth of cracks were found 

to restricted to depth of 20�m. Moreover, most of the degradation and voiding is 

expected to predominate near the surface and not deeper than the skin due to diffusion 

limitations. It follows that if the degradation is  the cause of the cracking, then the mass 

loss must be restricted to the skin layer and it represents 20% voiding. In this case the 

skin layer must occupy the same surface area with a less amount of material, since the 

tube dimensions are constant. As a result, the skin is subjected to stress and in order to 

reduce it voids would migrate around the polymer chains under the influence of thermal 

motion, and unite near surface. Volume variations due to oxidation has been established 

as a possible explanation of cracking mechanism by Fayolle [94].  

 Cracks also could form if the density of regionally constrained material within 

the plastic was to increase. Extrusion-molded isotactic polypropylene is potentially 

composed of amorphous as well as alpha, beta, gamma and smectic crystalline regions. 

The densities of polymorphs measure 0.858, 0.936, 0.921, 0.936 and 0.88 g/cm3, 

respectively. In theory, beta-to-alpha recrystallization could result in cracking. 

However, the process would only occur at temperatures above 140ºC in non-nucleated 

systems. The contribution of smectic polypropylene falls under more suspicion as it 

often defines the outermost 10-50µm of plastics, and anneals to the much denser alpha 

form if elevated to at least 70ºC, namely, the temperature at which tubes were 

incubated. Moreover, edge-on views obtained by scanning electron microscopy 

indicates that the penetration depth is consistent with the skin thickness and highest 

concentration of the smectic form. If temperature-induced densification was indeed a 

contributor, a comparable persulfate reaction at 60ºC would likely produce less cracks 

than could be accounted for by the slowing of chemical kinetics. When performed, an 

incubation of 32h at 60ºC afforded the same patterning as 16h at 70ºC, so no marked 

contribution of densification could be identified. Moreover, for densification to be valid, 

cracks would be anticipated on the inner walls of control tubes that were incubated in 

ammonium sulfate, but this was not the case. A possible explanation for the absence of 

cracks at 70˚C in sulfate solution points to recent studies, which have indicated that 
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smectic polypropylene anneals completely at considerably higher temperatures than 

once thought. 

Another mode of densification could also be operative if chemicrystallization was 

to occur under the influence of persulfate.  In this process, after chemical degradation, 

segments of entangled and tie chain molecules are released via chain scission, thus 

permitting localized regions at the surface to undergo a secondary crystallization. The 

most important consequence of chemicrystallization is the spontaneous formation of 

surface cracks caused by the contraction of the surface layers. The volumetric 

contraction at the surface again would introduce stresses and enhance vulnerability to 

cracking. The relevance of this mode of densification is currently under investigation, 

however, it appears conclusive that non-chemically assisted densification could not be a 

contributor to the cracking. 

 

(iii) Rationalizing Pattern formation 

The possible modes of transformation proposed to rationalize the topology 

included; spatially organized pitting or damage to the surface as a result of chemical 

oxidation from above or within; an oxidation-mediated phase separation or a 

combination of the two mechanisms. 

It is well established that oxidative degradation of isotactic polypropylene initiates 

in the crystalline interphase and spreads out the amorphous region where oxygen can 

diffuse easily. While chemical oxidation is clearly involved, preferential chemical 

etching of the surface, or exit of degradation products from within, by themselves 

cannot be responsible. Indeed, the FTIR profile of showed a gradual increase of the 

carbonyl signals, whereas, the SEM images clearly pointed to a delayed and dramatic 

change of topology (Figure 3.23). If selective chemical etching or any form of material 

loss were truly operative, then a gradual change of topology would be expected to occur 

in time as opposed to a sudden change. In this respect, a quick phase separation would 

be more consistent with the observations.  
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Figure 3.23 Comparison of SEM micrographs(left) and FTIR(right) of time course 

samples. 

 

Scanning electron micrographs of oxidized melt blown (Figure 4.13.A and Figure 

4.13.B) showed the development of material formation above the surface of the melt 

blown polypropylene fibers following oxidation. The material formed above the surface 

also has a sponge-like appearance (Figure 4.13.C). SEM micrographs taken after 

rinsing proved that the material on the surface not adsorbed on the surface. SEM-EDS 

result showed that the material formed above the surface was another phase different 

than the fiber and contained oxygen functional groups indicating that the surface was 

enriched in one component and the composition near the surface is different than the 

bulk.  

The fact that the topology changed dramatically late in the oxidation process and a 

different phase having lower surface energy formed on the surface indicated oxidation 

induced, surface-phase separation as a possible mechanism for the topology change. 

The formation of a layer containing functional groups is consistent with the surface 

segregation and uphill diffusion phenomena in surface-directed spinodal decomposition 

and micro-phase separation in diblock copolymers.  
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The formation of the material above the surface can be attributed to surface 

segregation as result of free energy trade-off. The driving force for the segregation of 

oxidized material to the surface of polypropylene may be related to the lowering 

system’s free energy that is possible by having a larger concentration of the material of 

low surface energy at the surface. Another possible explanation for material formation 

above the surface could be up-hill diffusion. The mutual diffusion of a polymer mixture 

is important for the mechanism that is operative in the unstable part of the phase 

diagram. During up-hill diffusion material diffuses from regions of low concentration to 

high concentration, thus the depleted region is made deeper and deeper and a second 

layer of higher concentration is formed near the surface. However, surface energy 

differences are by no means the only factor determining the extent of surface 

degradation, so the free energy cost also should be taken into account.  

Micro-phase separation in  diblock copolymers is another possible explanation for 

the pattern formation. In the case of diblock copolymers, consisting of two sub-chains a 

and b made of different monomers A and B respectively, even a weak repulsion 

between unlike monomers induces a strong repulsion between sub-chains. As a result, 

different sub-chains tends to segregate below some temperature, but as they are 

chemically bonded, even a complete segregation cannot lead to a macroscopic phase 

separation as in mixtures of two polymers. Only a local micro-phase separation occurs 

and micro-phases rich in A or B are formed. There is a close connection between  

spinodal decomposition and diblock copolymer micro-phase separation and it is 

established that different mesoscale structures are observed depending the ratio of block 

sizes. 

 To summarize the results of the initial investigation, the pattern noted was likely 

a product of chemical oxidation induced phase separation by surface directed spinodal 

decomposition mechanism and release of internal stress that had accumulated during 

oxidation. The presence of a surface profoundly modified the mechanism of phase 

separation and the course of spinodal decomposition, by breaking the translational and 

rotational symmetry. Material diffused from regions of low concentration to high 

concentration, thus the depleted region is made deeper and deeper and; in the presence 

of a surface with a preferential attractive interaction for one of the component to the 

surface, a second layer of higher concentration is formed near the surface.  
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3.6 Conclusion 

In this work, revised methods to engineer polypropylene surface were investigated 

using aqueous ammonium peroxydisulfate. The scanning electron micrographs showed 

that the oxidation process not only yielded polar functional groups along the new 

surface, but more importantly, it produced dramatic changes of topology on the order of 

the mesoscopic length scale. A preliminary objective was to characterize the surface-

pendant functional group composition and new topology, since either factor is known to 

govern wetting-related adhesivity. More importantly, potential explanations for the 

oxidation-induced pattern formation were proposed and discussed. While the specific 

mechanism leading to this change of topology remains outstanding, noteworthy 

candidates include modes of pitting or rupture of the surface in a spatially regular 

manner, oxidation-mediated phase separation, or a combination of both elements. 

Clearly, an understanding of the mechanism underlying this new topology could 

potentially introduce promising alternatives of achieving physico-chemically engineered 

surfaces and chemically active surfaces. 
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