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ABSTRACT 
 
 
 
 

This study describes the use of a four-core optical fiber for the first time for 

measurements of three-dimensional rigid-body shapes. A fringe pattern, which was 

generated by the interference of four wavefronts emitted from the four-core optical fiber, 

was projected on an object’s surface. The deformed fringe pattern containing the 

information of the object’s height was captured by a digital CCD camera. The two-

dimensional Fourier transformation was applied to the image, which was digitized by using 

a frame grabber. After filtering this data in its spatial frequency domain by applying a 

bandpass filter, the two-dimensional inverse Fourier transformation was applied. A phase-

unwrapping algorithm was applied to convert this discontinuous phase data to a continuous 

one. Finally, the shape information of the object was determined. The two-dimensional 

Fourier transformation analysis used in this study permitted a better signal separation and a 

better noise reduction. Compared to other optical profilometry techniques, which are based 

on fiber optics, the use of a four-core optical fiber in this study ruled out the necessity for 

using a fiber coupler and the alignment of fiber ends. Thus, it increased the compactness 

and the stability of the fringe projection system. 
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ÖZET 
 
 
 
 

Bu çalışma, literatürde ilk kez dört-çekirdekli bir fiber optik kablo kullanarak üç 

boyutlu katı cisimlerin şekilllerinin nasıl ölçüleceğini tarif etmektedir. Fiber optik kablodan 

çıkan ve küre biçiminde olan dört adet özdeş ışık dalgasının girişimi sonucu, düzenli bir 

yapıda ışık saçakları(deseni) oluşturulmuş ve bu düzgün desen, katı bir cisimin üzerine 

tutulmuştur. Bu düzenli ışık deseni, cisimin yüksekliğinden dolayı bozulmuş, ve cismin 

şeklini içeren bu bilgi bir dijital kamera kullanılarak görüntülenmiştir. Görüntülenen bu 

resim bir görüntü yakalama kartı ile dijital bilgi haline getirilmiş ve ardından bu bilginin iki 

boyutlu Fourier dönüşümü alınmıştır. Uzaysal frekans bölgesinde, sadece belli frekans 

bandlarını geçiren bir filtre kullanarak, cisimin yüksekliğini barındıran frekans bandı izole 

edilerek, ve bu bilginin iki boyutlu ters Fourier dönüşümü alınmıştır. Elde edilen faz 

bilgisinin düzenli aralıklarla yaptığı faz atlamaları bir faz çözme algoritması kullanarak 

düzenli hale getirilmiştir. Böylece, cisimin üç boyutlu şekli bu düzenli faz bilgisi ışığında 

açığa çıkmıştır. Bu çalışmada kullanılan iki boyutlu Fourier dönüşümü, sinyalin daha iyi 

ayrılmasına ve parazitinin azalmasına yol açmıştır. Diğer fiber optik tabanlı yüzey kesit 

ölçüm teknikleri ile karşılaştırıldığında, bu çalışmada  kullanılan dört çekirdekli fiber optik 

kablo, optik sinyali eşit olarak bölen fiber optik kuplör devre elemanının kullanılması  ve 

fiber uçlarının hizalanması zorunluluğunu ortadan kaldırmış, ve böylece kullanılan yüzey 

ölçüm sistemi daha ufak ve daha kararlı hale gelmiştir. 
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1  INTRODUCTION 
 
 
 
 

Measurement has always played a vital role in history, since it has been the basis for 

successful trade and commerce. It drives the continuous development of science, 

technology and industrial production. The invention of the laser in 1958 [1] signaled a leap 

ahead in measurement science, promoting the development of novel techniques that exploit 

the wave nature of light. Optical profilometry, which is one of these techniques, is a non-

invasive and a highly accurate 3-D object shape mapping one.  Such a technique has many 

applications, say, in industrial automation, quality control and robot vision, etc.  There are 

many 3-D optical sensing methods that use structured light pattern, which include the 

Moiré topography [2, 3], phase measurement profilometry [4], spatial phase detection [5], 

and the Fourier Transform Profilometry (FTP) [6, 7]. 

 

In this work, FTP technique is employed to process the structured light pattern. The 

light pattern is generated using a four-core optical fiber for the shape measurements of 

various rigid-bodies.  As it is known that in the FTP method, a grating pattern is projected 

onto an object surface, and the deformed fringe pattern, which contains information of the 

object’s surface topography, is Fourier transformed.  After filtering the Fourier transformed 

data in its spatial frequency domain and applying the inverse Fourier transform, the shape 

information of the object is determined.  Compared to a 1-D Fourier transform, it was 

shown that the FTP method can be refined by applying a 2-D Fourier transform [8] – used 

in this work here – which permits a better separation of the desired depth information 

components from those unwanted ones.  In addition, only one or two deformed fringe 

patterns are sufficient to apply the FTP technique for a real-time data acquisition process. 
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The use of fiber optics is a preferable way in many 3-D optical mapping systems, 

since it permits the optical setup to be more compact and more stable compared to other 

fringe projection systems.  In optical profilometry techniques, which are based on fiber 

optics, fringe patterns are produced by interference of two separate waveguide fiber optic 

point sources [9-11].  Construction of such a two-fiber optic source has requirement of 

using a fiber coupler.  The two individual fiber ends of a 2x2 (or 1x2) fiber coupler must be 

carefully aligned and fixed together to control polarization for increasing the visibility of 

interference fringes.  External disturbing factors such as vibration or thermal fluctuations 

may change the orientation and the distance of these fiber ends with respect to each other; 

thus may result in a poor fringe visibility and distortion of the fringe pattern.  A poor fringe 

visibility limits the resolution of the system.  The necessity for using a fiber coupler and the 

alignment of fiber ends can be ruled out by using a two-core or a multicore optical fiber, 

which also reduces the system’s cost and its bulkiness.  Gander et al [12] carefully 

demonstrated that a four-core optical fiber could be employed in a two-axis bend 

measurement. In addition, a two-core optical fiber was used in construction of an optical 

probe for flow measurement in a biomedical application [13]. 

 

In this work, for the first time, the use of a four-core optical fiber is demonstrated in 

an optical profilometry system for 3-D shape measurements.  The fringe pattern generated 

by interference of four wave fronts emitted from each core of a four-core optical fiber is 

projected on the object surface.  The deformed fringe pattern containing the object’s 

topography is 2-D Fourier transformed.  After filtering in its spatial frequency domain via a 

2D Hanning window and applying the inverse Fourier transform, the surface topography of 

the object is easily determined.  The results show that the proposed interferometric scheme 

is promising for 3D measurements and its sensitivity can be further developed by 

manufacturing suitable multicore optical fibers. 

 

Chapter 2 of the thesis provides some further background about surface profiling by 

interferometry, Fourier transform profilometry and describes the phase unwrapping 

procedure in detail. Chapter 3, first of all, gives an overview of the Fourier Transform 

Method of a two-point source and then introduces the detailed fringe analysis of a four-core 
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optical fiber. Chapter 4 gives a detailed description of the conducted experiment and shows 

some sample results. This is followed by a discussion of the system performance. Finally, 

Chapter 5 presents the conclusions and the suggestions for future work. 



 4

 
 
 
 
 
 

2  REVIEW 
 
 
 
 

The shape and the texture of the surface have a great impact on the performance of 

the functional applications, for example in the fields of friction, wear, lubrication, painting, 

bearing surfaces, biomedical, optics, integrated circuits etc. [14]. Creating perfect textures 

and shapes on such applications requires some precise ways of measuring the shape of 

these objects. Analysis of surface topography has therefore attracted much attention and has 

long been in use by both industry and academia. It must be here mentioned that the surface 

topography has gone by several names such as 3-D surface mapping [15], profilometry 

[16], range imaging [17], depth mapping [17], etc, and these names are interchangeably 

used in the literature. 

 

The surface profiling systems can be broadly categorized into two categories, 

contact and non-contact measurements. 3D mapping systems based on contact 

measurement are also known as stylus-based systems. For many years, they have been the 

most widely used instruments in industry, especially in the automotive and metal-related 

industries. However, there is a strong tendency towards using non-contact measurement 

devices because of the great advantages associated with them. Unlike their contact 

counterparts, no physical contact is made with the specimen, which in turn avoids damage 

to the surface. Another advantage of non-contact measurement devices is that they have a 

higher vertical resolution than stylus-based ones; however it must be noted that their 

measurement range is smaller than stylus ones. Therefore, non-contact measurement 

systems are particularly preferable in areas, such as in optics, integrated electronic circuits 

and painting, where high precision is indispensable.  
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2.1  Surface Profiling by Interferometry 

 
 

For many decades, optical interferometry has been used to measure the profile of an 

object [18] and a vast number of different kinds of interferometers have been developed 

[18, 19]. However, until the mid-1970s, these interferometric techniques were impractical 

since a large amount of human operators were required to input the great number of 

measurements by hand and also to assess these numbers appropriately.  By the exponential 

growth in the power of digital computers with great image processing capabilities, optical 

interferometry has turned out to be one of the most popular profiling techniques used to 

measure 3-D surface topography. Interferometric devices are now routinely employed in 

some applications, such as profiling optical components and magnetic tapes [20-22].  

 

The basic concept of interferometry is to measure phase differences between two 

interfering light waves. If the crest of one wave overlaps with the trough of the other, the 

interference is destructive and the waves cancel out. In contrast, if two crests or two troughs 

coincide, i.e. constructive interference, the waves strengthen each other. Then, as shown in 

Figure 2.1, an optical fringe pattern with parallel bright and dark bands is generated. 

 

 
Figure 2.1. Representative fringe pattern with parallel bright and dark bands 

 

The spatial relation between the two beams gives detailed information about the 

topography of the surface. In fact, if an ideally flat surface were measured with an 

interferometer, the fringes in the obtained interferograms would be straight-lined and 

equally spaced from each other. If the surface being measured had a characteristic 
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topography, for example, not a flat one, the fringe pattern would be deformed and each 

undulations of this pattern would reveal the peaks and valleys of the profile of the tested 

object. Therefore, the aim of interferometric instruments is to interpret the deformed fringe 

pattern and assess this data to produce the 3-D surface topography. 

 

There are a large number of commercial interferometers, which are used in industry 

and academia. In terms of their profiling mechanisms, these devices can be classified in two 

main categories. The interferometers in the first category, such as Michelson, Fizeau, Mirau 

and Linnik, measures surface topography height directly. The second-class interferometers, 

for example, Nomarski interferometer, measure the slope of the surface. The former group 

interferometers have the benefit of getting surface height directly; however, they are very 

sensitive to mechanical vibration, air turbulence and temperature fluctuations. The second-

class interferometers – Nomarski type- has the advantage of being sensitive to surface 

height variations and less influenced by environmental vibration.  

 

In recent years, some interferometric techniques, such as, phase shifting [23, 24], 

Fourier transform profilometry [6, 7], heterodyne [25, 26], common-path polarization [27], 

differential interference contrast [28] and scanning differential interferometry [29, 30] have 

led to the development of new surface profiling instruments.  

 
 

2.2  Fourier Transform Profilometry 

 
 

Amongst non-contact 3-D surface topography methods, Fourier transform 

profilometry is a popular one, where a Ronchi grating or sinusoidal grating pattern is 

generated and projected onto a three dimensional surface. Then, the deformed fringe 

pattern, which contains the object’s topography information, is captured by a Charge 

Couple Device (CCD) camera. This digital data is Fourier transformed and a suitable 

bandpass filter is applied in spatial frequency domain. After applying inverse Fourier 

transform, the discontinuous phase data is obtained. Finally, the shape information can be 

decoded by a phase unwrapping algorithm, which is necessary to convert this discontinuous 

phase to a continuous one. The phase unwrapping procedure and the detailed algorithm of 
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Fourier transform profilometry will be discussed further in Section 2.3 and in Section 3.1, 

respectively. 

 

This elegant procedure was proposed as an alternative to Moiré contouring 

technique by Takeda et al. [6, 7] in 1982. The inspiration of the FTP stemmed from the 

observation that Moiré contouring technique was originally developed for fringe analysis 

by human observation rather than computer processing which in turn resulted in a great 

number of cumbersome requirements. Compared with the Moiré technique, FTP has a 

much higher sensitivity and can accomplish fully automatic distinction between a 

depression and an elevation on the object surface. It has no requirement for assigning fringe 

orders or fringe center determination, and interpolating data between contour fringes 

because it gives height distribution at every pixel over the entire fields. Moreover, FTP 

technique is free from errors induced by spurious Moiré fringes produced by the higher 

harmonic components of the grating pattern [6, 7]. 

 

When compared to other widespread techniques, for example, the phase-measuring 

profilometry (PMP) and modulation measurement profilometry (MMP), FTP requires only 

a single fringe pattern, which makes real-time data and dynamic data processing possible. 

Unlike FTP, PMP and MMP algorithms have the necessity of many fringe pattern images, 

which must be captured in a mechanically and optically stable environment during the time 

the phase is introduced. This is generally accomplished either by mechanically moving a 

mirror, or by some electro–optic device, which in turn increases the cost and bulkiness of 

the system.  

 

Although several advantages of FTP technique have been mentioned here, the 

requirement of relatively long computation time and the need for manual intervention in the 

filtering and unwrapping operations can be considered as the main shortcomings of this 

method. 

 

After Takeda et al. the FTP method has been extensively studied by many groups. 

Bone et al. refined this method by applying 2-D Fourier transform which permits better 
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separation of the desired depth information components from unwanted noises than a 1-D 

transform [8]. This technique has been further developed by filtering the frequency domain 

via a 2-D Hanning window which provided a better separation of the height information 

from noise when speckle-like structures and discontinuities exist in the fringe pattern [31]. 

FTP based on time delay and integration (TDI) camera can be used to measure 360o shape 

[32]. To sum up, with the development of high resolution CCD cameras and personal 

computers with high computational performance, FTP has become an essential 3-D surface 

topography measurement method.  

 
 

2.3  Phase Unwrapping 

 
 

A generalized expression for an interferogram, i.e. the recorded intensity image, can 

be written as 

 

 ( ) ( ) ( ) ( )yx,yx,byx,ayx,I φcos+=  (2.1) 

 

where a(x, y) is the slowly varying background intensity, b(x, y) is the intensity modulation 

and φ(x, y) is the phase related to the physical quantity being measured. All these method 

give rise to an equation of the form 

 

 
⎟
⎠

⎞
⎜
⎝

⎛= −

D
C1tanθ  (2.2) 

 

here C and D are functions of the recorded intensity from a set of interferograms.  

 

Since the inverse tangent function will give phase values in the range –π ≤ φ ≤ π, the 

solution for φ is a saw-tooth function, and then discontinuities occur every time φ changes 

by 2π. The term “phase unwrapping” takes place because the final step in the fringe pattern 

measurement procedure is to unwrap the phase along a line (or a path) counting the 2π 
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discontinuities and adding 2π each time the phase angle jumps from 2π to zero or 

subtracting 2π if the change is from zero to 2π. Figure 2.2 summarizes this process. 

 

 
Figure 2.2. Illustration of Phase Unwrapping process 

 

The unwrapping problem is trivial for phase maps calculated from good fringe data, 

so that the simple procedure explained above, i.e. detecting the phase jumps and integrating 

them, will be adequate for these consistent phase maps. However, we do not live in a 

perfect world. Low signal-to-noise ratio of the image caused by electronic noise or speckle 

noise, violation of the Nyquist sampling condition, and object discontinuities may lead to 

the false identification of phase jumps. Therefore, several sophisticated phase unwrapping 

algorithms have been developed for automatically detecting and compensating for these 

problems, some of which will be summarized in the following section. It is obvious from 

this discussion that phase unwrapping is a generic class of problem, fundamental to the 

calculation of all interferograms involving the interference of two sinusoidal waves. 

 
 
 

 

 



 10

2.3.1  Phase Unwrapping Techniques 

 
 

The basic principle of phase unwrapping is to ‘integrate’ the wrapped phase data 

along a path, which was firstly proposed by Itoh [33]. As long as the route does not pass 

through a phase discontinuity, this procedure is independent of the route chosen. Thus, the 

success of phase unwrapping underlies in the route chosen. The logical extension of this 

fact is to integrate the phase along all possible paths between any two points. In this 

context, the phase unwrapping methods may be divided into two categories: path-dependent 

methods and path-independent methods. 

 
 
2.3.1.1  Path-dependent methods 

 
A sequential scan through the wrapped phase data can be considered as the simplest 

of all other phase unwrapping algorithms. In this approach, a 2-D data set is treated like a 

folded 1-D data set. However, this path-dependent approach is successful when applied to 

high-quality data. In the presence of noise, more sophisticated algorithms are necessary, 

such as, spiral scanning by Vrooman and Mass [34], multiple scan directions by Robinson 

and Williams [35], and counting around defects by Huntley [36].  

 

Schorner et al. [14] proposed pixel queuing method for avoiding phase errors 

propagating through the data array. In this method, the regions of small phase gradients and 

low noise data are unwrapped first, so that data propagation errors are confined to small 

regions. 

 

Another path-dependent procedure is to divide the image into segments containing 

no phase ambiguities (Kwon et al. [37]) or to segment the data array into square tiles or 

sub-arrays (Towers et al. [38]). Then the phase information at the edges of neighboring 

regions are compared and arranged based on the difference value that most edge pixels 

agree on. 
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2.3.1.2  Path-independent Methods 

 
The term path independent phase unwrapping can be used to describe a method that 

unwraps the data by following all possible paths between any two points(to verify 

consistent phase loops) or a method that takes a global view of the data, unwrapping it in a 

way that is not dependent on the route taken through the data array. 

 

Almost all path-independent methods unwrap the data by all possible paths between 

any two points to provide consistent phase loops. One popular path-independent method is 

based on cellular automata, proposed by Ghiglia et al. [39]. “Cellular automata are simple 

discrete mathematical systems that can exhibit complex behavior resulting from the 

collective effects of a large number of cells, each of which evolves in discrete time steps 

according to simple local neighborhood rules.” This definition, which is quoted from 

Ghiglia, is a brief summary of cellular automata concept: the phase data of each pixel is 

modified based on the phase values of its neighbors. After several iterations, when one 

comes to a point where further repetitions do not change the array further, then the phase 

image converges to a steady state. Although this algorithm is robust and intensive, it is, 

however, very immune to noise and computationally expensive. It is required to do several 

thousand iterations through the array to unwrap even simple phase maps.  

 

A radically different technique, global feedback approach, to path-independent 

phase unwrapping algorithms has been proposed by Green and Walker [40]. Instead of 

analyzing individual pixels, they proposed that a global view of the image can be taken as 

to the presence of discontinuities in the array. The underlying assumption in this method is 

that unwrapped phase arrays do not have sharp discontinuities in the array. This approach is 

analogous to a human observer adding arbitrary phase step functions to the examined data 

until the result ‘seems smooth and continuous to the eye’. This approach appears to be 

successful when detecting one or two missed phase fringes in a substantially unwrapped 

data region. 
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3  THEORETICAL ANALYSIS 
 
 
 
 

Before introducing basic mathematical model of interference pattern generated by a 

four-core optical fiber and its related Fourier Transform Profilometry algorithm, first of all, 

it would be instructive to briefly review the fringe analysis method generated by a two-

point optical source.  This shall allow us to form a relationship between the location of the 

fringes and surface profile. Then, a detailed theoretical analysis of a four-point source, 

which is squarely arranged, will be given. 

 
 

3.1  Fourier Transform Method of a Two-point source 

 
 
Figure 3.1 shows a simplified geometry to build a relationship between the object’s surface 

topography and the phase of the fringe pattern. As seen in Fig. 3.1, laser beams from the 

fiber ends act as two mutually coherent point sources. They will produce a system of 

alternating bright and dark bands, i.e. Young’s interference fringes on the screen, which can 

be shown in Figure 2.1. Neglecting the time dependency and avoiding a reference phase, 

the intensity distribution across the surface can be written as [41] 

 

 
( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= θθ

λ
δπ sin),(cos2cos12 0 yxzx
f

I yx,I  (3.1) 

 

here I0 is the intensity from one fiber, δ is the separation between fiber ends, λ is the 

wavelength of operation,  f is the distance between the fiber ends and object surface, and θ 

is the illumination angle. Our aim is to determine z(x, y), since this parameter basically 

gives us the variations in the object surface as a function of x and y; in other words,  
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z(x, y) provides us the surface topography of the object in concern. 

 

 
Figure 3.1. Optical geometry of a two-point source interferometric system 

 

Equation 3.1 can be written more conveniently for the purpose of Fourier fringe analysis as, 

 

 [ ] [ ])2(exp),(*)2(exp),(),(),( 00 xuiyxcxuiyxcyxayxI ππ −++=  (3.2) 

 

where  

 

 
[ ]),(exp),(

2
1),( yxiyxbyxc φ=  

(3.3) 

 

 
θ

λ
δ cos0 f

u =  
(3.4) 

 

and symbol * denotes complex conjugate. 

The Fourier transformation of the recorded intensity in Equation 3.2 gives 
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),(*),(),(),( 00 vuuCvuuCvuAvuI ++−+=  (3.5) 

 

where A(u,v) and C(u,v) represent Fourier spectra of a(x,y) and c(x,y), respectively.  Since 

spatial variations of a(x,y), b(x,y) and φ(x,y) change slowly, compared to spatial frequency 

u0, Fourier spectra A(u, v), C(u-u0, v), and C*(u+u0, v) are separated from each other by the 

carrier frequency u0 (see Figure 3.2).  One of the sidelobes is isolated and translated by u0 

towards the origin as shown in Figure 3.2.  A(u, v) and C*(u+u0, v) are eliminated by 

bandpass filtering.  Next, by applying the inverse Fourier transform, the complex function 

c(x,y) is obtained.   

 

 
Figure 3.2. Separated Fourier spectra of a two-point source’s fringe pattern 

 

The phase may then be determined by two equivalent operations. In the first one a complex 

logarithm of c(x,y) is calculated 

 

 ( )[ ] [ ] ),(),(21log,log yxiyxbyxc φ+=  (3.6) 
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Then, the phase in the imaginary part is completely separated from the amplitude variation 

b(x, y) in the real part. In the second one, which is more commonly used, the phase is 

obtained by 

 

 

( )[ ]
( )[ ]⎭⎬

⎫

⎩
⎨
⎧

= −

yxc
yxcyx

,Re
,Imtan),( 1φ  

(3.7) 

 

where Im[c(x,y)] and Re[c(x,y)] designate imaginary and real parts of c(x,y), respectively.  

Since phase is wrapped into the range from –π to +π, a phase-unwrapping algorithm is 

necessary to correct these 2π phase jumps.  Finally, the relationship between the surface 

topography, that is, variations in height of the object as a function of x and y, and phase can 

be calculated by Equation 3.8 as 

 

 
),(

sin2
),( yxfyxz φ

θπδ
λ

=  
(3.8) 

 
 

3.2  Fringe Analysis of a Four-core Optical Fiber 

 
 
3.2.1  Fourier Transform Method of a four-core optical fiber 

 
 

In the section, the detailed theoretical analysis of the Fourier Transform 

Profilometry for a four-point source is given for the first time. This analysis consists of the 

mathematical formulation of interference fringe pattern, intensity distribution across the 

surface and phase modulation algorithm. Finally, it is shown that FTP algorithm can also be 

applied as well as for a four-core optical fiber. 
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3.2.1.1  Two-dimensional Fringe Pattern 

 
In this study, unlike all the other conventional two source interferometric techniques 

which examine a stripe pattern consisting of dark and bright bands, the analyzed fringe 

pattern at this time is a two-dimensional spots pattern. The difference of these fringe pattern 

shapes can be easily seen in Figure 3.3. It is possible to obtain various types of fringe 

patterns by possible configurations of multiple coherent sources in space.  

 

 
Figure 3.3. Comparison of fringe patterns 

 

This two-dimensional spots pattern is generated by using a four-core optical fiber 

which was developed by HesFibel Ltd., Kayseri, Turkey [42].  A cross-sectional picture of 

the four-core optical fiber is shown in Figure 3.4. The fiber has four guiding cores, 

surrounded by a single cladding, which are squarely arranged and each core acts as an 

independent waveguide.  In Figure 3.4, the air holes are a result of manufacturing process 

and are not aimed for any special purposes.  
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Figure 3.4. Cross-sectional picture of the cleaved face of the four-core optical fiber 

 

Figure 3.5 shows a fringe pattern which is generated by the interference of four light beams 

emitted from the four-core optical fiber and its 2-D Fourier spectrum.  In Figure 3.5, zero-

frequency term is omitted on purpose to indicate the details of the spectrum more clearly.  

 

 
Figure 3.5. Non-deformed fringe pattern and its 2-D Fourier spectrum without zero 

frequency term 

 

The six possible couplings of the four fiber cores located at the corner of a square 

generate four different superimposed interferograms- electronic recording of the optical 

interference pattern.  Referring to Figure 3.6, the pairings of the cores 1-2 and 3-4 generate 
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one vertical interferogram, which correspond side lobe C; the pairings of the cores 1-3 and 

2-4 generate one horizontal interferogram (side lobe D); and the pairings of the cores 1-4 

and 2-3 generate two sets of different diagonal interferograms which correspond side lobes 

E and F, respectively. Superimposing of these six interferograms generate the two-

dimensional fringe pattern shown in Figure 3.5. The aim of this experiment is properly 

extraction of the phase information from these sidelobes in the frequency domain.  

 

 
Figure 3.6. Generated interferograms of a four-core optical fiber 
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3.2.1.2  Intensity Distribution Analysis across the surface 

 

The algorithm of Fourier transform profilometry requires the intensity distribution 

across the surface seen by camera. After Fourier transformation of this function in its 

spatial domain, the side lobe containing the phase information can be further processed. As 

seen in Figure 3.7, the four-point optical sources are located at the corners of a square.  The 

sources are designated as s1, s2, s3, and s4 in the (ρ-η) plane. Each adjacent source is 

separated by the distance of δ. The four monochromatic waves, which are inherently 

coherent, are superimposed in the (x-y) plane producing a two-dimensional interference 

pattern.  

 

 
Figure 3.7. Optical geometry of the four-point source and the interference point, P(x,y) 

 

According to the Superposition Principle, the total electric field vector of a four-point 

source at point P(x,y) in Figure 3.7 can be written as [43] 

 

 4321 EEEEE
rrrrr

+++=  (3.9) 
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Considering only relative irradiances within the same medium, the time average of the 

magnitude of the electric field vector squared gives the intensity distribution as [43] 

 

 

 
T

EI 2
r

=  (3.10)

 

Then, the intensity distribution across the surface for θ=0 can be written as 
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here I0 is the intensity from one source, 
λ
π2

=k is the propagation constant, where λ is the 

wavelength, θ is the illumination angle (in this case θ is zero), and f1,  f2,  f3,  f4  are distances 

from the four point sources to the object plane which are shown in Figure 3.7.  In the 

Cartesian coordinate system, these distances can be calculated as 

 

 ( ) ( )[ ] 2
1

222 zyxf iii +−+−= ρη  (3.12)

 

where i = 1, 2, 3, 4 

Equation 3.12 can be written more conveniently as 
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where  
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For a very large distance, z >> (η, ρ, x, y)max, Equation 3.13 can be approximated to 

binomial expansion as 

 

 
f

yx
f

ff iiii
i

ρηρη +
−

+
+=

2

22

 (3.15)

 

After calculation of each distance difference, Equation 3.11 can be written as 
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If we appropriately substitute Equation 3.8 into Equation 3.16 by considering the optical 

geometry in Figure 3.1, we obtain Equation 3.17, which is the intensity distribution across 

the surface seen by camera of a four-point optical source arranged in a square. 

 

 

( ) ( )

( ) ( ) ⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

yyxzx
f

yyxzx
f

y
f

yxzx
f

IyxI

θθ
λ
δπθθ

λ
δπ

λ
δπθθ

λ
δπ

sin),(cos2cossin),(cos2cos

2cos2sin),(cos2cos222, 0

 (3.17)

 
 
3.2.1.3  Phase Extraction  

 
For the purpose of Fourier fringe analysis, the intensity distribution function seen by 

camera, given in Equation 3.17, can be written more conveniently as 



 22

 

( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]yuxuiyxfyuxuiyxf

yuxuiyxeyuxuiyxe
yuiyxdyuiyxd

xuiyxcxuiyxcyxayxI

0000

0000

00

00

(2exp,*(2exp,
(2exp,*(2exp,

2exp,*2exp,
2exp,*2exp,,),(

′−−+′−
+′+−+′+

+′−+′
+−++=

ππ
ππ

ππ
ππ

 (3.18)

 

where '
0u  is the carrier frequency without θ component and the two-dimensional Fourier 

transform of I(x, y), denoted ℑ{I(x, y)}, is defined by the equation [44] 
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After two-dimensional Fourier transformation of each component in Equation 3.18 by 

applying the general formula given in Equation 3.19, the Fourier transformation of the 

recorded intensity distribution is given by 
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where A, C, C*, D, D*, E, E*, F, and F*  represent the Fourier spectrum of a, c, d, e, and f, 

respectively. 

In this work, the fringe pattern was projected onto the object surface in such a way 

that only the vertical interferogram contained the object’s height information as a function 

of x and y (i.e., z(x,y)).  Then, if we study only the vertical interferogram and its related 

Fourier spectra component (that is, C(u-u0, v) term in Eq. (10)), the Fourier fringe analysis 

of a four-point source reduces to that of the two-point sources’ case, which is described 

above.  By applying an appropriate window, C(u-u0, v) term containing data on the object’s 

surface topography is isolated and translated by u0 towards the origin.  Other spectral 
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components are eliminated by bandpass filtering.  After inverse Fourier transformation, the 

phase data is obtained.  A phase-unwrapping procedure is necessary to convert this 

discontinuous phase to a continuous one.  Finally, the phase information of the object is 

extracted using Equation 3.8.  

 
 
3.2.2  Spherical Distortion Analysis of the Fringe Pattern 

 
 

Two-dimensional interference pattern of a four-core optical fiber has an inherent 

spherical distortion, which results in the misalignments of fringes. Although this error is 

almost not observable in the central portion of the pattern, it attains its maximum value at 

the outer edges. Hence, before using a multiple source, especially for a high precision 

application, one must carefully examine the intrinsic spherical distortions of the fringe 

pattern at the design stage. 

 

The intensity distribution across the surface including the spherical distortion can be written 

by Equation 3.16 here. It should be noted that the camera has no effect in this analysis. 

Thus, the viewing angle (θ) and the phase term (φ) in Equation 3.16 is omitted.  
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Equation 3.21 can be written more conveniently as 
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Thus, from Equation 3.22, we obtain 
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This gives the position of the pth and rth bright fringes on the screen.  

where 
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Here, it can be easily seen that the reason behind the shift of the fringe pattern from the 

desired square pattern to the spherical one is that xpr and ypr terms are the inputs of fpr. In 

case of a two-source case, only xpr term would be a variable of fpr, which in turn would 

result in a less distortion shift - from a stripe pattern to an ellipsoidal one.  

 

After solving Equations 3.23 and 3.24, the locations of the bright fringes are obtained by 
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From the above equation, it is seen that the fringe pattern will be squared, only when the 

following condition is satisfied 

 

 2
max

2
max rp +>>

λ
δ

 (3.26) 



 25

 

Since, the relationship between the separation distance of the sources (δ) and the operating 

wavelength (λ) must be satisfied in the above equation, then, it is safe to say that the 

spherical distortion is an inherent problem. Moreover, the above result is not dependent on 

the distance of operation. If the desired square locations of the spots are taken as 
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finally, by comparing Equation 3.25 with Equation 3.27, the spot position errors can be 

found as 
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For a 5x5 experimentally analyzable fringe pattern, operating wavelength λ of 632.8 nm, 

and an effective adjacent core separation of 30 µm, then the maximum spherical distortion 

error can be calculated as 0.01 mm, which can be considered as not a notable effect on the 

performance of this system. 

 
 
3.2.3  Number of Fringes 

 
 

In optical profilometry systems, fringe number in an interference pattern has an 

important effect in terms of inspectable area and sensitivity of the system. Here, the 

calculation of the fringe number for a four-point source arranged in a square will be 

demonstrated. 
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The numerical aperture (NA) is a characteristic parameter of an optical fiber, which is 

defined by [43] 
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2
2
1 nnNA −=  (3.29) 

 

where n1 and n2 are the refractive indices of the core and cladding of the optical fiber, 

respectively. 

Not all source radiation can be guided along an optical fiber. Only rays falling 

within a certain cone at the input of the fiber can normally be propagated through the fiber. 

This issue is the same for the output of an optical fiber. Therefore, the output light from an 

optical fiber has a fixed angle of illumination (κ) which depends on the numerical aperture 

of the fiber and the refractive index of the launching medium (i.e., the refractive index of 

the air, which is one). This is illustrated in the following equation by 

 

 ( )NAarcsin=κ  (3.30) 

 

In this study, the two-dimensional fringe pattern is a result of the overlapping of four 

wavefronts emitted from the four-core optical fiber. 

The illumination area of each core in the object plane (i.e., (x, y) plane) can be given by  
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The acceptance angle κ is quite small for typical single mode optical fibers, for example, in 

our case κ = 0.14 radians. Therefore, the following approximation can be used in this 

analysis 
 

 kk ≈tan  (3.32) 

 

Then, the overlapping area A (that is, A1 ∩ A2 ∩ A3 ∩ A4) can be calculated as  
 

 

( )
⎭
⎬
⎫

⎩
⎨
⎧ −≤+= 22222

2
1tan, δκzyxyxA  

 
 

( )
⎭
⎬
⎫

⎩
⎨
⎧ −≤+≈ 22222

2
1, δκzyxyxA  

(3.33) 

 

Since z >>δ, the above formulation can be further simplified as 

 

 ( ){ }2222, κzyxyxA ≤+≈  (3.34) 

 

then the following relation is found 
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here max(xp0) and max(y0r) are the spot locations at the edge of the interference pattern, 

which has N × N number of fringes. These spot positions can be calculated from Equation 

3.27 by setting 
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Nnp ==  (3.36) 

 

Then, the following relation is obtained 

 
 

xNxpx p ∆=∆=
2maxmax0  

 
 

yNyry r ∆=∆=
2maxmax0  

(3.37) 

 

After substituting Equation 3.27 and Equation 3.37 into Equation 3.35, finally the desired 

number of fringe relation is obtained 

 

 
λ

δκ 2
≤N  (3.38) 

 

For an effective adjacent core separation δ of 30 µm, acceptance angle κ of 0.14 radians, 

and an operating wavelength of λ =632.8 nm, the number of fringe can be approximately 

calculated as nine.  
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4  EXPERIMENT 
 
 
 
 

4.1  Equipment 

 
 
4.1.1  Laser 

 
 

The light source was a 17mW CW (continuous wave) He-Ne laser (Melles Griot 05-

LHP-925, USA) which has an output of 632.8 nm red light. It produces linearly polarized 

light, which has a coherence length of 30 cm. The laser beam has a divergence of 0.83 

mrad. This type of He-Ne laser was preferred for this study, since its output beam has a 

high power, a low divergence angle, and a high coherence length, which are the most 

important factors affecting the performance of an optical profilometry system. 

 
 
4.1.2  Camera 

 
 

The deformed fringe patterns were captured by a Charge Couple Device (CCD) 

camera (Redlake Inc. Kodak Megaplus 1.6i, USA). It is a high-resolution (1534 x 1024-

pixel array with 9 x 9-µm square pixels) CCD camera with a 10-bit digital output and an 

internal thermal electric cooling. The camera’s high resolution and controllable exposure 

time capabilities provided high quality digital images. Therefore, in this work, the 3-D 

mapping data values of an object were less affected by noise, which in turn resulted in 

highly reliable results. 
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4.1.3  Frame Grabber 

 
 

The video signal from CCD camera was received and digitized by using a frame 

grabber (Epix Inc. PIXCI D2X, USA) which is a 32-bit PCI bus master board.  

 
 
4.1.4  Optical Fiber 

 
 

The single mode four-core optical fiber was manufactured in HesFibel Ltd., 

Kayseri, TURKEY. Each fiber core has a diameter of 10.6 µm and the adjacent center-

center core separation is 40.6 µm. The cut-off wavelength of each core is about 1250 nm. 

The cores are surrounded with a 125 µm single cladding.  

 
 
4.1.5  Optical Components 

 
 
4.1.5.1  Mirror 

 
The laser beam was directed by a broadband aluminum coated mirror (Thorlabs Inc. 

PF-10-03-F01, USA). The mirror has a 25.4 mm diameter and about 90% reflection at 

632.8 nm. 

 
 
4.1.5.2  Plano-Convex Lens 

 
To provide constant fringe spacing, a plano convex collimating lens (Thorlabs Inc. 

LA1229, USA) was used. The lens has a diameter of 25.4 mm and a clear aperture of >90% 

with a focal point of f =175 mm which has a tolerance of ±1%. 

 
 
4.1.5.3  CCD Lens 

 
The deformed fringe pattern images were carried on the CCD chip with the aid of a 

macro-lens (Computar MLH-10X, USA) which has a focal point of 130 mm.  
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4.1.6  Nanopositioning Stage 

 
 

The laser beam was launched into the fiber cores by a nanopositioning stage (Melles 

Griot 17 AMB 003/MD, USA). 

 
 
4.1.7  Fiber Rotator 

 
 

The fiber ends was rotated by a fiber rotator (Thorlabs Inc. MDT718-125, USA) to 

orient the fringe pattern in such a way that it will be congruent with the object plane. 

 
 
4.1.8  Computer 

 
 

The digitized images were processed by a personal computer, which has a 2.4 GHz 

Pentium class CPU, and a 512 MB of RAM.  

 
 
4.1.9  Software 

 
 

All data processing operations, such as Fourier transformation or phase unwrapping,  

were done by a software program (MathWorks Inc. Matlab Version 6.5.0.180913a (R13), 

USA). 

 
 

4.2  Experimental Setup 

 
 

The experimental setup used for surface profilometry measurement is shown in Fig. 

4.1. Linearly polarized light from a 35 mW HeNe laser of wavelength 632.8 nm was 

launched into all four cores of an optical fiber simultaneously. 
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Figure 4.1. Schematic diagram of the experimental setup 

 

A three-axis nanopositioning stage was used to launch the laser light beam into the cores 

for an evenly launching of optical power and also preventing the optical losses at the cores’ 

entry.  An even coupling to four cores simultaneously was essential for a good contrast of 

the fringe pattern; otherwise, the visibility of the fringe pattern would be poor if the optical 

power coupling was not uniform for all fiber cores.  In addition, the four cores are carefully 

located at the corner of a square during the manufacturing process [42] to allow a 

maximum fringe contrast (i.e., to obtain the highest possible fringe visibility).  Each fiber 

core diameter was 10.6 µm and the adjacent core separation was 40.6 µm; measured using 

an optical microscope.  Each core, accommodated within ~125 µm common single 

cladding, had a cut-off wavelength of about 1250 nm, acted as an independent waveguide.  

The length of the four-core fiber was approximately 40 cm.  The fringe pattern was formed 

by the interference of four wavefronts emitted from the fiber cores acting as independent 

point sources.  The four fiber cores had a mutual coherence with each other due to a 

simultaneous illumination of the common HeNe laser source (see Figure 4.1).  A careful 

cleaving of the fiber-end was performed to minimize the optical path difference between 

the four-waveguide sources. The four-core fiber end was placed at the focal point of a plano 
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convex collimating lens of  focal point of  f =175 mm, thus a constant fringe spacing was 

provided.  The far-distance fringe pattern was checked carefully over 5 m to ensure that the 

fiber-end was precisely located at the lens’ focal point.  The centre of curvature of the 

plano-convex lens was placed in the direction of the focus and the conjugate ratio was 

adjusted to approximately 5:1 to minimize the spherical aberration. The deformed fringe 

pattern was captured by a CCD camera with a bit depth of eight for faster memory access in 

the computer. A macro-lens of 130 mm focal point, which had a format larger than that of 

the CCD’s chip, was employed with the camera to enhance the optical performance of the 

system. Diffraction patterns caused by dust particles on lenses and mirrors were eliminated 

by carefully cleaning them by methanol. The CCD camera was located at a viewing angle 

of θ =15o in order to increase the magnitude of reflected light towards the camera and to 

reduce the signal fades due to shadowing effects on the object surface which would result 

in problematic effects in the phase unwrapping algorithm.  A frame grabber was used to 

receive and digitize the signal from the CCD camera.  The digitised pixels were collected 

by a personal computer for further Fourier fringe processing by using Matlab software 

program. Then, the deformed fringe pattern images were 2-D Fourier transformed.  The 

spectral side-lobe containing information on the object’s surface topography was filtered by 

a 2-D Hanning window as seen in Figure 4.2.   

 
Figure 4.2. Two-dimensional Hanning window 
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After applying the inverse 2-D Fourier transform, the wrapped phase data was obtained.  A 

phase-unwrapping algorithm, similar to method proposed by Itoh [33], was applied to 

convert this discontinuous phase to a continuous one.  Finally, the surface profile of the 

object was determined from Equation 3.8. 

 
 

4.3 Results 

 
 

Various types of test objects were profiled using the four-core optical fiber 

interferometric system.  A few of them will be demonstrated in this section. The profiled 

first two objects are a flat plate with a 2 mm step, and a board marker, respectively.  

These two objects have well known dimensions in order to compare both real dimensions 

and the experimental results. The other profiled objects were a triangular shaped paper, a 

piece of sandstone and a sculptured head object.  

 
 

4.3.1  Reconstruction of a flat plate with a 2 mm step 

 
 

The first test object is a flat plate with a 2 mm step in the upper right corner. The 

deformed fringe pattern of the object is shown in Figure 4.3(a).  A 2D Fourier transform 

spectra of the test object without zero frequency –that is, to demonstrate the clarity of the 

graph- and the reconstructed surface of the object are shown in Figure 4.3(b) and Figure 

4.3(c), respectively.  Side lobe D in Figure 4.3(b) was analysed by filtering it out by means 

of applying a 2D Hanning window and the inverse Fourier transform to reconstruct the 

surface topography to the object as shown in Figure 4.3(c).  As seen in Figure 4.3(c), the 

measured profile corresponds quite well to the object’s actual profile.  
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Figure 4.3. (a) Projected fringe pattern of a flat plate with a 2 mm step in the upper right 
corner; (b) 2D Fourier spectra of the test object without zero frequency.  The analysed side 
lobe is D as shown in figure; (c) reconstructed surface of the object. 
 

The relationship between the height of an object and its unwrapped phase data was given in 

Equation 3.8. Taking the derivative of this equation with respect to φ gives the following 

relation 

 

 

θπφ sin2
0P

d
dz

=  (4.2) 

 

where P0 is the fringe spacing defined by 

 

 
δ
λfP =0  (4.2) 

 

here λ is the operating wavelength, f is the distance between the fiber-ends and object 

surface, and δ is the separation between the cores. 
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Equation 4.1 gives the rate of change of surface height with respect to phase change. The 

resolution then can be determined if the detectable phase difference is known. In the ideal 

case, the minimum detectable phase difference should be 2π/256, since all the deformed 

fringe pattern images presented here were taken by an 8-bit digitizer. However, because of 

a considerable signal to noise ratio in the system, the number of gray levels between the 

peak and valleys of the fringe pattern were about 100. Therefore, the minimum detectable 

phase difference was 2π/100. Then by using Equation 5.1, the system resolution R can be 

calculated as [10] 

 

 

θsin100
0P

R =  (4.3) 

 

For the viewing angle θ of 15o and the fringe spacing P0 of 4.01 mm, the system resolution 

can be approximately found as 0.15 mm. 

 
 
4.3.2  Reconstruction of a board marker 

 
 

The second example is a board marker of 14.4 mm radius of circle; its projected 

fringe pattern and the reconstructed surface map are seen in Figure 4.4.   

 
Figure 4.4. (a) Projected fringe pattern of a board marker which has a 14.4 mm circle of 
radius; (b) reconstructed surface of the object. 
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A cross section through the point of maximum surface height from the reconstructed 

surface can be seen in Figure 4.5.   

A comparison of the results shows that the root-mean-squared (rms) error is 0.4 

mm, or 11.3% of the object depth; which is in good agreement with the relationship exists 

between the number of fringes and rms error [45].  This error figure seems to be quite high 

in terms of performance of the system, when compared to similar results in previously 

published work [9-11]. The reason is due to the number of interference fringes being small 

(i.e., 7-8) and fringe spacing being more than it is desired.  However, these are the 

preliminary results and are aimed to prove that the proposed four-core fiber scheme in 

optical profilometry is promising.  The error margin can be easily reduced to, say, around 

2% by redesigning the four-core fiber for desired number of fringes, fringe spacing and the 

wavelength of illumination.  Another point is that the determination of the phase becomes 

very noise sensitive at the edges of the image due to this small number of fringes.  Thus 

causing some kind of noticeable distortions at the edges of the reconstructed surface of the 

objects (see Figure 4.3(c) and Figure 4.4(b)). Therefore the number of fringes must be 

increased and the fringe spacing must be decreased in order to prevent these shape 

distortions and improve the sensitivity of the system.  Choosing a larger distance of centre-

to-centre fiber core separations (e.g., ∼100 µm) can easily resolve such problems.  A design 

example of multi-core fibers is given below in the discussion section of the results. 
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Figure 4.5. Comparison between a cross-section of the reconstructed surface with a circle 
of a radius 14.4 mm. The rms error is 0.4 mm. 
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4.3.3  Reconstruction of a triangular shaped paper 

 
 

Another test object is a piece of paper which is folded into a triangular shape, as 

shown in Figure 4.6(a).  The deformed fringe pattern is shown in Figure 4.6(b).  Figure 

4.6(c) shows the reconstructed surface of this object. 

 

 

 
Figure 4.6. (a) Triangular shape object; (b) projected fringe pattern; (c) reconstructed 
surface of the object. 
 
 
 

4.3.4  Reconstruction of a piece of sand-stone 

 
 

As it is known that the speckle noise is surface dependent, and it increases 

significantly if one works with coarse objects due to usage of a coherent HeNe laser source.  

In other words, optically rough surfaces limit the resolution of the systems in optical 

profilometry techniques. In this experiment, the objects were profiled by a 2-D Fourier 

transformation and a 2-D Hanning filtering to reinforce the frequencies around the carrier 

frequency u0 -as expressed in Equation 3.20- and attenuate the rest more as the distance 
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from u0 is increased. The frequencies caused by speckle-like structure and the 

discontinuities can be minimised with this procedure [8, 31]. A piece of sand-stone that has 

an optically rough surface was purposely chosen to see if the method which is described 

above works for speckle-like objects or not. The piece of sand-stone and its analyzed 

surface can be seen in Figure 4.7(a). The deformed fringe pattern is shown in Figure 4.7(b). 

As it can be seen in Figure 4.7(c), the surface of this object was successfully profiled in 

spite of the speckle noise presented in the system. 

 

 

 

 
Figure 4.7. (a) A piece of sand-stone and the outlined area shows the analysed surface; (b) 
projected fringe pattern; (c) reconstructed surface of the object. 
 
 

 

4.3.5  Reconstruction of a sculptured head object 

 
 

Another example is a small sculptured head object; its inspected area can be seen in 

Figure 4.8(a).  The corresponding deformed fringe pattern and the reconstructed surface is 

seen in Figure 4.8(b) and Figure 4.8(c), respectively.  
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Figure 4.8. (a) Sculptured head object and the outlined area shows the analysed surface; (b) 
projected fringe pattern; (c) reconstructed surface of the object. 

 

 

In relation to the selected object, it must be noted that this FTP technique was 

employed for various stone monuments of Roman Age in The National Museum of 

L’Aquila, Italy to assess the deteriorating action on these cultural objects [46]. 

 

As a final note, the results presented here show that such a method can be applied to 

relatively flat objects but we should be aware that a more sophisticated phase unwrapping 

algorithm might be necessary if the test object has discontinuities, for example, holes, 

shaded regions and cracks which may result in an abrupt phase change (larger than π) in the 

measurement. 
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4.4  Discussion 

 
 

As explained above, the interference pattern was simply generated by coupling a 

HeNe laser beam into the cores of a four-core optical fiber located within a single cladding.  

The size and the cost of the system were reduced without having needed an optical fiber 

coupler, which is a requirement for producing multiple coherent sources in fiber optic 

interferometric systems to produce interference patterns.  In this experimental setup, there 

was no requirement for an alignment or rotation of fiber ends with respect to each other to 

control polarization, which is a problematic procedure in other fiber optic based 

interferometric profilometry systems.  The use of four cores and the consequent 

miniaturisation and compactness provided a highly visible fringe pattern, which is an 

important factor in terms of resolution of the system.  The fixed core separation also 

resulted in a stable fringe pattern which makes it a candidate for in-situ interferometric 

applications in harsh environments. 

The four-core fiber that has been used in this experiment has core separations of 

40.6 µm, which resulted in a small number of fringes that we have effectively used (5x5 

fringe pattern) and a large fringe spacing (i.e., 4.01 mm).  Then, the inspectable area was 

limited due to this small fringe number.  The large spacing of the fringes certainly 

decreased the sensitivity of the system.  This problem can be resolved easily by choosing a 

larger separation of the cores, or alternatively, using smaller wavelengths for forming the 

fringe patterns.  The four-core fiber was originally designed at the fiber telecommunication 

wavelengths, 1.3 µm and 1.55 µm.  Therefore, each guiding fiber’s (i.e., core’s) cut-off 

wavelength was above the operating wavelength of 632.8 nm, that is, due to a large core 

diameter, which resulted in higher order guided modes.  Bending the fiber at several points 

along its length terminated these modes. Such bending also decreased the number of fringes 

from a 9x9 pattern to a 6x6 one.  It would have been more useful to design this four-core 

fiber with smaller core diameters and large core separations to overcome all these problems 

mentioned above.  For example, in order to obtain more precise results for similar 

applications, it might be designed a four-core or a two-core fiber in a 125 µm single 

cladding with a mode field diameter of 4 µm (for an operating wavelength of 630 nm) and a 

centre-to-centre core separation of 105 µm.  As it was given in Equation 3.38, the number 



 42

of fringes is directly proportional to the fiber core separations, numerical aperture and the 

illumination wavelength λ.  It would be possible to obtain approximately 30 analysable 

fringes for the two-core fiber and 30x30 fringe pattern for the four-core fiber, with a 2.1 

mm fringe spacing for an object distance of 0.35 m.  Since the numerical aperture and the 

illumination wavelength were fixed for fiber cores in the interferometric system in concern, 

the only variable parameter that affects the fringe number is the core separation.  Such a 

large separation of the cores would certainly increase the sensitivity of the multicore fiber 

interferometric system approximately by five times. 
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5  CONCLUSION 
 
 

This research demonstrated for the first time the use of a four-core optical fiber for 

measurements of three-dimensional object shapes using the Fourier transform profilometry 

method.  The structured light pattern was produced by the interference of four wave fronts 

emitted from each core of a four-core optical fiber. The generated interference pattern was 

projected on the object surface by an optimum illumination angle considering the 

shadowing effects. The optical setup was arranged in such geometry that only the two 

vertical interferograms of the six superimposed ones contained the object’s height 

information. The deformed fringe pattern containing the object’s height information was 2-

D Fourier transformed.  In the frequency domain, the side-lobe related the vertical 

interferogram was isolated via a 2D Hanning window and translated towards origin. After 

inverse Fourier transformation, the phase data was obtained. Then, this discontinuous phase 

data was converted to a continuous one by a phase-unwrapping algorithm. The shape of the 

object was determined by using the geometrical parameters of the setup. Various types of 

test objects were reconstructed by the given procedure above. The system had a depth of 

resolution of about 0.15 mm and the root-mean-squared error of 0.4 mm. With the aid of 

given theoretical analysis and acquired experiences so far, it was shown that this error can 

be compensated easily by redesigning the four-core fiber by choosing a larger distance of 

centre-to-centre core separations. 

The main advantage of the proposed system can be considered as ruling out the 

necessity for using a fiber coupler, in an optical profilometry system, for multiple sources 

generation. Moreover, alignment and fixation procedure of sources are also eliminated by 

this system which in turn resulted in the high fringe visibility. The results show that the 

proposed interferometric scheme significantly reduces the system’s cost and its bulkiness, 

and also increases its stability. Hence, it is promising for 3D measurements and its 

sensitivity can be further developed by manufacturing suitable multicore optical fibers. 
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5.1  Suggestions for Future Work 

 
 

In the light of given theoretical analysis, a four-core optical fiber can be redesigned 

to give a satisfactory performance for an optical profilometry system. Then, a sophisticated 

phase unwrapping algorithm might be developed which can benefit from all six 

superimposed interferograms projected on the object. 

This type of multicore fiber can also be used in the applications of the fields of 

interference lithography and laser ablation. It is possible to obtain various symmetries and 

shapes by designing the cores in a specific geometry. Therefore, in a single exposure step, 

various two-dimensional periodic patterns can be created by using a multicore fiber. 

Moreover, the ability to introduce phase shifts through a little bending [12] may 

allow the multicore fibers to be potential candidates for structural health monitoring 

applications.  
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