

DESIGN AND REALIZATION OF A HIGH SPEED 64 X 64 – BIT

MULTIPLIER FOR LOW POWER APPLICATIONS

by

BERİL SEDA ÇİFTÇİ

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2003

DESIGN AND REALIZATION OF A HIGH SPEED 64 X 64 – BIT

MULTIPLIER FOR LOW POWER APPLICATIONS

APPROVED BY:

 Assoc. Prof. Dr. Yaşar GÜRBÜZ …………………….

 (Thesis Supervisor)

 Assist. Prof. Dr. Ayhan BOZKURT …………………….

Assist. Prof. Dr. Erkay SAVAŞ ……………………..

DATE OF APPROVAL: ………………………….

 Beril Seda Çiftçi 2003

All Rights Reserved

To my parents

 v

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Yaşar Gürbüz, for his

guidance, patience and encouragement throughout my research at Sabancı University.

His contributions and helpful comments enabled me to study more efficiently. I also

would like to thank my co-advisor, Assist. Prof. Ayhan Bozkurt, for his suggestions and

help.

I am grateful to Tuğba Demirci for sharing her all design experience with me,

answering my endless questions patiently and for her great friendship. Without her

efforts, I could have never succeeded in the end.

It was a great pleasure to work with all colleagues at Microelectronics Group. I

would like to thank Alper Emrah Üstünay, Aylin Ekşim, İhsan Çiçek, Mansoor Naseer

and Mustafa Parlak for their valuable contributions, friendship and support.

I would like to present my thanks to four special friends, Fatma Tepiroğlu,

Nihan Erol, Serdar Köroğlu and Verjin Karaoğlu, who have always been by my side

whenever I need them, from the very first day we have known each other. I’m thankful

for their unconditional love, trust and encouragement. I cannot imagine a life without

them.

I also wish to acknowledge all the faculty members, graduate students and other

individuals who have contributed to me during the period of my study at Sabancı

University. Especially, I would like to thank Arif Volkan Vural, Ayça Çeşmelioğlu,

Ekim Özaydın, Hacı Murat Özdemir, İpek Uzpeder, Özhan Öztürk, Sercan Uslu, Şenay

Mihçin, Yeşim Müge Şahin and Zafer Gürel for their intimate friendship. Also, thanks

to my late night workmates, Alper Gür, Ayşe Kıvılcım Coşkun, Didem Türker, Dilber

Ece Gamsız, Erdinç Öztürk and Özkan Öztürk, who gave me the courage and support

that I needed at the hardest aspects of my project.

Furthermore, I feel very lucky to have three precious friends in Sabancı

University; I would like to thank Hakan Göl, Mustafa Kerem Darıcı and Nuri Mehmet

Gökhan, for their invaluable friendship and for being my never-ending source of

motivation.

Finally, I will forever be grateful to my parents for their unconditional endless

love and for giving me the best of everything in the world. I would like to express my

appreciation, especially to my mother, for all their sacrifices and efforts. Without their

love and encouragement, all I could have achieved would be a complete failure.

 vi

DESIGN AND REALIZATION OF A HIGH SPEED 64 X 64 – BIT MULTIPLIER

FOR LOW POWER APPLICATIONS

ABSTRACT

Wireless communication systems, including third generation cellular radio

systems and wireless LANs, have become tremendously popular in recent years. These

systems can be implemented using various platforms, like digital signal processors,

ASICs and FPGAs. Most digital signal processing systems incorporate a multiplication

unit to implement algorithms such as correlations, convolution, filtering and frequency

analysis. These algorithms are used in applications such as finite impulse filters (FIR),

infinite impulse filters (IIR), discrete cosine transforms (DCT) and fast Fourier

transforms (FFT). Moreover, there has been a rapid increase in the popularity of

portable and wireless electronic devices, like laptop computers, portable video players

and cellular phones, which rely on embedded digital signal processors. Since the desire

is to design digital systems for communication applications at best performance without

power sacrifices, the need for high performance and low power multipliers is inevitable.

Since multiplication is one of the most critical operations in many computational

systems, there have been many algorithm proposals in the literature to perform

multiplication, each offering different advantages and having tradeoffs in terms of

speed, circuit complexity, area and power consumption. This thesis focuses on an ASIC

implementation of a multiplexer-based multiplication method, an efficient algorithm

which is applicable to low power applications. Recently, it has been proved that the

multiplexer-based multiplier outperforms the modified Booth multiplier both in speed

and power dissipation by 13% to 26%, due to small internal capacitance. After

analyzing the performance characteristics of conventional multiplier types, it is

observed that the one designed using multiplexer-based multiplication algorithm is

more advantageous, especially when the size of the multiplied numbers is small. In

order to verify the superiorities of this algorithm, we performed an implementation, in

which the bit size of the multiplicand and the multiplier is comparably large. Thus,

 vii

realization of a 64 x 64–bit multiplier block has been done in 0.35µ CMOS technology

using Cadence Design Framework tools. The final multiplier structure operates at

12.8ns with an approximate dynamic power consumption of 1mW. Also, using the same

algorithm, another block of 32-bit x 32-bit multiplier is designed and is sent for

fabrication.

 viii

ÖZET

Üçüncü nesil hücresel radyo sistemleri, kablosuz yerel bölge ağları gibi telsiz

haberleşme sistemleri son yıllarda büyük önem kazanmıştır. Bu sistemler, sayısal işaret

işlemciler, uygulamaya özgün tümdevreler (ASIC) ve alan-programlanabilir mantıksal

kapı dizileri (FPGA) gibi ortamlar kullanılarak gerçekleştirilebilir. Temeli çarpma

işlemine dayanan korelasyon, konvolüsyon, filtreleme ve frekans analizi gibi

haberleşme algoritmalarının gerçeklenmesi amacıyla, sayısal işaret işlemcilerin çoğunda

bir çarpma bloğu bulunur. Bu algoritmalar sonlu ve sonsuz dürtü yanıtlı süzgeçler,

ayrık kosinüs dönüşümleri ve hızlı Fourier dönüşümleri gibi uygulamalarda yaygın

olarak kullanılmaktadır. Bununla birlikte, tümleşik sayısal işaret işlemcilerle çalışan

dizüstü bilgisayarlar, kablosuz video oynatıcıları ve cep telefonları gibi

taşınabilir elektronik tüketim mallarına olan rağbet hızla artmaktadır.

Telekomünikasyon uygulamalarında hedef, güç tüketiminden ödün vermeden en yüksek

performansta çalışan sayısal devre tasarımı gerçekleştirmek olduğundan, yüksek

hızlı ve az güç tüketen çarpma devrelerine olan ihtiyaç kaçınılmazdır.

Çarpma, sayısal sistemlerin çoğunda yer alan en kritik işlemlerden biri

olduğundan, tarihte çarpma işlemini gerçeklemeye yarayan ve farklı hız, alan, güç

tüketimi ve devre karmaşıklığı özelliklerine sahip olan pek çok algoritma önerilmiştir.

Bu tez, düşük güç tüketimli devreler için elverişli bir algoritma olan çoğullayıcı tabanlı

çarpma yönteminin tümdevre (ASIC) uygulamasını içermektedir. Küçük iç kapasite

özelliğinden dolayı, çoğullayıcı tabanlı çarpıcıların Booth çarpıcılarından hız ve güç

tüketimi bağlamında %13 ila %26 oranında daha üstün olduğu teorik olarak

kanıtlanmıştır. Klasik çarpma devrelerinin performans karakteristikleri incelendiğinde

de, çoğullayıcı tabanlı çarpma algoritmasıyla tasarlanmış devrelerin, özellikle küçük

sayılarla işlem yaptığında, daha avantajlı olduğu görülmüştür. Bu algoritmanın

üstünlüklerini doğrulamak ve diğer yapılarla kıyaslamak amacıyla, daha büyük sayılarla

 ix

çalışan bir uygulama ele alınmıştır. Bu amaçla, 64 x 64 - bitlik bir çarpma bloğunun

tasarımı 0.35µ CMOS teknolojisinde Cadence tasarım programı kullanılarak

gerçeklenmiştir. Elde edilen yapı 12.8ns'lik gecikme süresi ile çalışmakta olup statik

güç tüketimi yaklaşık olarak 1mW olarak bulunmuştur. Ayrıca, üretim amacıyla yine

aynı algoritma kullanılarak 32 x 32 – bitlik bir çarpma bloğu daha tasarlanmıştır.

 x

TABLE OF CONTENTS

1. INTRODUCTION ..1

1.1. Design Considerations in Integrated Circuits ..2

1.2. Why Low Power ..2

1.3. Thesis Outline ..3

2. THEORY OF MULTIPLICATION ALGORITHMS...4

2.1. Multiplier Structure..4

2.1.1. Partial Product Generation ...5

2.1.2. Partial Product Reduction ..6

2.1.2.1. Array Style Reduction ...7

2.1.2.2. Wallace Tree Partial Product Reduction ..7

2.1.2.3. Partial Product Reduction using Booth Recoding.........................10

2.2. Advanced Structures in Parallel Multipliers..12

2.2.1. Baugh-Wooley Multiplier ..12

2.2.2. 4:2 Compressor..15

2.2.3. Hitachi's Multiplier ..17

2.2.4. Inoue's Multiplier...17

2.3. Multiplier Power Reduction ...18

2.3.1. Logic Level Multiplier Optimization..18

2.4. Multipliers' Comparison...19

3. MULTIPLEXER-BASED MULTIPLICATION ..21

3.1. Introduction to the Algorithm...21

3.2. Multiplexer Based Multipliers ..23

3.2.1. Circuit Structure ..23

3.2.2. Comparison of Various Multipliers ..25

3.2.3. Modification for Two's Complement Numbers27

4. DESIGN OF DIGITAL BLOCKS..28

4.1. Full Adder Design..28

 xi

4.2. Multiplexer Design ..33

4.3. Carry Lookahead Design..37

4.4. Comparison of Multipliers' Simulation Results...40

4.5. Design of 64 x 64-bit Multiplier Block...48

5. CONCLUSION ...52

6. REFERENCES ...53

 xii

LIST OF TABLES

Table 2.1 Booth recoding ..12

Table 2.2 Explanations of the Booth recoding table ...12

Table 2.3 Pros and cons table for various multiplication algorithms.............................20

Table 3.1 Truth table for Zj..22

Table 3.2 Number of gates and transistors for various types of circuits26

Table 3.3 Circuit complexity comparison of various multipliers26

Table 3.4 Operation time comparison of various multipliers ..27

Table 4.1 Truth table for the full-adder circuit ...29

Table 4.2 Simulated dynamic performance characteristics of one-bit full-adder30

Table 4.3 Simulated dynamic performance characteristics of 18-T one-bit full-adder ..33

Table 4.4 Truth table for 4-to-1 multiplexer...34

Table 4.5 Simulated dynamic performance characteristics of 4-1multiplexer36

Table 4.6 Simulated dynamic performance characteristics of two-bit CLA39

Table 4.7(a) Performance characteristics of simulated 4x4-bit multiplier blocks41

Table 4.7(b) Improvement table of 4x4-bit multiplexer-based multiplier over other

multiplier types ...42

Table 4.8(a) Performance characteristics of simulated 8x8-bit multiplier blocks43

Table 4.8(b) Improvement table of 8x8-bit multiplexer-based multiplier over other

multiplier types ...44

Table 4.9(a) Performance characteristics of simulated 16x16-bit multiplier blocks45

Table 4.9(b) Improvement table of 16x16–bit multiplexer-based multiplier over other

multiplier types ...46

Table 4.10(a) Performance characteristics of simulated 32x32-bit multiplier blocks47

Table 4.10(b) Improvement table of 32x32–bit multiplexer-based multiplier over other

multiplier types ...48

 xiii

LIST OF FIGURES

Figure 2.1 Digital multiplication flow..4

Figure 2.2 Partial product generation example ...5

Figure 2.3 Array partial product reduction ...7

Figure 2.4 Wallace tree partial product reduction...8

Figure 2.5 An 8 x 8–bit Dadda multiplier example ..9

Figure 2.6 Unsigned multiplication..13

Figure 2.7 Two’s complement multiplication...13

Figure 2.8 Baugh-Wooley two’s complement multiplication14

Figure 2.9 Modified Baugh-Wooley two’s complement multiplication15

Figure 2.10 4–to–2 compressor..16

Figure 2.11 Logic diagram of the 4–to–2 compressor (4W) unit16

Figure 2.12 Organization of Hitachi’s multiplier..17

Figure 3.1 Two-bit carry propagate adder ..23

Figure 3.2 Four-bit carry propagate adder..23

Figure 3.3 Multiplexer-based multiplication algorithm ..24

Figure 3.4 Multiplexer-based parallel multiplier ..24

Figure 3.5 Circuit structures of Cell-I and Cell-II blocks ...25

Figure 4.1 Transistor-level schematic of conventional CMOS 28-T one-bit full-adder .29

Figure 4.2 Simulated input and output waveforms of the designed 28-T full-adder

circuit. …. ...30

Figure 4.3 Layout view of the designed one-bit full-adder ...31

Figure 4.4 Transistor-level schematic of optimized 18-T CMOS full-adder circuit.......32

Figure 4.5 Simulated input and output waveforms of the designed optimized 18-T full-

adder circuit ..32

Figure 4.6 Layout view of the designed 18-T one-bit full-adder...................................33

Figure 4.7 Gate-level schematic of 4-1multiplexer...34

Figure 4.8 Transistor-level schematic of 2-1multiplexer ..35

 xiv

Figure 4.9 Schematic of 4-1multiplexer ...35

Figure 4.10 Simulated input and output waveforms of the multiplexer circuit36

Figure 4.11 Layout view of the designed 4-1 multiplexer ..37

Figure 4.12 Schematic view of the designed two-bit CLA circuit.................................39

Figure 4.13 Simulated input and output waveforms of the two-bit CLA circuit39

Figure 4.14 Layout view of the designed CLA...40

Figure 4.15 Schematic view of the Cell-I Block...49

Figure 4.16 Layout view of the Cell-I Block..49

Figure 4.17 Schematic view of the Cell-II Block ...49

Figure 4.18 Layout view of the Cell-II Block ..50

Figure 4.19 Core layout of the 64 x 64–bit multiplier block ...50

Figure 4.20 Layout of 32 x 32–bit multiplier block..51

DESIGN AND REALIZATION OF A HIGH SPEED 64 X 64 – BIT

MULTIPLIER FOR LOW POWER APPLICATIONS

by

BERİL SEDA ÇİFTÇİ

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2003

DESIGN AND REALIZATION OF A HIGH SPEED 64 X 64 – BIT

MULTIPLIER FOR LOW POWER APPLICATIONS

APPROVED BY:

 Assoc. Prof. Dr. Yaşar GÜRBÜZ …………………….

 (Thesis Supervisor)

 Assist. Prof. Dr. Ayhan BOZKURT …………………….

Assist. Prof. Dr. Erkay SAVAŞ ……………………..

DATE OF APPROVAL: ………………………….

 Beril Seda Çiftçi 2003

All Rights Reserved

To my parents

 v

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Yaşar Gürbüz, for his

guidance, patience and encouragement throughout my research at Sabancı University.

His contributions and helpful comments enabled me to study more efficiently. I also

would like to thank my co-advisor, Assist. Prof. Ayhan Bozkurt, for his suggestions and

help.

I am grateful to Tuğba Demirci for sharing her all design experience with me,

answering my endless questions patiently and for her great friendship. Without her

efforts, I could have never succeeded in the end.

It was a great pleasure to work with all colleagues at Microelectronics Group. I

would like to thank Alper Emrah Üstünay, Aylin Ekşim, İhsan Çiçek, Mansoor Naseer

and Mustafa Parlak for their valuable contributions, friendship and support.

I would like to present my thanks to four special friends, Fatma Tepiroğlu,

Nihan Erol, Serdar Köroğlu and Verjin Karaoğlu, who have always been by my side

whenever I need them, from the very first day we have known each other. I’m thankful

for their unconditional love, trust and encouragement. I cannot imagine a life without

them.

I also wish to acknowledge all the faculty members, graduate students and other

individuals who have contributed to me during the period of my study at Sabancı

University. Especially, I would like to thank Arif Volkan Vural, Ayça Çeşmelioğlu,

Ekim Özaydın, Hacı Murat Özdemir, İpek Uzpeder, Özhan Öztürk, Sercan Uslu, Şenay

Mihçin, Yeşim Müge Şahin and Zafer Gürel for their intimate friendship. Also, thanks

to my late night workmates, Alper Gür, Ayşe Kıvılcım Coşkun, Didem Türker, Dilber

Ece Gamsız, Erdinç Öztürk and Özkan Öztürk, who gave me the courage and support

that I needed at the hardest aspects of my project.

Furthermore, I feel very lucky to have three precious friends in Sabancı

University; I would like to thank Hakan Göl, Mustafa Kerem Darıcı and Nuri Mehmet

Gökhan, for their invaluable friendship and for being my never-ending source of

motivation.

Finally, I will forever be grateful to my parents for their unconditional endless

love and for giving me the best of everything in the world. I would like to express my

appreciation, especially to my mother, for all their sacrifices and efforts. Without their

love and encouragement, all I could have achieved would be a complete failure.

 vi

DESIGN AND REALIZATION OF A HIGH SPEED 64 X 64 – BIT MULTIPLIER

FOR LOW POWER APPLICATIONS

ABSTRACT

Wireless communication systems, including third generation cellular radio

systems and wireless LANs, have become tremendously popular in recent years. These

systems can be implemented using various platforms, like digital signal processors,

ASICs and FPGAs. Most digital signal processing systems incorporate a multiplication

unit to implement algorithms such as correlations, convolution, filtering and frequency

analysis. These algorithms are used in applications such as finite impulse filters (FIR),

infinite impulse filters (IIR), discrete cosine transforms (DCT) and fast Fourier

transforms (FFT). Moreover, there has been a rapid increase in the popularity of

portable and wireless electronic devices, like laptop computers, portable video players

and cellular phones, which rely on embedded digital signal processors. Since the desire

is to design digital systems for communication applications at best performance without

power sacrifices, the need for high performance and low power multipliers is inevitable.

Since multiplication is one of the most critical operations in many computational

systems, there have been many algorithm proposals in the literature to perform

multiplication, each offering different advantages and having tradeoffs in terms of

speed, circuit complexity, area and power consumption. This thesis focuses on an ASIC

implementation of a multiplexer-based multiplication method, an efficient algorithm

which is applicable to low power applications. Recently, it has been proved that the

multiplexer-based multiplier outperforms the modified Booth multiplier both in speed

and power dissipation by 13% to 26%, due to small internal capacitance. After

analyzing the performance characteristics of conventional multiplier types, it is

observed that the one designed using multiplexer-based multiplication algorithm is

more advantageous, especially when the size of the multiplied numbers is small. In

order to verify the superiorities of this algorithm, we performed an implementation, in

which the bit size of the multiplicand and the multiplier is comparably large. Thus,

 vii

realization of a 64 x 64–bit multiplier block has been done in 0.35µ CMOS technology

using Cadence Design Framework tools. The final multiplier structure operates at

12.8ns with an approximate dynamic power consumption of 1mW. Also, using the same

algorithm, another block of 32-bit x 32-bit multiplier is designed and is sent for

fabrication.

 viii

ÖZET

Üçüncü nesil hücresel radyo sistemleri, kablosuz yerel bölge ağları gibi telsiz

haberleşme sistemleri son yıllarda büyük önem kazanmıştır. Bu sistemler, sayısal işaret

işlemciler, uygulamaya özgün tümdevreler (ASIC) ve alan-programlanabilir mantıksal

kapı dizileri (FPGA) gibi ortamlar kullanılarak gerçekleştirilebilir. Temeli çarpma

işlemine dayanan korelasyon, konvolüsyon, filtreleme ve frekans analizi gibi

haberleşme algoritmalarının gerçeklenmesi amacıyla, sayısal işaret işlemcilerin çoğunda

bir çarpma bloğu bulunur. Bu algoritmalar sonlu ve sonsuz dürtü yanıtlı süzgeçler,

ayrık kosinüs dönüşümleri ve hızlı Fourier dönüşümleri gibi uygulamalarda yaygın

olarak kullanılmaktadır. Bununla birlikte, tümleşik sayısal işaret işlemcilerle çalışan

dizüstü bilgisayarlar, kablosuz video oynatıcıları ve cep telefonları gibi

taşınabilir elektronik tüketim mallarına olan rağbet hızla artmaktadır.

Telekomünikasyon uygulamalarında hedef, güç tüketiminden ödün vermeden en yüksek

performansta çalışan sayısal devre tasarımı gerçekleştirmek olduğundan, yüksek

hızlı ve az güç tüketen çarpma devrelerine olan ihtiyaç kaçınılmazdır.

Çarpma, sayısal sistemlerin çoğunda yer alan en kritik işlemlerden biri

olduğundan, tarihte çarpma işlemini gerçeklemeye yarayan ve farklı hız, alan, güç

tüketimi ve devre karmaşıklığı özelliklerine sahip olan pek çok algoritma önerilmiştir.

Bu tez, düşük güç tüketimli devreler için elverişli bir algoritma olan çoğullayıcı tabanlı

çarpma yönteminin tümdevre (ASIC) uygulamasını içermektedir. Küçük iç kapasite

özelliğinden dolayı, çoğullayıcı tabanlı çarpıcıların Booth çarpıcılarından hız ve güç

tüketimi bağlamında %13 ila %26 oranında daha üstün olduğu teorik olarak

kanıtlanmıştır. Klasik çarpma devrelerinin performans karakteristikleri incelendiğinde

de, çoğullayıcı tabanlı çarpma algoritmasıyla tasarlanmış devrelerin, özellikle küçük

sayılarla işlem yaptığında, daha avantajlı olduğu görülmüştür. Bu algoritmanın

üstünlüklerini doğrulamak ve diğer yapılarla kıyaslamak amacıyla, daha büyük sayılarla

 ix

çalışan bir uygulama ele alınmıştır. Bu amaçla, 64 x 64 - bitlik bir çarpma bloğunun

tasarımı 0.35µ CMOS teknolojisinde Cadence tasarım programı kullanılarak

gerçeklenmiştir. Elde edilen yapı 12.8ns'lik gecikme süresi ile çalışmakta olup statik

güç tüketimi yaklaşık olarak 1mW olarak bulunmuştur. Ayrıca, üretim amacıyla yine

aynı algoritma kullanılarak 32 x 32 – bitlik bir çarpma bloğu daha tasarlanmıştır.

 x

TABLE OF CONTENTS

1. INTRODUCTION ..1

1.1. Design Considerations in Integrated Circuits ..2

1.2. Why Low Power ..2

1.3. Thesis Outline ..3

2. THEORY OF MULTIPLICATION ALGORITHMS...4

2.1. Multiplier Structure..4

2.1.1. Partial Product Generation ...5

2.1.2. Partial Product Reduction ..6

2.1.2.1. Array Style Reduction ...7

2.1.2.2. Wallace Tree Partial Product Reduction ..7

2.1.2.3. Partial Product Reduction using Booth Recoding.........................10

2.2. Advanced Structures in Parallel Multipliers..12

2.2.1. Baugh-Wooley Multiplier ..12

2.2.2. 4:2 Compressor..15

2.2.3. Hitachi's Multiplier ..17

2.2.4. Inoue's Multiplier...17

2.3. Multiplier Power Reduction ...18

2.3.1. Logic Level Multiplier Optimization..18

2.4. Multipliers' Comparison...19

3. MULTIPLEXER-BASED MULTIPLICATION ..21

3.1. Introduction to the Algorithm...21

3.2. Multiplexer Based Multipliers ..23

3.2.1. Circuit Structure ..23

3.2.2. Comparison of Various Multipliers ..25

3.2.3. Modification for Two's Complement Numbers27

4. DESIGN OF DIGITAL BLOCKS..28

4.1. Full Adder Design..28

 xi

4.2. Multiplexer Design ..33

4.3. Carry Lookahead Design..37

4.4. Comparison of Multipliers' Simulation Results...40

4.5. Design of 64 x 64-bit Multiplier Block...48

5. CONCLUSION ...52

6. REFERENCES ...53

 xii

LIST OF TABLES

Table 2.1 Booth recoding ..12

Table 2.2 Explanations of the Booth recoding table ...12

Table 2.3 Pros and cons table for various multiplication algorithms.............................20

Table 3.1 Truth table for Zj..22

Table 3.2 Number of gates and transistors for various types of circuits26

Table 3.3 Circuit complexity comparison of various multipliers26

Table 3.4 Operation time comparison of various multipliers ..27

Table 4.1 Truth table for the full-adder circuit ...29

Table 4.2 Simulated dynamic performance characteristics of one-bit full-adder30

Table 4.3 Simulated dynamic performance characteristics of 18-T one-bit full-adder ..33

Table 4.4 Truth table for 4-to-1 multiplexer...34

Table 4.5 Simulated dynamic performance characteristics of 4-1multiplexer36

Table 4.6 Simulated dynamic performance characteristics of two-bit CLA39

Table 4.7(a) Performance characteristics of simulated 4x4-bit multiplier blocks41

Table 4.7(b) Improvement table of 4x4-bit multiplexer-based multiplier over other

multiplier types ...42

Table 4.8(a) Performance characteristics of simulated 8x8-bit multiplier blocks43

Table 4.8(b) Improvement table of 8x8-bit multiplexer-based multiplier over other

multiplier types ...44

Table 4.9(a) Performance characteristics of simulated 16x16-bit multiplier blocks45

Table 4.9(b) Improvement table of 16x16–bit multiplexer-based multiplier over other

multiplier types ...46

Table 4.10(a) Performance characteristics of simulated 32x32-bit multiplier blocks47

Table 4.10(b) Improvement table of 32x32–bit multiplexer-based multiplier over other

multiplier types ...48

 xiii

LIST OF FIGURES

Figure 2.1 Digital multiplication flow..4

Figure 2.2 Partial product generation example ...5

Figure 2.3 Array partial product reduction ...7

Figure 2.4 Wallace tree partial product reduction...8

Figure 2.5 An 8 x 8–bit Dadda multiplier example ..9

Figure 2.6 Unsigned multiplication..13

Figure 2.7 Two’s complement multiplication...13

Figure 2.8 Baugh-Wooley two’s complement multiplication14

Figure 2.9 Modified Baugh-Wooley two’s complement multiplication15

Figure 2.10 4–to–2 compressor..16

Figure 2.11 Logic diagram of the 4–to–2 compressor (4W) unit16

Figure 2.12 Organization of Hitachi’s multiplier..17

Figure 3.1 Two-bit carry propagate adder ..23

Figure 3.2 Four-bit carry propagate adder..23

Figure 3.3 Multiplexer-based multiplication algorithm ..24

Figure 3.4 Multiplexer-based parallel multiplier ..24

Figure 3.5 Circuit structures of Cell-I and Cell-II blocks ...25

Figure 4.1 Transistor-level schematic of conventional CMOS 28-T one-bit full-adder .29

Figure 4.2 Simulated input and output waveforms of the designed 28-T full-adder

circuit. …. ...30

Figure 4.3 Layout view of the designed one-bit full-adder ...31

Figure 4.4 Transistor-level schematic of optimized 18-T CMOS full-adder circuit.......32

Figure 4.5 Simulated input and output waveforms of the designed optimized 18-T full-

adder circuit ..32

Figure 4.6 Layout view of the designed 18-T one-bit full-adder...................................33

Figure 4.7 Gate-level schematic of 4-1multiplexer...34

Figure 4.8 Transistor-level schematic of 2-1multiplexer ..35

 xiv

Figure 4.9 Schematic of 4-1multiplexer ...35

Figure 4.10 Simulated input and output waveforms of the multiplexer circuit36

Figure 4.11 Layout view of the designed 4-1 multiplexer ..37

Figure 4.12 Schematic view of the designed two-bit CLA circuit.................................39

Figure 4.13 Simulated input and output waveforms of the two-bit CLA circuit39

Figure 4.14 Layout view of the designed CLA...40

Figure 4.15 Schematic view of the Cell-I Block...49

Figure 4.16 Layout view of the Cell-I Block..49

Figure 4.17 Schematic view of the Cell-II Block ...49

Figure 4.18 Layout view of the Cell-II Block ..50

Figure 4.19 Core layout of the 64 x 64–bit multiplier block ...50

Figure 4.20 Layout of 32 x 32–bit multiplier block..51

 1

1. INTRODUCTION

Arithmetic circuits, like adders and multipliers, are essential components in the

design of communication circuits in ASIC. Recently, an overwhelming interest has been

seen in the problems of designing digital systems for communication systems and

digital signal processing with low power at no performance penalty. To design low-

power high-speed arithmetic circuits requires a combination techniques at four levels;

algorithm, architecture, circuit and system levels. This thesis presents an ASIC

implementation of a multiplication algorithm, which is suitable for high-performance

and low–power applications.

In microprocessors, multiplication operation is performed in a variety of forms

in hardware and software depending on the cost and transistor budget allocated for this

particular operation. In the beginning stages of computer development, any complex

operation was usually programmed in software or coded in the micro-code of the

machine and some limited assistance was provided. Today, it’s more likely to find full

hardware implementation of the multiplication in order to satisfy the growing demand

for speed and due to increasing cost of hardware.

Most digital signal processing (DSP) systems incorporate a multiplication unit to

implement algorithms such as correlations, convolution, filtering and frequency

analysis. In many DSP algorithms, the multiplier lies in the critical delay path and

ultimately determines the performance of the algorithm. The speed of multiplication

operation is of great importance in DSP as well as in the general processors today,

especially since the media processing took off. In the past, multiplication was

implemented generally with a sequence of addition, subtraction and shift operations.

Recently, many multiplication algorithms have been invented and developed, each

having pros and cons in different fields.

 2

The multiplier is a fairly large block of a computing system. The amount of

circuitry involved is proportional to the square of its resolution; i.e. a multiplier of size n

bits has 2()O n gates [2]. For multiplication algorithms performed in DSP applications,

latency and throughput are the two major constraints from delay perspective. Latency is

the real delay of computing a function, a measure of how long after the inputs to a

device are stable, is the final result available on outputs. Throughput is the measure of

how many multiplications can be performed in a given period of time. Multiplier is not

only a high-delay block but also a significant source of power dissipation. That’s why,

if one also aims to minimize power consumption, it is of great interest to identify the

techniques to be applied to reduce delay by using various delay optimizations.

1.1. Design Considerations in Integrated Circuits

After guaranteeing correct digital functionality, the primary consideration for

system designers has always been speed. A circuit is specified to operate at a particular

delay, otherwise the entire system may not work; further reduction is beneficial but not

strictly necessary. Other factors may have equal or greater importance than power

dissipation; area of implementation and reliability issues are subjects which designer

must take into account. It’s worth to note that power reduction techniques are not

necessarily negatively correlated to delay reduction. For example, one method to reduce

delay in a circuit’s critical path is to upsize the driving strength of gates, which results

in increased power reduction. However, reducing interconnect capacitance, which is

another way to lower delay, reduces both power and delay. Generally, great power

savings can be achieved if delay is not an issue, but optimizing power without delay

consideration is insignificant.

1.2. Why Low Power?

Power dissipation limitations come in two ways. The first is related to cooling

considerations when implementing high performance systems. High-speed circuits

dissipate large amounts of energy in a short amount of time, generating a great deal of

 3

heat. This heat needs to be removed by the package on which integrated circuits are

mounted. Heat removal may become a limiting factor if the package cannot sufficiently

dissipate this heat or if the required thermal components are too expensive for the

application.

The second failure of high-power circuits relates to the increasing popularity of

portable electronic devices. Laptop computers, portable video players and cellular

phones all use batteries as a power source. These devices provide a limited time of

operation before they require recharging. To extend the battery life, low power

operation is desirable in integrated circuits.

1.3. Thesis Outline

This thesis focuses on an algorithm, called multiplexer based multiplication,

which is suitable for high-speed and low-power applications. The algorithm, which is

proposed by K. Pekmestzi, is symmetric so it’s very applicable for binary

multiplication, due to the interchangeability of the multiplicand and the multiplier. In

theory, it is proven that the algorithm is comparably faster than recently proposed ones

and much simpler than the others by means of circuit complexity. The implementation

of this algorithm is performed by designing a 64-bit x 64-bit multiplier block in 0.35µ

CMOS technology using Cadence Design Framework tools. Also, using the same

algorithm, another block of 32-bit x 32-bit multiplier is designed and is sent for

fabrication. The following chapters discuss the reason of using multiplexer–based

multiplication algorithm as well as the design details of the blocks. In chapter 2,

sequential multiplication basics, like forming the partial products and reducing the

number of partial product bits through the use of high-radix methods, and various

multiplication algorithms are introduced. The theory of multiplexer based multiplication

algorithm and the architectural structure of designed multiplier is explained in Chapter

3. Chapter 4 presents design stages of the multiplier block, including the simulation

results and layouts. Finally, in Chapter 5, conclusions are discussed.

 4

2. THEORY OF MULTIPLICATION ALGORITHMS

In this chapter, we present a brief description of digital multipliers including

their structure and relevant components. Some techniques, which have been developed

to reduce the multiplier delay, are also discussed. Next, we go over power dissipation in

CMOS circuits, along with some basic techniques, which can be applied to reduce

power.

2.1. Multiplier structure

Digital multiplication is a series of bit shifts and bit additions, where two

numbers, the multiplicand and the multiplier are combined into the result. Considering

the bit representations of the multiplicand 011 XXXX n K−= and the multiplier

011 YYYY n K−= , in order to form the product, up to n shifted copies of the multiplicand

are to be added for unsigned multiplication. The entire process consists of three steps,

partial product generation, partial product reduction and final addition. Digital

multiplication process flow is illustrated in Fig. 2.1

Figure 2.1 Digital multiplication flow [19]

 5

2.1.1 Partial Product Generation

In digital multiplication, as an initial step, one needs to generate n shifted copies

of the multiplicand, which may be added in the coming stage. The value of the

multiplier bit determines whether the shifted copy is to be added or not: if the ith bit

)10(−≤≤ ni of the multiplier is ‘1’, then the shifted copy of the multiplicand is added.

If the bit is ‘0’, it’s not added. A logical AND gate can implement this operation, by

performing the function AND(xiyj))1010(−≤≤∧−≤≤ nyni . The resulting values

are called partial products. Fig.2.2 shows a trapezoidal structure, called partial product

array (PPA), where the partial product bits are arranged in columns to be added in order

to form the product. This process is called product array generation [19].

Figure 2.2 Partial product generation example [19]

As noticed, all the bits are formed in parallel in the PPA, thus the static delay of

each of the bits is equal. The width of the PPA is proportional to the size of the

multiplicand whereas the height of the array is proportional to the size of the multiplier.

The bits in a particular column will be added later on and some columns have more bits

than others; middle bit positions require more additions than the low-order and high-

order bit positions. Since carry bits from low-order positions result in a large number of

bits to be added at the high-order bit positions, more additions will be necessary at the

high-order positions than at the low-order ones [9].

 6

2.1.2. Partial Product Reduction

Efficient implementation of a digital multiplier depends on the method of the

addition of partial product array bits. Since each shifted version of the multiplicand will

give a delay proportional to the width of the multiplicand, the multiplier block will

require a large amount of time to perform the operation if conventional adders were

used to implement this addition. Hence, the partial products are reduced using a

technique, called carry-save addition, which allows successive additions in one global

step.

Considering the addition of two bits from two vectors, X and Y, where

numerical bit vector representations are of the form 1 2 1 0, , ,n nX x x x x− −= K and

1 2 1 0, , ,n nY y y y y− −= K , conventional full-adder can be used, which takes in three bits

and outputs a sum and a carry bit, so the block adds two bits at a given position with the

carry in from the previous bit position. Considering the case of adding two bit vectors,

two bits are added at the lowest bit position and the carry is propagated to the next bit

position. At the higher positions, two inputs and the carry bit are to be combined and a

carry out is generated. This rippling technique of adding two n− bit numbers requires

()O n sequential bit additions, hence a delay of ()O n . For the addition of three bit

vectors of size ,n ,X Y and ,Z this method can be used to add X and ,Y then to add Z

to the sum of X Y+ ; so the total number of bit additions of n shifted copies of an

n− bit multiplicand is ()O n where the total delay is 2()O n , assuming that the add

operations are dependent on the previous ones since the output of earlier operations are

inputs to later operations [6].

Even though the result comes from the combination of all operations, a certain

amount of independence exists between each operation, considering the addition on a

particular column. All the bits in a column must be added together along with the carry

in bits coming from the previous column. Carry save addition influences that addition in

separate columns can be performed independently. For example, in order to add three

vectors of bits, full-adders can be used to perform the addition of three bits in each

column. Except the lowest and the highest bit positions, the result is a carry and a sum

bit in each bit position. So, the three bit vectors have been reduced to two bit vectors.

 7

Using carry save addition technique, a set of vectors, which are to be added together,

can be reduced to two bit vectors. Carry save addition is one of the ways to make a

multiplication faster than the conventional methods, considering the number of

necessary additions.

2.1.2.1. Array Style Reduction

There are several ways to implement the addition of partial product bits in the

trapezoidal array. In this section, the simplest method, called array partial product

reduction, will be described.

The trapezoidal PPA for a 6 x 6–bit multiplication is given in Fig. 2.3. The first

three bit vectors are added using full-adders and the result is then combined with the

remaining bits of PPA; thus three vectors are reduced to two vectors. While the trade-

off of using slow components is obtaining a slow multiplier, the design benefits from

the regularity, simplicity and efficiency it brings to the structure’s layout, especially

when it is considered that only short wires are needed for the interconnection of

vertically, horizontally and diagonally adjacent full-adder cells. Although the delay of

this block, which is a function of the number of rows, ()O n , is a big improvement over

the conventional addition method, it’s possible to do better [19].

Figure 2.3 Array partial product reduction: The initial partial product is reduced

to two bit vectors by using a row of carry-save adders and the resulting PPA is

given [19]

2.1.2.2. Wallace Tree Partial Product Reduction

In 1964, C.S. Wallace observed that it is possible to find a structure, which

performs the addition operations in parallel; thus resulting in a less delay. In his historic

paper, Wallace introduced a different way of parallel addition of the partial product bits

using a tree of carry save adders, which is known as “Wallace Tree”. In order to

 8

perform the multiplication of two numbers with the Wallace method, partial product

matrix is reduced to a two-row matrix by using a carry save adder and the remaining

two rows are summed using a fast carry-propagate adder to form the product.

Parallelizing carry save operations yields a delay proportional to the logarithm of the

operand size n ()(log 2/3 nO), which is significantly shorter than the array’s sequential

operations [6]. However, the disadvantage of Wallace trees is their irregular layout with

respect to array structures. Moreover, this irregular layout results in greater wire loads.

Also it’s worth to note that the width of the final adder in a Wallace tree structure is

approximately nn 2/3log2 − whereas the width of array architectures uses an adder

having a width of n. In Fig 2.4, an example of 6-bit x 6-bit multiplication using Wallace

tree partial product reduction method is shown. It can be noticed that parallelizing two

carry save operations results in a smaller PPA after just one step [10].

Figure 2.4 Wallace tree partial product reduction [19]

Wallace’s method was further refined by Dadda, who suggested an efficient

addition of partial products. Dadda presented a concept of a counter structure, which

takes a number of bits p in the same bit position (or so called in the same ‘weight’), and

outputs the number q, representing the count of ones at the input. He introduced various

ways of reducing the partial products using such a counter, which is called Dadda’s

counter. The multiplication process for an 8-bit x 8-bit Dadda’s multiplier is shown in

Fig. 2.5, where each dot represents one bit product [18].

 9

Figure 2.5 An 8 x 8–bit Dadda multiplier example [10]

In Dadda’s multiplier, columns having more than six digits (or having tend to

grow more than six digits due to carry bits) are reduced by using half and full-adders. A

half adder takes two input digits and outputs one bit in the same column and one in the

next more significant column, whereas a full-adder takes three inputs bits and outputs

two digits; again one in the same, one in the next column. The arrangement of half and

full-adders are done in such a way that no column in the first matrix will have more than

six dots. In the second reduction matrix, the maximum number of digits in one column

is four. In the coming stages, third matrix contains at most three digits and the fourth

matrix has two digits per column. In order to find out the maximum number of digits in

one column of the matrix, we start from the final two-row matrix and limit the height of

each matrix no more than 1.5 times the height of its successor [10]. The delay of the

matrix reduction process is proportional to)log(n , since the number of matrices is

logarithmically related to the number of bits in the words to be multiplied. In other

words, the total delay of the multiplier is proportional to the logarithm of the word size,

due to the addition process in the final two-row matrix, which can be implemented

using a carry lookahead adder, which also has a logarithmic delay. There has been a

great research for making faster parallel multipliers however, the efforts for inventing

the fastest counter structure could not go beyond an architecture, which performs the

summation of partial products faster than a full-adder [7].

 10

2.1.2.3. Partial Product Reduction Using Booth Recoding

One of the best-known variations of the multiplication algorithm is the “Booth’s

Recoding Algorithm” described by Booth in 1951. The algorithm allows reducing the

number of partial products, hence speeding up the multiplication process. The Booth’s

algorithm can be used for both sign magnitude and unsigned numbers. Before the

explanation of Booth’s algorithm, brief information about radix multiplication will be

presented.

Radix multiplication

For a given range of numbers to be represented, a higher representation radix

leads to fewer digits. Thus, a digit at a time multiplication requires fewer cycles as we

move to higher radices. That’s why, high radix multiplication algorithms are studied for

implementing hardware. A k-bit binary number can be formulated as a 2/k -digit

radix-4 number and a 3/k -digit radix-8 number and so on. The use of high radix

multiplication involves dealing with more than one bit of the multiplier in one cycle.

Higher radix multipliers are designed to reduce the number of adders and hence the

delay required to compute the partial sums. The best-known method is called Booth

recoding, which a radix-4 multiplication scheme [9].

Booth recoding technique

Under certain conditions, when a bit in the multiplier is ‘0’, a bench of carry

save adders does not perform a useful function, because a ‘0’ is added to the carry save

result. Thus, the input bits are propagated to the output bits. These carry save adders can

be removed from the multiplier structure in this case, resulting in power and delay

settings. However, since it’s not possible to know exactly which bits of the multiplier

will be ‘0’, the case, when all the multiplier bits are ‘1’, has to be considered to

maintain generality. Furthermore, in the largest delay case, for example in 4 x 4–bit

multiplication, circuitry must be provided for the case when the multiplier is ‘1111’,

which results in a delay of four stages. Considering that multiplying by ‘1111’ is the

same as multiplying by ‘10000’ and subtracting the multiplicand form the result, and

knowing that multiplying by a power of two is simply a shift, the worst case delay has

been reduced to 2-stages from 4-stages. This type of stage reduction is known as Booth

recoding [2]. The theory of the Booth algorithm is explained below.

 11

Modified Booth algorithm

Consider two n-bit numbers X and Y to be multiplied. Y can be expressed as:
1 2 0

1 2 02 2 2n n
n nY Y Y Y− −
− −= − + + +L (2.1)

2
1 2 3

4
3 4 5

0
1 0 1

(2) 2

(2) 2

(2)2

n
n n n

n
n n n

Y Y Y Y

Y Y Y

Y Y Y

−
− − −

−
− − −

−

= − + +

+ − + + + +

+ − + +

L (2.2)

where 01 =−Y and 3
3

4
2

2
3 2222 −

−
−

−
−

− =− n
n

n
n

n
n YYY have been used in the expression. Eq.

(2.2) can be represented by

∑∑
−=

=

−=

=
−+ ⋅=⋅++−=

1
2

0

2
1

2

0

2
12212 22)2(

ni

i

i
i

ni

i

i
iii yYYYY (2.3)

Thus,

⋅+−

⋅+−=⋅ ∑∑

−

=

−
−

−

=

−
−

2

0

1
1

2

0

1
1 2222

n

j

j
j

n
n

n

i

i
i

n
n YYXXYX (2.4)

⋅

⋅+−=⋅ ∑∑

−

=

−

=

−
−

1
2

0

2
2

0

1
1 222

n

j

j
j

n

i

i
i

n
n yXXYX (2.5)

From the sequence of ii YY 212 ,+ and 12 −iY , ,iy which can be –2, –1, 0, 1, 2 can be

known. Therefore, the partial products of n-bit x n-bit multiplication can be reduced to

the effective multiplication of n-bit x
2
n -bit multiplication. Thus, the multiplication time

is also reduced. The relation between ,12 +iY ,2iY 12 −iY and iy can be summarized in

Table 2.1 and the explanations of the five possible multiples of the multiplicand are

given in Table 2.2 [11].

 Booth recoding necessitates the internal use of two’s complement representation

in order to efficiently perform subtraction of the partial products as well as additions.

Since it is easy to implement, the algorithm is widely used for two’s complement

multiplication. The advantage of Booth algorithm is that it generates roughly one half of

the partial products when compared to other multiplier implementations, however this

benefit comes at the expense of increased hardware complexity.

 12

2 1iY + 2iY 12 −iY Recoded digit iy Operation on X

0 0 0 0 0 x X
0 0 1 +1 +1 x X
0 1 0 +1 +1 x X
0 1 1 +2 +2 x X
1 0 0 -2 -2 x X
1 0 1 -1 -1 x X
1 1 0 -1 -1 x X
1 1 1 0 0 x X

Table 2.1 Booth recoding

Recoded digit Operation on X

0 Add 0 to the partial product
+1 Add X to the partial product
+2 Shift left X one position and add it to the partial product
-1 Add two’s complement of X to the partial product
-2 Take two’s complement of X and shift left one position

Table 2.2 Explanations of the Booth recoding table

2.2 Advanced Structures in Parallel Multipliers

2.2.1. Baugh-Wooley Multiplier

The Baugh-Wooley technique was developed to design direct multipliers for

two’s complement numbers. When multiplying 2’s complement numbers directly, each

of the partial products to be added is a signed number. Thus, each partial product has to

be sign-extended to the width of the final product in order to form the correct sum by

the CSA tree. According to the Baugh-Wooley approach, an efficient method of adding

extra entries to the bit matrix is suggested to avoid having to deal with the negatively

weighted bits in the partial product matrix [1]. In Fig.2.6 and Fig.2.7, PPA’s of

unsigned and two’s complement multiplication of 5 x 5–bits are shown respectively.

 13

Figure 2.6 Unsigned multiplication

Figure 2.7 Two’s complement multiplication

Here is how the algorithm works. Knowing that the sign bit in two’s

complement numbers has a negative weight, the entry 4 0a x the term can be written in

terms of 4 0a x− .

4 0 4 0 4 4 0 4(1)a x a x a a x a− = − − = − (2.6)

Hence, the term 4 0a x− is replaced with 4 0a x and 4a− . If 4a is used instead of

4a− , the column sum increases by 42 .a Thus, 4a− must be inserted in the next higher

column in order to compensate the effect of 42 .a The same is done for 4 1,a x 4 2 ,a x and

4 3.a x In each column, 4a and 4a− cancel each other out. The 8p column gets a 4a−

entry, which is replaceable by 4 1.a − This can be repeated for all entries, yielding to the

insertion of 4x in the 4p column, and 4 1x − in the 8p column. There are two –1’s in

 14

the eighth column now, which is equivalent to a –1 entry in 9p and that can be replaced

with a 1 and a borrow into the non-existing tenth column.

Baugh-Wooley method increases the height of the longest column by 2, which

may lead to a greater delay through the CSA tree. In the given example of Fig. 2.8,

column height changes from 5 to 7, requiring an extra CSA level. Removing x4 from

fourth column and writing two x4 entries in the third column, which has only four

entries, can reduce the extra delay caused by the additional CSA level. Thus, the

maximum number of entries in one column becomes 6, which can be implemented with

three-level CSA tree.

Alternatively, all negatively weighted 4 ia x terms can be transferred to the

bottom row, which leads to two negative numbers in the last two rows, where a

subtraction operation from the sum of all the positive elements is necessary. Instead of

subtracting 4 ,a x two’s complement of a can be added 4x times. This method is known

as the Modified Baugh-Wooley algorithm [9, 19].

Figure 2.8 Baugh-Wooley two’s complement multiplication

 15

Figure 2.9 Modified Baugh-Wooley two’s complement multiplication

Modified form of the Baugh-Wooley method, shown in Fig. 2.9, is more

preferable since it does not increase the height of the columns in the matrix. However,

this type of multiplier is suitable for applications where operands with less than 16 bits

are processed, like digital filters where small operands like 6, 8 or 12 bits are used.

Baugh-Wooley scheme becomes slow and area consuming when operands are greater

than or equal to 16-bits. So, different techniques are required in order to reduce the size

of the array as well as maintaining the regularity.

2.2.2. 4:2 Compressor

In the ‘4-2 carry save module’ structure, which is introduced by Weinberger in

1981, a complicated-interconnected combination of full-adder cells exist for performing

the compression of partial products faster than counters. In fact, the structure

compresses five partial product bits (four input bits and one carry–in bit) into three,

however it acts as a compressor reducing the four bits into two, since carry-in and carry-

out bits connect the adjacent 4:2 compressors [13]. Thus, the number of partial product

bits is reduced by half in one stage, making the efficiency higher. The structure of 4:2

compressors is shown in Fig. 2.10.

 16

Figure 2.10 4–to–2 compressor

Figure 2.11 Logic diagram of the 4–to–2 compressor (4W) unit

In the arrangement shown in Fig. 2.10, sum can be obtained via four XOR gate

delays

()[][] inCXXXXS ⊕⊕⊕⊕= 4321 (2.7)

which is identical to the result in the Wallace tree structure using 2-layer carry save

adders, thus the equation can be rearranged as

()[] inin CCXXXS ⊕⊕⊕⊕=)(421 (2.8)

In the circuit shown with Fig.2.11, the equations are obtained to be

1 2 3 4outC I I I I= ⋅ + ⋅ (2.9)

() ()1 2 1 2 3 4 3 4 inS I I I I I I I I C= + ⊕ + ⊕ (2.10)

[]1 2 3 4 3 2 3 4 1 2 3 4() () () () inC I I I I I I I I I I I I C= ⋅ ⋅ ⋅ + ⊕ ⋅ ⊕ + ⊕ ⊕ ⊕ (2.11)

 17

2.2.3. Hitachi’s Multiplier

One of the best-performance multipliers, proposed by Ohkubo and Suzuki [13],

is a 0.25µm 54 x 54-bit multiplier with an operation time of 4.4ns. The architecture

consists of blocks performing Wallace tree and Booth’s algorithms as well as a carry-

lookahead adder, which is shown in Fig. 2.12. Booth’s algorithm is used in order to save

from chip area instead of reducing delay time, and by using Wallace tree operation time

reduction is performed. Moreover, for further improvement, a new 4:2 compressor type

is developed with pass transistor multiplexers so that critical path gate stages are

reduced. This yields to reduction in the multiplication time of the multiplier by 14%

[11].

Figure 2.12 Organization of Hitachi’s multiplier [13]

2.2.4. Inoue’s Multiplier

Among recently designed multipliers, the one published by Inoue [16] is one of

the fastest. The novelty of this multiplier is the new design of the Booth encoder and

Booth selector blocks for the generation of partial products, and the 4:2 compression

unit. A simpler implementation of these blocks removes the need to use an XOR gate in

the critical path. The regular Booth selector requires 18 transistors per bit for the

implementation where the modified Booth selector necessitates 10 transistors per bit.

Although for the 54-bit x 54-bit multiplier modification of the Booth selector yields

44% reduction in the transistor count, this modification does not give a significant

 18

change by means of transistor count in the overall multiplier, since the number of

transistors that the Booth encoder consists of is approximately 1.2% of total

architecture.

In his paper [16], Inoue observed the possible 26 implementations of the 4:2

compressor and among them he chose the one, which has the minimum number of

transistors. Reducing the transistor count by 24% not only saves from layout area but

also reduces the speed of the multiplier, approximately by 5% of the fastest possible

implementation.

2.3. Multiplier Power Reduction

The design of digital CMOS has focused on delay reduction and power

dissipation. In multipliers, delay increases as the size of the multiplier grows in terms of

bits, but it can vary depending on the implementation. Power is proportional to the

amount of circuitry of the multiplier and the way that it is connected to perform the

multiplication. Since the amount of adder blocks is proportional to the square of the size

of the number of bits 2()n , multipliers tend to be fairly large, power consuming blocks.

Dynamic power consumption of digital CMOS circuits is expressed by Eq.

(2.12). Static power consumption is neglected because which is relatively too small. The

static power comes from the pull-up resistor. This would mean that in complementary

CMOS circuits, only one device is conducting at a time. So, there’s no need to calculate

static power; only dynamic power exists since there is never a direct path between VDD

and GND in steady state.

2

dyn DD op n n DD sc
n n

P = V f C + V iα∑ ∑ (2.12)

n being the number of nodes and alpha is the number of switching activities. An

equivalent equation can be expressed as

2
dyn L DD op sc DD peak op DD leakageP = C V f + t V I f + V I (2.13)

 19

In this equation, Ipeak determined by the saturation current of the pmos and nmos

transistors, which depend on their sizes, process technology, temperature, etc. and the

ratio between input and output slopes. When load capacitance is small, power is

dominated by Isc, short circuit current. Isc is less than 10% of total dynamic current

under the condition of fast rising time and falling time. Therefore short circuit current is

neglected for convenience of calculation. Because supply voltage and operation

frequency are fixed when the application is specified, the power consumption is

determined by node capacitance and transition activities (probability). In considering

these two parameters, equivalent capacitance is defined in Eq (2.14). Using the principle

of uniform distribution of delay time, the equivalent capacitance can be expressed as the

driving load (CL). If it is only driving a capacitive load, then we can approximate that all

the power is consumed in the act of switching. It is nontrivial to calculate the power via

the resistance of the on transistor so use the output capacitance.

2

dyn L DD opP = C V f (2.14)

Typically, power and delay minimization techniques focus on the various sub-

blocks inside a larger block and address power optimization of these blocks

independently. However, an integrated approach may be more helpful since dependency

of these blocks affect the overall power characteristics.

2.3.1. Logic Level Multiplier Optimization

Booth recoding suffers from the problem that unequal delay paths exist in the

Booth partial product generator. One path goes from the multiplier through the Booth

encoder and then to the Booth decoder, while paths from the multiplicand go directly to

the Booth decoder. Since the Booth decoder is composed of two gates a glitch can result

at the output of the Booth decoder due to this greater delay. One approach is to redesign

the Booth encoder/decoders such that Booth encoder’s logic depth is reduced and early

arriving signal coming from the multiplicand has a greater delay through the decoder

that inputs from the encoder. This balances the signal paths and allows reducing of

glitches [2].

 20

2.4. Multipliers’ Comparison

In this chapter, we presented recently developed various multiplication

algorithms. Generally, it is not possible to say that an exact architecture yields to greater

cost-effectiveness, since the trade-off is design and technology dependent. The basic

array multipliers, like the Baugh-Wooley scheme, consume low power and exhibit

relatively good performances, however their use is limited with 16 bits. For operands of

16-bits and over, the modified Booth algorithm reduces the partial product’s numbers

by half. Thus, the speed of the multiplier is reduced. Due to the circuitry overhead in the

Booth algorithm, its power dissipation is comparable to the Baugh-Wooley multiplier.

Wallace’s strategy for building carry save adder (CSA) trees is to combine the partial

product bits as early as possible, whereas in Dadda’s method, combination of partial

products is performed at the latest stage. This method yields to a simpler CSA tree and a

wider carry-propagate adder while the designs using Wallace’s method are the fastest

ones. However, a logarithmic depth reduction tree based on CSA’s has an irregular

structure that makes the design and layout more difficult. Moreover, connections and

signal paths of varying lengths may lead to logical hazards and signal skew that have

implications for both performance and power consumption. That’s why; alternative

reduction trees that are more suitable for VLSI implementation are of interest. A

summary of pros and cons of the proposed algorithms, based on their theoretical

attributes, is given below in Table 2.3 in terms of speed, circuit complexity, layout

regularity and silicon area. A detailed simulation-based analysis of the algorithms, for

both small-size and large-size multiplier blocks, will be presented in section 4.4. In the

next chapter, we will introduce another multiplication algorithm called multiplexer

based multiplication, which has both high-speed and low-power opportunity.

Multiplier Type Speed Circuit Complexity Layout Area
Array Low / Medium Simple Regular Smallest
Booth High Complex Irregular Medium

Wallace Higher Medium More irregular Large
Dadda Higher Medium Irregular Medium
Hitachi Highest More complex Medium regularity Largest
Inoue Highest More complex Irregular Largest

Table 2.3 Pros and cons table for various multiplication algorithms

 21

3. MULTIPLEXER BASED MULTIPLICATION

In this chapter, a new multiplication technique, based on the synchronous

computation of the partial sums of the operands, which is proposed by K.Z. Pekmestzi

[15], is explained as an alternative to conservative multiplication methods. The

algorithm is a different version of effective parallel multiplication, so one bit of the

multiplier and the multiplicand are processed in each step. The multiplicand and the

multiplier are interchangeable since the algorithm is symmetric. Parallel implementation

of the algorithm results in a smaller circuit by means of area and it provides faster

addition of partial products. Thus, its circuitry complexity is almost the same as the

implementations based on Modified Booth’s algorithm, but the multiplication time is

considerably faster. These advantages are valid for both positive numbers and numbers

in two’s complement form.

3.1 Introduction to Algorithm

Consider the multiplication of two n-bit numbers X and Y, where

 ∑
−

=
−− ==

1

0
01221 2

n

j

j
jnn xxxxxxX K (3.1)

 ∑
−

=
−− ==

1

0
01221 2

n

j

j
jnn yyyyyyY K (3.2)

As derived in [15], based on these two equalities, the numbers 1−nX and 1−nY can be

defined as

 ∑
−

=
−−− ==

2

0
012321 2

n

j

j
jnnn xxxxxxX K and 1

1
1 2 −

−
− += n

n
n xXX (3.3)

 ∑
−

=
−−− ==

2

0
012321 2

n

j

j
jnnn yyyyyyY K and 1

1
1 2 −

−
− += n

n
n yYY (3.4)

 22

Thus, the product P of X and Y can be written as

YXP ⋅= (3.5)

{ } { }11
1

11
1 22 −−

−
−−

− +⋅+= nn
n

nn
n YyXxP (3.6)

{ } 111111
1

11
22 22 −−−−−−

−
−−

− +++= nnnnnn
n

nn
n YXyXYxyxP (3.7)

By the definition of 111 −−− = nnn YXP and jjj YXP = , where Xj and Yj represent

the jth least significant bits of X and Y, the product P can be written as:

{ } 111111
1

11
22 22 −−−−−−

−
−−

− +++=

=

jjjjjj
j

jj
j

jjj

YXyXYxyx

YXP

 { } 11111
1

11
22 22 −−−−−

−
−−

− +++= jjjjj
j

jj
j PyXYxyx (3.8)

Hence,

 { } j
n

j
jjjj

n

j

j
jj yXYxyxP 22

1

1

1

0

2 ⋅++= ∑∑
−

=

−

=

 (3.9)

 j
n

j
j

n

j

j
jj ZyxP 22

1

1

1

0

2 ∑∑
−

=

−

=

+= (3.10)

where jjjjj yXYxZ += .

In Table 3.1, the values of Zj, which is dependent to xj and yj, are shown.

jx jy jZ
0
0

1

1

0
1

0

1

0
Xj

Yj

Xj + Yj

Table 3.1 Truth table for Zj

It’s easy to find out that jZ requires addition operation only when both of the

multiplied bits are equal to 1. In order to perform addition, we use carry propagate

 23

adders, as in Fig.3.1 and Fig.3.2 where the sum and carry values of 22X Y+ and 44X Y+

are shown respectively.

Figure 3.1 Two-bit carry propagate adder

Figure 3.2 Four-bit carry propagate adder

In these steps, 0121 sssssS jjjj K−−= and at each step only js and 1+jc values

are new; the remaining bits of jS are formed in the previous 1−j steps. Thus, jS can

be written as:

111 −−− ++= jjjj yxSS (3.11)

3.2 Multiplexer Based Multipliers

3.2.1. Circuit Structure

Realization of the equations derived above is possible by using multiplexer

based multipliers; with a 4-to-1 multiplexer where jx and jy are the control bits. Terms

of Eq. 3.10 are formed in the thj row of the multiplexer, which is shown in Fig.3.3.

The multiplexer based multiplier array has two different types of cells. The first

type, which is shown in Figure 3.5(a), consists of a 4-to-1 multiplexer and a full-adder.

At the thi row of the array, jx and jy bits are transmitted to)1(in −− first type cells.

In the thj diagonal row of the array, j first type cells and one second type cell exist,

 24

which makes
2

)1(−nn first type and n second type cells in the total architecture, as

shown in Figure 3.4.

Figure 3.3 Multiplexer-based multiplication algorithm [15]

Figure 3.4 Multiplexer-based parallel multiplier [15]

 25

The architecture in Figure 3.5 (b) consists of two full-adder cells and two AND

gates. Since the bits join in diagonal and horizontal row of cells in the same order,

indices i and j are interchangeable. First, using a full-adder, new bits ij ss = and 1+jc

are formed. 1+jc values are propagated to the coming second type cells, where ji xs ,

and jy bits are transmitted to all first type cells in the ith row of the array. By using two

AND gates, the term jj yx , which is required to find out the product according to

Eq.3.10, and jjj cyx value, which enters the other full-adder cell to form outs and outc

are found. Finally, outs and outc bits are sent to two-bit carry-lookahead adders to form

the product. The reason of using a carry-lookahead adder is to perform the addition with

the possible smallest complexity and the fastest operation speed.

Figure 3.5 Circuit structures of Cell-I and Cell-II blocks

3.2.2. Comparison of Various Multipliers

The circuit complexity of the given algorithm, by means of gate and transistor

count, is given in Table 3.2. It can be formulated that the total multiplier contains

2
)1(−nn 4-to-1 multiplexers, 12

2
)1(++− nnn full adders, 2−n two-bit-CLA cells and

n2 AND-gates.

 26

CIRCUIT GATES TRANSISTORS
Half Adder 5 10
Full Adder 12 26
2-to-1 MUX 3 6
4-to-1 MUX 5 16
XOR 4 6
2-Bit CLA 23 50

Table 3.2 Number of gates and transistors for various types of circuits

Based on the number of transistors of various circuit types, given in Table 3.2,

the total number of gates and transistors of various multiplier types are presented in

Table 3.3, in order to make a comparison between those types by means of circuit

complexity. It’s noticed that Pekmestzi’s multiplier has almost the same complexity as

the implementations of Modified Booth’s algorithm, and it is much more smaller than

other types.

Type of Multiplier Number of Cells Number of Gates Number of Transistors

Array 2n 213n 230n

Counter Cell 2/)1(+nn)23(13 2 −+ nn)23(30 2 −+ nn

Modified Booth’s
Algorithm

Cell A: 2(1) / 2n +
Cell B: (1) / 2n +

132310 2 ++ nn 315221 2 ++ nn

MUX Based Multiplier
Cell I: (1) / 2n n −
Cell II: n
CLA: n

225.165.8 2 −+ nn 993721 2 −+ nn

Table 3.3 Circuit complexity comparison of various multipliers

 Pekmestzi’s multiplier also has the smallest operation delay. The multiplication

time of the structure is equal to FAnT τ)1(+= , FAτ being the delay of a full-adder;

under the assumption of carry propagation delay of a two-bit carry-lookahead adder is

also FAτ . This delay is significantly small when compared to the operation delay of the

conventional array multiplier, which is FAnT τ)12(−= . Even though the carry

propagate adders are replaced with carry-lookahead adders in order to perform a faster

 27

addition and to shorten the multiplication time, the total delay is found to be

)log(2 nnFA +τ , which is still slower than that of the structure in Fig. 3.4

Type of Multiplier Operation Time (with FA’s) Operation Time (with CLA’s)
Array FAn τ)12(−)log(2 nnFA +τ

Counter Cell tn)1(+ tn)1(+

Modified Booth’s Algorithm 2/3 FAnτ FAFA nn ττ 2log2/ +

MUX Based Multiplier FAn τ)1(+ FAn τ)1(+

Table 3.4 Operation time comparison of various multipliers

3.2.3. Modification for Two’s Complement Numbers

The algorithm proposed by Pekmestzi is also applicable for two’s complement

numbers, with a few modifications in the equations. Signed integer numbers X and

Y can be represented as:

∑
−

=
−

−
−− +−==

2

0
1

1
01221 22

n

j

j
jn

n
nn xxxxxxxX K (3.12)

11
12 −−

− +−= nn
n XxX (3.13)

∑
−

=
−

−
−− +−==

2

0
1

1
01221 22

n

j

j
jn

n
nn yyyyyyyY K (3.14)

11
12 −−

− +−= nn
n YyY (3.15)

YXP ⋅=

{ } { }11
1

11
1 22 −−

−
−−

− +−⋅+−= nn
n

nn
n YyXx

{ } 111111
1

11
22 22 −−−−−−

−
−−

− ++−= nnnnnn
n

nn
n YXyXYxyx (3.16)

The only difference between Eq.(3.8) and Eq.(3.16) is the sign of the term

11111 −−−−− += nnnnn yXYxZ . All the other terms in the algorithms remain the same but

instead of addition, subtraction operation is needed for 1−nZ in the array. This can be

performed by inverting outS bits of the left boundary cells of the structure given in Fig.

3.4. Since no circuit complexity has been changed, the signed number multiplier yields

the same performance as the positive number multiplier, which is given in Fig. 3.4.

 28

4. DESIGN OF DIGITAL BLOCKS

This thesis aims to implement a 64 x 64 – bit multiplier using multiplexer based

multiplication method, in order to check whether the proposed criteria for the algorithm,

explained in Chapter 3, is valid for such a large multiplier and to compare the

architecture with other conventional multiplier types, by means of speed and power

consumption. The whole structure is designed and simulated at 3.3V, 250MHz, using

the environment of Cadence Design Framework AMS 0.35 µm CMOS technology.

Since main components of the multiplier are full-adder and 4-to-1 multiplexer, design

and verification of these elements will be examined in this chapter. Design of AND,

OR, XOR gates are not explained due to the simplicity of their structures, however it’s

worth to note that first design criteria for all the blocks used in the multiplier has been

obtaining minimum possible propagation delay.

4.1 Full Adder Design

Since addition forms the basis of many binary operations, adder circuits are of

great interest in digital design. In order to fulfill the various speed, power and area

requirements of implementations, a wide variety of adder circuits have been proposed in

literature. As the most frequently used block in the overall design is full-adder, now we

turn our attention to build an efficient full-adder, which operates with the possible

minimum delay and power consumption, due to highly dependency of multiplier’s

operation time to the delay of the full-adder, FAτ .

A binary full adder is a three-input and two-output combinational circuit.

Considering that A and B are the input bits to be added, C is the carry input, SUM is the

sum output and CARRY is the carry output, the truth table of the full-adder cell is

shown in Table 4.1.

 29

A B C SUM CARRY
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 4.1 Truth table for the full-adder circuit

Following Boolean functions that the full-adder circuit is to perform can be

figured out from Table 4.1.

CBASUM ⊕⊕= (4.1)

BACCABBCAABC +++= (4.2)

 BCACABCARRY ++= (4.3)

When simplified, the equalities are obtained to be

() ()BABACABABCSUM +++= (4.4)

 ()BACABCARRY ++= (4.5)

Figure 4.1 Transistor-level schematic of conventional CMOS 28-T one-bit full-adder

Transistor-level realization of the one-bit full-adder is given in Fig. 4.1. This is

the conventional fully symmetric 28-transistor CMOS full-adder circuit. In order to

 30

determine the dynamic performance and the worst-case propagation delay, the full-

adder circuit is simulated by loading the output nodes with capacitances and setting the

period of three input bits in such a way that all possible combinations appear. Fig. 4.2

shows the simulated input and output waveforms of the full-adder circuit. Layout of the

largest full-adder cell used in the design is shown in Fig. 4.3 and the simulation results

are presented in Table 4.2.

Figure 4.2 Simulated input and output waveforms of the designed 28-T full-adder

circuit

 Sum Carry out
Rise Time 114.229ps 162.043ps
Fall Time 165.673ps 242.859ps

Rising Edge Propagation Delay 222.704ps 193.741ps
Falling Edge Propagation Delay 267.249ps 213.806ps

Table 4.2 Simulated dynamic performance characteristics of one-bit full-adder

 31

Figure 4.3 Layout view of the designed one-bit full-adder

Jiang [18] presented a comprehensive study on the performance of CMOS full-

adders, including complementary static CMOS, CMOS transmission gate, pass

transistor logic, differential logic and dynamic full-adders. Jiang has proven that for

complementary CMOS circuits, the less transistor count a circuit has, the less power the

circuit will consume. Therefore, we investigate different types of full-adder circuits,

which are more suitable for low power applications. Based on his results and

comparisons by means of speed and power consumption, we focus on transmission-gate

based full-adder, since it is the optimum type of adder when compared to other types,

including differential logic and dynamic adders, which suffer from inconvenient noise

margin or large propagation delay.

A transmission-gate based implementation of adder circuit, that uses an

exclusive-OR gate, is explained in Weste [11]. By using four transmission gates, four

inverters and two XOR gates, an adder may be constructed as shown in Fig.

4.4. A B⊕ and the complement are formed using the TG XOR gate and the sum

A B C⊕ ⊕ is formed by a multiplexer controlled by A B⊕ and its complement. From the

 32

truth table, it can be noticed that CARRY C= when A B⊕ is true, ()CARRY A or B=

when A B⊕ is false. This type of adder has 24 transistors, and brings the advantage of

having equal CARRY and SUM delay times. The number of transistors may be reduced

by removing output buffers, which yields to a 18 transistor adder, as shown in Fig. 4.4.

Output waveforms and the layout of the largest 18-T full-adder cell is given in Fig. 4.5

and Fig.4.6 respectively, where the simulation results are presented in Table 4.3.

Figure 4.4 Transistor-level schematic of optimized 18-T CMOS full-adder circuit

Figure 4.5 Simulated output waveforms of the designed optimized 18-T full-adder

 33

 Sum Carry
Rise Time 53.629ps 40.3943ps
Fall Time 69.752ps 96.837ps

Rising Edge Propagation Delay 139.371ps 147.729ps
Falling Edge Propagation Delay 179.548ps 186.866ps

Table 4.3 Simulated dynamic performance characteristics of 18-T one-bit full-adder

Figure 4.6 Layout view of the designed 18-T one-bit full-adder

4.2 Multiplexer Design

A multiplexer is a combinational circuit that selects binary information from one

of many input lines and directs the information to a single output line. Selection of a

particular input line is controlled by a set of input variables, called selection –or

control– bits. Generally, there are 2n input lines and n control inputs, whose bit

 34

combinations determine which input is selected. Gate-level realization of a single 4-to-1

multiplexer is shown in Fig. 4.7, where each of the four inputs -I0 through I3- is applied

to one input of an AND gate and 0S and 1S are control bits to select a particular AND

gate. The truth table for 4-to-1 multiplexer is given in Table 4.4.

S1 S0 OUT (Y)
0 0 I0
0 1 I1
1 0 I2
1 1 I3

Table 4.4 Truth table for 4-to-1 multiplexer

Figure 4.7 Gate-level schematic of 4-1 multiplexer

Designing an n-to-1 MUX is possible by building a tree of 2-to-1 multiplexers.

Considering that the delay of 2-to-1 MUX is smaller than that of an AND gate, and

using the circuit given in Fig. 4.7 suffers from delay due to three gates (AND-OR gates

and an inverter), it’s more advantageous to use cascaded 2-to1 MUXs. Since we will

use 4-to-1 MUX’s in this design, creating a 2-to-1 MUX tree does not bring any

drawback by means of speed or power dissipation. The transistor-level schematics of a

2-to-1 multiplexer and the cascaded block are given in Fig. 4.8 and Fig. 4.9

respectively. Simulation waveforms of the block are shown in Fig. 4.10 and the

 35

simulated results of dynamic performance characteristics of the multiplexer are

presented in Table 4.5.

Figure 4.8 Transistor-level schematic of 2-1 multiplexer

Figure 4.9 Schematic of 4-1 multiplexer

 36

Figure 4.10 Simulated input and output waveforms of the designed multiplexer circuit

Rise Time 297.329ps
Fall Time 200.163ps

Rising Edge Propagation Delay 96.369ps
Falling Edge Propagation Delay 82.688ps

Table 4.5 Simulated dynamic performance characteristics of 4-1 multiplexer

 37

Figure 4.11 Layout view of the designed 4-1 multiplexer

4.3. Carry Lookahead Adder Design

Although simple in concept, building a ripple carry adder by cascading

conventional full-adder blocks, has a long delay due to increasing number of gates in

the carry path from the least significant bit to the most significant bit. For a typical

design, the longest path through an n-bit ripple carry adder is 2 2n + gate delays.

Accordingly, carry lookahead adder is practical with reduced delay at the price of more

complex hardware.

 The linear growth of adder carry-delay with the size of the input word for an n-

bit adder may be improved by calculating the carries to each stage in parallel. The carry

of the ith stage, iC , can be expressed as

1−⋅+= iiii CPGC (4.6)

where propagate and generate signals, iP and iG are

 38

iii BAG ⋅= (4.7)

iii BAP += (4.8)

Expanding this yields,

01211 CPPGPPGPGC iiiiiiii KK++++= −−− (4.9)

Sum is generated by

i i i iS C A B= ⊕ ⊕ (4.10)

For four stages of carry lookahead (CLA), the appropriate terms are

1 1 1 0C G P C= + (4.11)

2 2 2 1 2 1 0C G P G P P G= + + (4.12)

3 3 3 2 3 2 1 3 2 1 0C G P G P P G P P P G= + + + (4.13)

The critical path in the CLA travels in a vertical direction rather than a

horizontal one. Therefore, the delay of CLA is not directly proportional to the size of

the operands n, but to the number of levels used as a tree structure. Thus, the delay is

proportional to the log function of size n. This is evaluated by considering that an adder

with a single level of CLA (four bit words) contains three gate delays in the carry path.

Each additional level of lookahead increases the maximum word size by a factor of

k and adds two additional gate delays. Generally, the number of lookahead levels for an

n-bit adder is logk n where 1k + is the maximum number of inputs per gate. Since a

k -bit group CLA introduces three gate delays per CLA level and there are two

additional gate delays; one for iP and iG and one for the final sum iS , CLA delay ∆ is

()1 2 log 1 1 2 logCLA k kn n∆ = + − + = (4.14)

This log dependency makes CLA one of the theoretically fastest structures for

addition. In our design, we only need two-bit CLA’s. Schematic view of a two-bit CLA

block is shown in Fig. 4.12. Simulation waveforms of the designed block are given in

Fig. 4.13 where the propagation delay values are presented in Table 4.6. Finally, the

layout of the CLA block is also included, as shown in Fig. 4.14.

 39

Figure 4.12 Schematic view of the designed two-bit CLA circuit

 Figure 4.13 Simulated input and output waveforms of the CLA circuit

 Sum Carry
Rising Edge Propagation Delay 199.1ps 77.3ps
Falling Edge Propagation Delay 169.3ps 113.9ps

Table 4.6 Simulated dynamic performance characteristics of two-bit CLA

 40

Figure 4.14 Layout view of the designed CLA

4.4. Comparison of Multipliers' Simulation Results

In order to prove the performance characteristics of the multiplication algorithms

described in Chapter 2 and to make their comparisons, a set of simulations has been

performed. First, 4x4-bit multipliers have been designed using Booth’s recoding,

Wallace tree and Hitachi’s method and these multipliers are simulated using two

different loads. In the Table 4.7(a) given below, the simulation results of a 4x4–bit

Booth multiplier are presented. Then, this 4 x 4 - bit block is cascaded in order to form

8x8-bit, 16x16–bit and 32x32–bit multipliers. Table 4.8(a), Table 4.9(a) and Table

4.10(a) present the delay and power consumption results of these multipliers, which are

implemented in 0.35µ CMOS technology, using various types of full adders, presented

in section 4.1. Each table also contains an improvement comparison of multiplexer-

 41

based multipliers over other types, which are given in Tables 4.7(b), 4.8(b), 4.9(b) and

4.10(b). Simulations are performed at 3.3V supply voltage, with loads of 10fF, 20 Ff,

50fF and 100fF.

Multiplier Type Adder Type Prop. Delay (ns) Power (µW) Load
CMOS 28-T 1.41 ns
TG 24-T FA 1.29 ns
TG 18-T FA 1.22 ns

4 x 4 – bit Booth
multiplier

CLA 1.19 ns

~ 265 uW 20 fF

CMOS 28-T 1.60 ns
TG 24-T FA 1.46 ns
TG 18-T FA 1.37 ns

4 x 4 – bit Booth
multiplier

CLA 1.31 ns

~ 1325 uW 100fF

CMOS 28-T 0.995 ns
TG 24-T FA 0.967 ns
TG 18-T FA 0.903 ns

4 x 4 – bit Wallace tree

CLA 0.881 ns

~ 276 uW 20 fF

CMOS 28-T 1.19 ns
TG 24-T FA 1.11 ns
TG 18-T FA 1.01 ns

4 x 4 – bit Wallace tree

CLA 0.988 ns

~ 1380 uW 100fF

CMOS 28-T 0.992 ns
TG 24-T FA 0.961 ns
TG 18-T FA 0.897 ns

4 x 4 – bit Hitachi’s
multiplier

CLA 0.866 ns

~ 245 uW 20 fF

CMOS 28-T 1.17 ns
TG 24-T FA 1.08 ns
TG 18-T FA 0.997 ns

4 x 4 – bit Hitachi’s
multiplier

CLA 0.974 ns

~ 1225 uW 100fF

CMOS 28-T 0.998 ns
TG 24-T FA 0.956 ns
TG 18-T FA 0.867 ns

4 x 4 – bit Multiplexer
based multiplier

CLA 0.804 ns

~ 108 uW 20 fF

CMOS 28-T 1.09 ns
TG 24-T FA 0.989 ns
TG 18-T FA 0.928 ns

4 x 4 – bit Multiplexer
based multiplier

CLA 0.912 ns

~ 544 uW 100fF

Table 4.7(a) Performance characteristics of simulated 4 x 4 - bit multiplier blocks

 42

Improvement Table of 4 x 4 – bit Multiplexer Based Multipliers
Improvement over Adder Type Prop. Delay (ns) Power (µW) Load

CMOS 28-T 29.22 %
TG 24-T FA 25.89 %
TG 18-T FA 28.93 %

CLA 32.44 %

59.25 % 20 fF

CMOS 28-T 31.88 %
TG 24-T FA 32.26 %
TG 18-T FA 32.26 %

Booth multiplier

CLA 30.38 %

58.94 % 100fF

CMOS 28-T -0.30 %
TG 24-T FA 1.14 %
TG 18-T FA 3.99 %

CLA 8.74 %

60.87 % 20 fF

CMOS 28-T 8.40 %
TG 24-T FA 10.90 %
TG 18-T FA 8.12 %

Wallace tree

CLA 7.69 %

60.58 % 100fF

CMOS 28-T -0.60 %
TG 24-T FA 0.52 %
TG 18-T FA 3.34 %

CLA 7.16 %

55.92 % 20 fF

CMOS 28-T 6.84 %
TG 24-T FA 8.43 %
TG 18-T FA 6.92 %

Hitachi’s multiplier

CLA 6.37 %

55.59 % 100fF

Table 4.7(b) Improvement of 4 x 4 – bit multiplexer-based multiplier over other

multiplier types

 43

Multiplier Type Adder Type Prop. Delay (ns) Power (µW) Load
CMOS 28-T 2.24 ns
TG 24-T FA 2.08 ns
TG 18-T FA 1.86 ns

8 x 8 – bit Booth
multiplier

CLA 1.83 ns

~ 285 uW 20 fF

CMOS 28-T 2.96 ns
TG 24-T FA 2.21 ns
TG 18-T FA 2.07 ns

8 x 8 – bit Booth
multiplier

CLA 2.05 ns

~ 1425 uW 100fF

CMOS 28-T 1.67 ns
TG 24-T FA 1.54 ns
TG 18-T FA 1.33 ns

8 x 8 – bit Wallace tree

CLA 1.22 ns

~ 300 uW 20 fF

CMOS 28-T 1.86 ns
TG 24-T FA 1.80 ns
TG 18-T FA 1.74 ns

8 x 8 – bit Wallace tree

CLA 1.67 ns

~ 1500 uW 100fF

CMOS 28-T 1.65 ns
TG 24-T FA 1.51 ns
TG 18-T FA 1.39 ns

8 x 8 – bit Hitachi’s
multiplier

CLA 1.44 ns

~ 270 uW 20 fF

CMOS 28-T 1.82 ns
TG 24-T FA 1.62 ns
TG 18-T FA 1.54 ns

8 x 8 – bit Hitachi’s
multiplier

CLA 1.50 ns

~ 1350 uW 100fF

CMOS 28-T 1.63 ns
TG 24-T FA 1.47 ns
TG 18-T FA 1.24 ns

8 x 8 – bit Multiplexer
based multiplier

CLA 1.20 ns

~ 156 uW 20 fF

CMOS 28-T 1.75 ns
TG 24-T FA 1.59 ns
TG 18-T FA 1.48 ns

8 x 8 – bit Multiplexer
based multiplier

CLA 1.42 ns

~ 780 uW 100fF

Table 4.8(a) Performance characteristics of simulated 8 x 8 - bit multiplier blocks

 44

Improvement Table of 8 x 8 – bit Multiplexer Based Multipliers
Improvement over Adder Type Prop. Delay (ns) Power (µW) Load

CMOS 28-T 27.23 %
TG 24-T FA 29.33 %
TG 18-T FA 33.33 %

CLA 34.43 %

45.26 % 20 fF

CMOS 28-T 40.88 %
TG 24-T FA 28.05 %
TG 18-T FA 28.50 %

Booth multiplier

CLA 30.73 %

45.26 % 100fF

CMOS 28-T 2.40 %
TG 24-T FA 4.55 %
TG 18-T FA 6.77 %

CLA 1.64 %

48.00 % 20 fF

CMOS 28-T 5.91 %
TG 24-T FA 11.67 %
TG 18-T FA 14.94 %

Wallace tree

CLA 14.97 %

48.00 % 100fF

CMOS 28-T 1.21 %
TG 24-T FA 2.65 %
TG 18-T FA 10.79 %

CLA 16.67 %

42.22 % 20 fF

CMOS 28-T 3.85 %
TG 24-T FA 1.85 %
TG 18-T FA 3.90 %

Hitachi’s multiplier

CLA 5.33 %

42.22 % 100fF

Table 4.8(b) Improvement of 8 x 8 – bit multiplexer-based multiplier over other

multiplier types

 45

Multiplier Type Adder Type Prop. Delay (ns) Power (µW) Load
CMOS 28-T 2.76 ns
TG 24-T FA 2.58 ns
TG 18-T FA 2.42 ns

16 x 16 – bit Booth
multiplier

CLA 2.26 ns

~ 350 uW 20 fF

CMOS 28-T 3.08 ns
TG 24-T FA 2.89 ns
TG 18-T FA 2.72 ns

16 x 16 – bit Booth
multiplier

CLA 2.68 ns

~ 875 uW 50 fF

CMOS 28-T 2.24 ns
TG 24-T FA 2.10 ns
TG 18-T FA 2.06 ns

16 x 16 – bit Wallace tree

CLA 1.91 ns

~ 400 uW 20 fF

CMOS 28-T 2.57 ns
TG 24-T FA 2.44 ns
TG 18-T FA 2.33 ns

16 x 16 – bit Wallace tree

CLA 2.19 ns

~ 1000 uW 50 fF

CMOS 28-T 2.14 ns
TG 24-T FA 1.99 ns
TG 18-T FA 1.94 ns

16 x 16 – bit Hitachi’s
multiplier

CLA 1.89 ns

~ 325 uW 20 fF

CMOS 28-T 2.26 ns
TG 24-T FA 2.18 ns
TG 18-T FA 1.98 ns

16 x 16 – bit Hitachi’s
multiplier

CLA 1.90 ns

~ 813 uW 50 fF

CMOS 28-T 2.23 ns
TG 24-T FA 2.07 ns
TG 18-T FA 1.92 ns

16 x 16 – bit Multiplexer
based multiplier

CLA 1.89 ns

~ 250 uW 20 fF

CMOS 28-T 2.67 ns
TG 24-T FA 2.43 ns
TG 18-T FA 2.14 ns

16 x 16 – bit Multiplexer
based multiplier

CLA 2.10 ns

~ 625 uW 50 fF

Table 4.9(a) Performance characteristics of simulated 16 x 16 - bit multiplier blocks

 46

Improvement Table of 16 x 16 – bit Multiplexer Based Multipliers
Improvement over Adder Type Prop. Delay (ns) Power (µW) Load

CMOS 28-T 19.20 %
TG 24-T FA 19.77 %
TG 18-T FA 20.66 %

CLA 16.37 %

28.57 % 20 fF

CMOS 28-T 13.31 %
TG 24-T FA 15.92 %
TG 18-T FA 21.32 %

Booth multiplier

CLA 21.64 %

28.57 % 50 fF

CMOS 28-T 0.45 %
TG 24-T FA 1.43 %
TG 18-T FA 6.80 %

CLA 1.05 %

37.50 % 20 fF

CMOS 28-T -3.89 %
TG 24-T FA 0.41 %
TG 18-T FA 8.15 %

Wallace tree

CLA 4.11 %

37.50 % 50 fF

CMOS 28-T -4.21 %
TG 24-T FA -4.02 %
TG 18-T FA 1.03 %

CLA 0.00 %

23.08 % 20 fF

CMOS 28-T -18.14 %
TG 24-T FA -11.47 %
TG 18-T FA -8.08 %

Hitachi’s multiplier

CLA -10.53 %

23.12 % 50 fF

Table 4.9(b) Improvement of 16 x 16 – bit multiplexer-based multiplier over

other multiplier types

 47

Multiplier Type Adder Type Prop. Delay (ns) Power (µW) Load
CMOS 28-T 12.26 ns
TG 24-T FA 11.48 ns
TG 18-T FA 10.82 ns

32 x 32 – bit Booth
multiplier

CLA 10.71 ns

~ 800 uW

CMOS 28-T 10.02 ns
TG 24-T FA 9.81 ns
TG 18-T FA 9.14 ns

32 x 32 – bit Wallace tree

CLA 9.53 ns

~ 750 uW

CMOS 28-T 3.43 ns
TG 24-T FA 3.38 ns
TG 18-T FA 3.24 ns

32 x 32 – bit Hitachi’s
multiplier

CLA 3.69 ns

~ 1000 uW

CMOS 28-T 9.72 ns
TG 24-T FA 9.04 ns
TG 18-T FA 8.64 ns

32 x 32 – bit Multiplexer
based multiplier

CLA 8.76 ns

~ 500 uW

25 fF

Table 4.10(a) Performance characteristics of simulated 32 x 32 - bit multiplier blocks

Improvement Table of 32 x 32 – bit Multiplexer Based Multipliers
Improvement over Circuit Type Prop. Delay Power Cons. Load

CMOS 28-T 20.72 %
TG 24-T FA 21.25 %
TG 18-T FA 20.15 %

Booth’s multiplier

CLA 18.21 %

37.5 %

CMOS 28-T 2.99 %
TG 24-T FA 7.85 %
TG 18-T FA 5.47 %

Wallace tree

CLA 8.08 %

33.33 %

CMOS 28-T -183.38 %
TG 24-T FA -167.46 %
TG 18-T FA -166.67 %

Hitachi’s multiplier

CLA -137.40 %

50 %

25 pF

Table 4.10(b) Improvement of 32 x 32 – bit multiplexer-based multiplier over

other multiplier types

 48

After examining the simulation results of the multiplier blocks, which are

presented in tables above, it’s not possible to say that one type of adder has

continuously better performance over other adder types. For example, according to its

architecture and logarithmic delay-dependency property, a CLA block is expected to

show better performance than other static adders, especially by means of speed.

However, it is observed that the performance of a multiplier depends on not only the

design criteria of the components that form the block, but also the structural alignment

of those components, which may create a different critical path than expected. Thus, in

some cases a multiplier, designed using static adders (i.e. TG based 18-T adder) has a

better propagation delay than the one designed with CLA. Furthermore, using only CLA

blocks in the multiplier brings a disadvantage; instability at the output, especially in

larger multipliers. That’s why, based on the performance characteristics, it’s decided to

use both CMOS conventional 28-T and the optimized 18-T adders for the FA blocks in

the multiplier structure. In order to form signal integrity and output symmetry, 28-T FA

is used in columns consisting of fewer sub-blocks where 18-T FA is preferred for long

component chains and critical paths. Moreover, among the same type of adders,

transistor dimensions also differ in order to improve the propagation delay of the

multiplier. Layouts of digital blocks, presented in previous sections, belong to the

largest circuits used in the overall design. It is worth to mention the increment in the

propagation delay of the circuits as the size of the multiplied numbers get larger.

Unfortunately, after 16-bit multiplication, there has been an unexpected rapid reduction

in the speed of the multiplexer-based multiplier. Although it still has speed

improvement over Booth and Wallace types, Hitachi’s multiplier is faster at large

number-of- bit multiplications. However, we proceed to implement a 64 x 64 – bit

multiplexer-based multiplier, since our only design criteria is not speed. Moreover, the

obtained results are still comparably satisfactory and efficient, though not as good as

Hitachi’s results.

4.5. Design of 64-bit x 64-bit Multiplier Block

Based on the architecture of Fig. 3.4, the 64 x 64–bit multiplier is designed after

various iterations, like adder and transistor dimension optimizations explained above.

 49

When the block is simulated at 3.3V, its operation time is found to be 12.8ns. Core

layout of the multiplier is approximately 21.5mm2. Besides, the worst-case propagation

delay of the 32 x 32 – bit multiplier block, which is designed for fabrication, is found to

be 8.2ns. This block occupies a silicon area of about 4.08mm2. Below, schematic and

layout views of the multiplier blocks are given from Fig.4.15 to Fig.4.20.

Figure 4.15 Schematic view of the Cell-I Block

Figure 4.16 Layout view of the Cell-I Block

Figure 4.17 Schematic view of the Cell-II Block

 50

Figure 4.18 Layout view of the Cell-II Block

Fig. 4.19 Core layout of the 64 x 64–bit multiplier block

 51

Fig. 4.20 Layout of 32 x 32–bit multiplier block

 52

5. CONCLUSIONS AND FUTURE WORK

 This thesis investigates the theory of different multiplication algorithms by

means of speed, power consumption, area and circuit complexity and then, based on the

pros and cons of all algorithms explained in previous chapters, we have presented the

design and implementation of a 64-bit x 64-bit multiplier block by using multiplexer-

based multiplication algorithm. The architecture is realized using 0.35µ digital CMOS

technology.

During the design stages, the most important issue has been that the block

should have as small operation time as possible while trying to keep the occupied

silicon area minimum as well. At a supply voltage of 3.3V, the circuit is capable of

performing the operation in a maximum of 12.8ns, which is the worst-case propagation

delay. It occupies a silicon area of about 4.80mm x 4.48mm. The 32-bit version of the

same multiplier, which is sent to Austria Micro Systems (AMS) for fabrication, operates

in about 8ns, occupying an area of approximately 1.2mm x 3.4mm. After the fabrication

step, the multiplier block will be tested. In order to perform the tests, a PCB board for

CQFP-160 IC package is required. Testing of the multiplier aims to check whether the

simulation waveforms match real measurement results or not. Since the fabrication of

the multiplier block has not been completed yet, testing the chip is stated as the future

work of this project.

To summarize, the multiplier architecture presented in this thesis is a suitable

block for high-performance applications. It can either be used as a single-chip unit or as

an embedded block to be integrated with other modules in various system on chip

applications.

 53

6. REFERENCES

[1] M. S. Elrabaa, I. S. Abu-Khater and M. I. Elmasry, Advanced Low-Power

Digital Circuit Techniques, Kluwer Academic Publishers, 2000.

[2] K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design, John Wiley &

Sons, 1999.

[3] A. P. Chandrakasan and R. W. Brodersen, Low-Power Digital CMOS Design,

Kluwer Academic Publishers, 1995.

[4] D. A. Pucknell and K. Eshraghian, Basic VLSI Design, Upper Saddle River:

Prentice Hall, 1994.

[5] A. Bellaouar and M. I. Elmasry, Low-Power Digital VLSI Design Circuits and

Systems, Kluwer Academic Publishers, 1997.

[6] W. Wolf, Modern VLSI Design Systems on Silicon, Upper Saddle River:

Prentice Hall, 1998.

[7] J. B. Kuo and J. H. Lou, Low Voltage CMOS VLSI Circuits, John Wiley & Sons,

1999.

[8] S. S. Rofail and K. S. Yeo, Low-Voltage Low-Power Digital BiCMOS Circuits,

Upper Saddle River: Prentice Hall, 2000.

[9] B. Parhami, Computer Arithmetic Algorithms and Hardware Designs, Oxford

University Press, 2000.

[10] A. Chandrakasan, W. J. Bowhill and F. Fox, Design of High Performance

Microprocessor Circuits, IEEE Press, 2001.

 54

[11] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design A System

Perspective, Second Edition, Massachusetts: Addison-Wesley, 1992.

[12] S. Kang and Y. Leblebici, “CMOS Digital Integrated Circuits Analysis and

Design”, McGraw Hill, 1996.

[13] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki and Y.

Nakagome, “A 4.4ns CMOS 54 x 54-bit Multiplier Using Pass Transistor

Multiplexer”, IEEE Journal of Solid-State Circuits, vol.30, no. 3, pp.252-257,

March, 1995.

[14] D. W. Kim and D. K. Jeong, “A 32 x 32 Self-Timed Multiplier with Early

Completion”, Proceedings of the Second IEEE Asia Pacific Conference, 1999.

[15] K. Z. Pekmestzi, “Multiplexer-Based Array Multipliers”, IEEE Transactions on

Computers, vol. 48, no. 1, pp.15-23, Jan. 1999.

[16] A. Inoue, R. Ohe, S. Kashiwakura, S. Mitari, T. Tsuru, T. Izawa and G. Goto,

“A 4.1ns Compact 54 x 54–bit Multiplier Using Sign Select Booth Encoders”,

IEEE International Solid State Circuits Conference, Digest of Papers, San

Francisco, 1997.

[17] A. R. Attarha, M. Nourani and M. Zakeri, “High Performance Low-Power

Signed Multiplier”, International Conference of Engineering Education, 1999.

[18] Y. Jiang, “Design and Implementation of Low-Power ASIC Components”,

Ph.D. Thesis, University of Texas at Dallas, Dept. of Computer Science, Texas,

2001.

[19] P. C. H. Meier, “Analysis and Design of Low Power Digital Multipliers”, Ph.D.

Thesis, Carnegie Mellon University, Dept. of Electrical and Computer

Engineering, Pittsburgh, Pennsylvania, 1999.

[20] S. Hong, “Performance Driven VLSI System Design for Low Energy Wireless

Communications”, Ph.D. Thesis, University of Michigan, Dept. of Electrical &

Electronics Engineering, Michigan, 2000.

 55

[21] A. Y. Chitari, “VLSI Architecture For A 16–bit Multiply-Accumulator (MAC)

operating in multiplication time”, M.Sc. Thesis, Texas A&M University, Dept.

of Electrical & Electronics Engineering, Kingsville, 2000.

[22] K. R. Chada, “Design and Delay Analysis of a Multiplexer based Array

Multiplier”, M.Sc. Thesis, Texas A&M University, Dept. of Electrical &

Electronics Engineering, Kingsville, 2001.

 53

6. REFERENCES

[1] M. S. Elrabaa, I. S. Abu-Khater and M. I. Elmasry, Advanced Low-Power

Digital Circuit Techniques, Kluwer Academic Publishers, 2000.

[2] K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design, John Wiley &

Sons, 1999.

[3] A. P. Chandrakasan and R. W. Brodersen, Low-Power Digital CMOS Design,

Kluwer Academic Publishers, 1995.

[4] D. A. Pucknell and K. Eshraghian, Basic VLSI Design, Upper Saddle River:

Prentice Hall, 1994.

[5] A. Bellaouar and M. I. Elmasry, Low-Power Digital VLSI Design Circuits and

Systems, Kluwer Academic Publishers, 1997.

[6] W. Wolf, Modern VLSI Design Systems on Silicon, Upper Saddle River:

Prentice Hall, 1998.

[7] J. B. Kuo and J. H. Lou, Low Voltage CMOS VLSI Circuits, John Wiley & Sons,

1999.

[8] S. S. Rofail and K. S. Yeo, Low-Voltage Low-Power Digital BiCMOS Circuits,

Upper Saddle River: Prentice Hall, 2000.

[9] B. Parhami, Computer Arithmetic Algorithms and Hardware Designs, Oxford

University Press, 2000.

[10] A. Chandrakasan, W. J. Bowhill and F. Fox, Design of High Performance

Microprocessor Circuits, IEEE Press, 2001.

 54

[11] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design A System

Perspective, Second Edition, Massachusetts: Addison-Wesley, 1992.

[12] S. Kang and Y. Leblebici, “CMOS Digital Integrated Circuits Analysis and

Design”, McGraw Hill, 1996.

[13] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki and Y.

Nakagome, “A 4.4ns CMOS 54 x 54-bit Multiplier Using Pass Transistor

Multiplexer”, IEEE Journal of Solid-State Circuits, vol.30, no. 3, pp.252-257,

March, 1995.

[14] D. W. Kim and D. K. Jeong, “A 32 x 32 Self-Timed Multiplier with Early

Completion”, Proceedings of the Second IEEE Asia Pacific Conference, 1999.

[15] K. Z. Pekmestzi, “Multiplexer-Based Array Multipliers”, IEEE Transactions on

Computers, vol. 48, no. 1, pp.15-23, Jan. 1999.

[16] A. Inoue, R. Ohe, S. Kashiwakura, S. Mitari, T. Tsuru, T. Izawa and G. Goto,

“A 4.1ns Compact 54 x 54–bit Multiplier Using Sign Select Booth Encoders”,

IEEE International Solid State Circuits Conference, Digest of Papers, San

Francisco, 1997.

[17] A. R. Attarha, M. Nourani and M. Zakeri, “High Performance Low-Power

Signed Multiplier”, International Conference of Engineering Education, 1999.

[18] Y. Jiang, “Design and Implementation of Low-Power ASIC Components”,

Ph.D. Thesis, University of Texas at Dallas, Dept. of Computer Science, Texas,

2001.

[19] P. C. H. Meier, “Analysis and Design of Low Power Digital Multipliers”, Ph.D.

Thesis, Carnegie Mellon University, Dept. of Electrical and Computer

Engineering, Pittsburgh, Pennsylvania, 1999.

[20] S. Hong, “Performance Driven VLSI System Design for Low Energy Wireless

Communications”, Ph.D. Thesis, University of Michigan, Dept. of Electrical &

Electronics Engineering, Michigan, 2000.

 55

[21] A. Y. Chitari, “VLSI Architecture For A 16–bit Multiply-Accumulator (MAC)

operating in multiplication time”, M.Sc. Thesis, Texas A&M University, Dept.

of Electrical & Electronics Engineering, Kingsville, 2000.

[22] K. R. Chada, “Design and Delay Analysis of a Multiplexer based Array

Multiplier”, M.Sc. Thesis, Texas A&M University, Dept. of Electrical &

Electronics Engineering, Kingsville, 2001.

