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ABSTRACT 

  

 Calcium (Ca) is an essential mineral nutrient element involved in growth and 

development processes of plants.  There are several physiological processes, which are 

greatly affected by Ca nutritional status of plants such as cell extension, cell wall 

stabilization, signal transduction and membrane transport.  Based on the studies in 

mammalian systems Ca was found to be effective on activity of superoxide radical (O2
.-) 

generating NADPH oxidases and antioxidative defense systems.  The effects of Ca 

nutritional status of plants on NADPH oxidase and antioxidative defense systems in 

plant cells are rarely studied.  In the present MSc study, the role of Ca on O2
.- generating 

NADPH oxidase and antioxidative defense systems (i.e., superoxide dismutase, 

ascorbate peroxidase, glutathione reductase, catalase, ascorbic acid and non-protein 

sulfhydryl-compounds) was studied in cytosolic fractions of root cells by using bean 

(Phaseolus vulgaris, cv. Nassua) plants grown in nutrient solution with different Ca 

supplies (50 µM to 2000 µM).    

 The results obtained show that exposure of Ca-adequate plants (2000 µM Ca 

supply) to different levels of deficient Ca supply (50 µM to 250 µM Ca) reduced the dry 

matter production and elongation of roots and caused brownish color formation along 

the roots.  The decrease in root growth caused by Ca deficiency was more severe than 

the decrease in shoot growth. Compared to Ca-sufficient plants, the levels of NADPH 

oxidase and NADPH-dependent O2
.- generation were distinctly decreased in Ca-

deficient plants.  This decrease was more pronounced at the lowest Ca supply (50 µM).  

Resupply of Ca to Ca-deficient roots for 8, 24 and 48 h markedly enhanced the activity 

of NADPH oxidase and the NADPH-dependent O2
.- generation.  Pretreatment with the 

inhibitor of NADPH oxidase, diphenylene iodonium (DPI), inhibited the rate of 

NADPH-dependent O2
.- generation by around 50 %.  Analysis of antioxidant defense 



systems showed that Ca deficiency did not effect the ascorbic acid concentration, but 

markedly reduced the concentration of non-protein sulfhydryl (SH)-compounds 

(predominantly glutathione).  Of the antioxidant enzymes, the superoxide dismutase, 

ascorbate peroxidase and catalase were not affected by Ca deficiency stress in roots.  

However, the activity of glutathione reductase was severely diminished by Ca 

deficiency, indicating a particular affect of Ca on redox status of glutathione in roots.  

The results indicate that Ca is required for generation of O2
.- by activating NADPH 

oxidase in root cells.  As NADPH-dependent O2
.- generation is involved in adaptive 

response of plants to different biotic and abiotic stress factors, maintenance of high 

activity of NADPH oxidase by adequate Ca supply was considered as a fundamental 

role of Ca in growth and development processes of plants.     

Keywords: calcium deficiency, Phaseolus vulgaris, root, NADPH oxidase, superoxide 

radical, antioxidant defense system 

 

 

 

 

 

 

 

 

 



 

 

ÖZET 

  

 Kalsiyum (Ca) bitkilerin büyüme ve gelişmesi için mutlak gerekli bir besin 

elementidir.  Örneğin hücre genişlemesi, hücre duvarının güçlenmesi, sinyal iletimi ve 

membran taşınımı gibi birçok fizyolojik süreç bitkilerin Ca beslenmesinden çok 

etkilenmektedir.  Memeli sistemlerinde yapılan çalışmalara göre, superoksit radikal 

üreten NADPH oksidaz aktivitesi ve antioksidatif savunma sistemleri üzerinde Ca’un 

önemli etkilisi bulunmaktadır.  Bitkideki Ca’un NADPH oksidaz ve antioksidatif 

savunma sistemleri üzerindeki etkisi çok az çalışılmıştır.  Bu yüksek lisans çalışmasında 

Ca’un süperoksit üreten NADPH oksidaz ve antioksidatif savunma sistemleri 

(süperoksit dismutaz, askorbat peroksidaz, glutation redüktaz, katalaz, askorbik asit ve 

SH-grupları) üzerindeki rolü değişik oranlarda Ca içeren (50 µM‘dan 2000µM’a) besin 

çözeltilerinde yetişen fasulye bitkisinin (Phaseolus vulgaris, cv Nassua) kök 

hücrelerinin sitozolik fraksiyonu kullanılarak çalışılmıştır. 

 Elde edilen bulgular, yeterli miktarda Ca (2000 µM) ile beslenen bitkilere farklı 

oranda düşük Ca dozları (50 µM‘dan 2000µM’a) uygulandığında kuru madde 

üretiminin ve köklerin uzamasının azaldığını ve köklerin kahverengileştiğini 

göstermiştir.  Kalsiyum eksikliğinin neden olduğu kök büyümesindeki azalmanın yeşil 

aksam büyümesindeki azalmaya oranla daha şiddetli olduğu bulunmuştur.  Yeterli Ca 

ile beslenen bitkilerle karşılaştırıldığında NADPH oksidaz aktivitesi ve NADPH’a 

bağımlı O2
.- üretimi Ca noksanlığındaki bitkilere ölçütle azalmıştır.  Bu azalma en 

düşük Ca uygulamasında daha belirgin olmuştur.  Kalsiyum eksikliğindeki köklere 8, 24 

ve 48 saat süreyle Ca uygulaması NADPH oksidaz aktivitesini ve NADPH’a bağımlı 

O2
.- seviyesini tekrar arttırdığını göstermiştir.  NADPH oksidazın inhibitörü, dipenil 

iyodiniyum (DPI), NADPH’a bağımlı O2
.- üretiminin % 50 oranında azalmasını 

sağlamıştır.  Antioksidatif  savunma sistemlerinin analizlerinde Ca eksikliği askorbik 



asit konsantrasyonunu etkilemezken, SH-gruplarının (temel glutation) 

konsantrasyonunu ise belirgin bir biçimde azaltmıştır.  Antioksidatif enzimlerden, 

süperoksit dismutaz, askorbat peroksidaz ve katalaz aktivitesi köklerde Ca eksikliği 

stresinden etkilenmemiştir.  Ancak, glutation redüktaz aktivitesinin Ca eksikliğinden 

dolayı büyük oranda azalması, köklerdeki glutationun redox durumu üzerinde Ca’un 

etkisinin olduğunu göstermektedir.  Sonuçlar, kök hücrelerinde NADPH oksidaz 

aktivasyonuyla oluşan O2
.- üretimi için Ca’un gerekli olduğunu işaret etmektedir.  

NADPH’a bağımlı O2
.- üretimi bitkilerin değişik biyotik ve abiyotik stres faktörlerine 

karşı adaptasyonunda rol almasından dolayı Ca’un NADPH oksidaz üzerindeki bu 

olumlu etkisi, onun bitkilerin çevresel etmenlere karşı adaptasyonda ne denli önemli 

olduğunu göstermektedir.   

 

Anahtar Kelimeler: kalsiyum eksikliği, Phaseolus vulgaris, kök, NADPH oksidaz, 

süperoksit radikali, antioksidatif savunma sistemi 
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1 INTRODUCTION 

 High productivity and healthy growth of plants rely on adequate and balanced 

supply of mineral nutrient elements.  Limited supply of one of these mineral nutrients 

adversely affects the productivity of plants. Calcium (Ca) is one of the major essential 

nutrient element that has an effect on both plant growth, development and also quality 

of harvested plant parts (Marschner, 1995; Mengel and Kirkby, 2001; Rudd and 

Franklin-Tag, 2001; Foreman et al., 2003).  Plants suffer from Ca deficiency stress 

because of the factors that prevent either the availability of Ca in the soil (soil acidity, 

Al toxicity) or limit the transport of Ca into the actively growing points of plants; i.e., 

sink organs, young leaves, fruits, shoot apex (i.e., high humidity).  Major reasons for 

limited Ca transport into the growing points of plants are extremely low mobility of Ca 

in phloem and very low transpiration capacity of the sink organs (Marschner, 1995; 

Golez and Kyuma, 1997; Mengel and Kirkby, 2001; Fageria, 2002; Goenaga and Smith, 

2002).  Well-known disorders of Ca deficiency in plants include blossom-end rot in 

tomatoes and peppers, tipburn in lettuce, and bitter pit in apples (Saure, 1998, 2001; 

Mengel and Kirkby, 2001; Schmitz-Eiberger et al., 2002).  

 In recent years, Ca has attracted much interest in plant physiology and molecular 

biology because of its function as a second messenger in the signal conduction between 

environmental factors and plant responses in terms of growth and development (Price et 

al., 1994; Sanders et al., 1999; Rudd and Franklin-Tag, 2001).  When taken up into the 

plant system, Ca is involved in the regulation of plant responses to various biotic and 

abiotic stresses by contributing either directly or indirectly in plant defense mechanisms  

 During biotic stress conditions (e.g., elicitor or pathogen attack), Ca plays a 

pivotal role in regulation of reactive oxygen species (ROS) production, primarily 
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superoxide (O2
.-) and H2O2, by activating of O2

.- generating  NADPH oxidase.  

Activation of O2
.--generating NADPH oxidase leads an oxidative burst (stress) at the 

site of  pathogen attack (Sagi and Fluhr, 2001).  Also, Ca serves as a common 

component of signal transduction pathways induced by many different stomatal closing 

signals during pathogen attack and also during abiotic stress as shown at heat stress 

(McAinsh et al., 1996; Lee et al., 1999; Rudd and Franklin-Tag, 2001; Fu and Huang, 

2003). 

 It is well documented that ROS are highly toxic to plant cells and pathogens and 

can involve in signal transduction (Mendy et al., 1996; Grant and Loake, 2000; Rudd 

and Franklin-Tog, 2001).  Plant cells are well equipped against damaging attack of ROS 

and possess antioxidative defense mechanisms to detoxify ROS, such as superoxide 

dismutase (SOD), glutathione reductase (GR), and catalase (CAT) (Mittler, 2002.). 

 Besides the contribution to the pathogen-induced oxidative burst in plants (Grant 

et al., 2000; Rudd and Franklin-Tog, 2001), Ca also alleviates the oxidative damage 

caused during abiotic stresses (heat, water, and drought) by affecting the activity of 

antioxidants (GR, SOD and CAT) and decreasing the membrane lipid peroxidation 

(Jiang and Huang, 2001; Nayyar and Kaushal, 2002a, 2002b; Fu and Huang, 2003). 

 Although there are a large number of studies dealing with the requirement of Ca 

in either plant growth and development or responses to biotic and abiotic stresses, 

limited research has been conducted concerning effects of Ca supply on O2
.- generating 

NADPH oxidase activity and the antioxidative defense system in plant cells (Schmitz-

Eiberger et al., 2002).  Therefore, in this MSc thesis project, the effects of varied supply 

of Ca on the activity of O2
.- generating NADPH oxidase and antioxidative defense 

system in bean roots were investigated.  Experiments were conducted under controlled 

environmental conditions using bean plants (cultivar Nassua) by measuring the activity 

of O2
.- generating NADPH oxidase and the level of antioxidative defense system in 

cytosolic fractions of root cells.  Additionally, root and shoot dry matter production and 

Ca concentrations were measured at different Ca supplies.   
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2 PREVIOUS STUDIES 

2.1 Calcium in Soil and Plant 

 The mean Ca concentration on earth’s crust amounts to about 36.4 g/kg.  

Although its concentration is high in soil, there are several plant and climatic factors 

that either influence the availability of Ca in soil or restrict the transport of Ca inside the 

plant cells.  The most common one that influences the availability of Ca in soils is soil 

acidity (Golez and Kyuma, 1997; Fageria, 2002; Goenaga and Smith, 2002).  Acid soils 

usually contain very high concentration of toxic Al, which limits chemical availability 

and uptake of Ca, and enhances precipitation of Ca in soils and blocking Ca channels in 

the plasma membrane, and thus causing occurrence of Ca deficiency in plants 

(Marschner, 1995; Mengel and Kirkby, 2001; Fageria, 2002; Goenaga and Smith, 

2002).  Interestingly, under certain conditions plants can suffer from Ca deficiency 

stress despite huge amounts of plant available Ca in soils and high Ca concentration in 

plants.  This is mainly because; the absorbance of Ca by roots or the translocation of Ca 

to the sink organs is prevented by either high humidity or the salt concentration of 

growth medium (Choi et al., 1997).   

 Mineral nutrition is an important external factor involved in plant growth and 

yield formation.   For the production of fruits and vegetables with high quality, an 

adequate Ca supply is particularly important.   If the xylem sap is low in Ca or the rate 

of transpiration of the fruits is poor, as occurs under humid conditions, inadequate levels 

of Ca can move into the fruits resulting in formation of Ca deficiency symptoms.  In 

tomato Ca deficiency disease is known as “blossom-end rot” and is characterized by a 
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cellular breakdown at the distal end of the fruit (Saure, 2001; Schmitz-Eiberger et al., 

2002).  In apple Ca deficiency problem is called “bitter pit” and characterized by 

occurrence of pitted small brown necrotic spots (Mengel and Kirkby, 2001).  Also, Ca 

deficiency causes of the “tipburn” disorder in leaves of different vegetables (Saure, 

1998). 

2.2 Biochemical Functions of Calcium in Plants 

 A wide variety of diverse biochemical functions are initiated by or associated with 

changes in cellular Ca.  Calcium is particularly important for structural stability and 

functional integrity of biological membranes and tissues.  It is well known that an 

adequate supply of Ca maintains membrane integrity and contributes to ion selectivity 

(Marschner, 1995; Grattan and Grieve 1999; Mengel and Kirkby, 2001).  Calcium binds 

as pectate in middle lamella of the cell wall for strengthening of the cell walls and plant 

tissues.  The proportion of Ca pectate in the cell wall is also important for the 

susceptibility of the tissues to fungal and bacterial infections (Marschner 1995; Lamb 

and Dixon, 1997).  The concentration of the Ca in the cytosol is extremely low and 

maintained in the range of 0.1-1.2 µM of free Ca, but such low calcium concentrations 

are so essential for various reasons, such as for the functioning of certain key enzymes 

including ATPases at the plasma membrane of roots and plasma membrane-bound 

NADPH oxidases (Marschner 1995; Keller et al., 1998).   

 Calcium has been found to be involved in the regulation of various responses of 

plants to biotic stresses caused by pathogen attacks (Yang and Poovaiah, 2002).  An 

indispensable role of Ca in plant cells during the plant response to microbial or elicitor 

attack is well established (Grant et al., 2000; Sagi and Fluhr, 2001).  During pathogen 

attacks, a membrane-bound enzyme resembling the neutrophil NADPH oxidase was 

identified to contribute to the pathogen-induced oxidative burst in plants by generating 

O2
.- which leads indirectly to the generation of ROS (reactive oxygen species) in plants. 

Presently it is widely accepted that NADPH oxidases are the major source of ROS 

produced during the oxidative burst in plants (Mendy et al., 1996; Lamb and Dixon, 
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1997; Sagi and Fluhr, 2001).  Therefore, communication between Ca and ROS 

production in pathogen attack is mediated mostly through by NADPH oxidases.  The 

activity of NADPH oxidase, thus the production of both O2
.- and H2O2 is enhanced in 

the presence of Ca through either by the Ca binding domains (EF hands) located on the 

NADPH subunit of gp91phox or indirectly by activating NAD kinase activity (Keller et 

al., 1998; Torres et al., 1998; Sagi and Fluhr, 2001).   

 Although Ca is involved in plant responses to biotic stresses, it also regulates the 

plant responses to environmental stresses, including heat, and water.  Exogenously 

applied Ca alleviates heat injury and water stress by regulation of antioxidant activities 

such as GR, AP, and CAT, decreasing the membrane lipid peroxidation and helps plant 

cells to better survive during stress conditions (Jiang and Huang, 2001; Nayyar and 

Kaushal, 2002a; Fu and Huang, 2003).   

2.3 Generation and Detoxification of ROS in Plants 

 As indicated above, environmental stress factors such as nutrient deficiencies, 

extreme temperatures and drought disrupt cellular homeostasis leading to enhanced 

production of ROS.  Under such conditions the antioxidant enzyme activities can be 

suppressed causing peroxidation of cellular membranes (Foyer et al., 1997; Asada, 

1999).  ROS can be highly toxic even at low concentrations and can damage many 

important cellular components, such as chlorophyll, membrane lipids, protein SH-

groups, DNA, and RNA (Halliwell and Guttridge, 1985).     

 Plants have evolved various enzymatic and non-enzymatic mechanisms to 

minimize the damaging effects of ROS produced by environmental stresses.  Even 

under normal growth conditions, the production of ROS is unavoidable.  It is estimated 

that under non-stressed conditions, up to 20 % of photosynthetic electrons can be used 

in activation of molecular O2 and, this rate is increased when plants suffer from an 

environmental stress factor such as drought, salinity and nutrient deficiencies (Foyer et. 

al., 1997; Cakmak, 2000).  ROS are not only produced during photosynthesis.  There 
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are further cell organelles or metabolic processes producing ROS, such as during 

mitochondrial electron transport, photorespiration, and electron transport process on 

membranes.  ROS must be effectively detoxified especially at the sites where they can 

cause irreversible damages to cellular membranes, chlorophyll and DNA.  Plant cells 

are well equipped against ROS.  Reactive oxygen species are effectively scavenged by 

non-enzymatic detoxification mechanisms (e.g., vitamin C, α-tocopherol, carotenoids) 

and/or antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), 

ascorbate peroxidase (AP), and glutathione reductase (GR) (Mittler, 2002).      

 In enzymatic defense mechanism, superoxide dismutase (SOD) catalyzes the 

dismutation of O2
.- to H2O2 and O2 which regulates a low steady state concentration of 

O2
.- and, thus, minimizes hydroxyl radical formation by the superoxide radical catalyzed 

Haber-Weiss reaction (Halliwell and Guttridge, 1985; Bowler et al., 1992; Scandalios 

JG, 1993; Alscher et al., 2002).  As mentioned above, generation of O2
.- in chloroplasts 

is stimulated when plants are exposed to environmental stresses that limit 

photosynthetic CO2 fixation, thus intensifies electrons flow to O2 with concomitant 

generation of O2
.- and other reactive oxygen species (Foyer et al., 1997; Asada, 1999).  

Hydrogen peroxide is eliminated by catalase and peroxidases (Halliwell and Guttridge, 

1985; Foyer et al., 1994; Bolwell and Wojtaszek, 1997).  Catalases are peroxisomal 

enzymes that, in contrast to peroxidases, do not require a reducing substrate for their 

activity.   

 In plant cells, an alternative and more effective detoxification mechanism against 

H2O2 also exists in chloroplast and cytosol, called  “ascorbate-glutathione pathway” 

(Figure 2.1).  As described by Sharma and Davies (1997) and Asada (1999), in this 

detoxification mechanism H2O2 is reduced to H2O by ascorbate peroxidase (AP) and 

ascorbate is regenerated by the “ascorbate-glutathione cycle”, involving 

monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione 

reductase.  Ascorbate is first oxidized to monodehydroascorbate by AP.  

Monodehydroascorbate is converted to ascorbate.  The enzyme responsible for 

conversion of monodehydroascorbate to ascorbate is monodehydroascorbate reductase.  

When conversion of monodehydroascorbate to ascorbate does not take place quickly, 

then monodehydroascorbate will spontaneously disproportionate into ascorbate and 
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dehydroascorbate.  Dehydroascorbate recycles ascorbate with the contribution of 

reduced glutathione that is generated through the action of glutathione reductase in a 

NADPH-dependent reaction (Cakmak, 1994; Foyer et al., 1994).  The ascorbate-

glutathione pathway is also present in cytosol and has a crucial importance for 

detoxification of H2O2 produced in seeds during germination (Cakmak et al., 1993). 

 

 

  

  

 

Figure 2.1 The ascorbate-glutathione pathway operating mainly in chloroplast to 
detoxify H2O2. MDAsA: monodehydroascorbate, DHAsA: dehydroascorbate, GSSG: 
oxidized glutathione, GSH: reduced glutathione 

 Ascorbic acid, glutathione, and α-tocopherol have each been shown to act as 

critical antioxidants playing a central role in the detoxification of ROS in plant cells 

under various stress conditions.  They can either directly react with ROS and remove 

them, or contribute to enzyme-catalyzed detoxification reactions (Halliwell and 

Guttridge, 1985; Noctor and Foyer, 1998).  Ascorbate is a major primary antioxidant, 

reacting directly with hydroxyl radical (OH.), superoxide (O2
.-) and singlet oxygen 

(1O2).  It indirectly eliminates H2O2 through the activity of ascorbate peroxidase (AP) 

during the ascorbate-glutathione cycle (Halliwell and Guttridge, 1985; Foyer at al., 

1994; Foyer et al., 1997; Noctor and Foyer, 1998; Conklin, 2001).  Ascorbate also acts 

as a reductant (electron donor) in the regeneration of α-tocopherol.  Another important 

soluble antioxidant is glutathione, which is capable of detoxifying 1O2 and OH.. 

Glutathione protects thiol groups in enzymes, and involves in α-tocopherol and 

ascorbate regeneration through the glutathione-ascorbate cycle (Foyer et al., 1994; 

Noctor and Foyer, 1998; Niyogi, 1999).   
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 The levels of enzymatic and non-enzymatic antioxidant defense mechanism are 

affected by different factors, especially by mineral nutritional status of plants.  For 

example, under Mg deficiency antioxidant mechanisms are generally activated and 

showed impressive increases (Cakmak and Marschner, 1992).  By contrast, B 

deficiency decreased glutathione reductase and ascorbic acid levels (Cakmak and 

Römheld, 1997) and Zn deficiency depressed SOD activity (Cakmak, 2000). 

 Studies dealing with effect of Ca deficiency on antioxidant enzymes are very rare. 

In tomato plants, Ca deficiency was found to decrease SOD activity and levels of 

ascorbic acid and α-tocopherol (Schmitz-Eiberger et al., 2002).  Because of the limited 

research on the effects of Ca deficiency on antioxidative defense mechanism and also 

NADPH oxidase, in this MSc work, we focused on measurement of activity of O2
.- 

generating NADPH oxidase and antioxidative defense mechanisms in bean root cells 

grown by different Ca treatments.    
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3 MATERIALS AND METHODS 

3.1 Plant Material and Growth Conditions 

 Bean plants (Phaseolus vulgaris, cultivar Nassua) were grown in growth camber 

under controlled environmental conditions (light/dark regime: 16/8 h at 20/18˚C, 

relative humidity: 65-75 %, photon flux density: 380 µmol m-2 s-1).  Seeds were first 

sterilized with 1% (w/v) calcium hypochlorite for 10 min, and then sown in perlite 

moistened with saturated CaSO4 solution and finally kept in the dark for 5 days.  The 

seedlings were then transferred to 2.5 L plastic pots containing aerated nutrient solution.  

The composition of the nutrient solution was as follows: 1mM MgSO4.7H20, 0.9 mM 

K2SO4, 0.2 mM KH2PO4, 10-6 M H3BO3, 2х10-7 M MnSO4.H2O, 10-6 M ZnSO4.7H20, 

2х10-7 M CuSO4.5H2O, 2х10-8 M (NH4)6Mo7O24.4H20, and 10-4 M FeEDTA 

(C10H12FeN2NaO8).  After transfer of seedlings into the nutrient solution, all plants were 

supplied adequately by Ca.  Calcium was supplied at concentration of 2 mM in the form 

of Ca(NO3)2.4H2O for the first 3 days   After 3 days, parts of plants were transferred 

into a nutrient solution containing different levels of deficient Ca supplies (50, 100 and 

250 µM Ca supply).  The concentrations and duration of low Ca supplies were indicated 

in the legend of relevant figures and tables.  For control plants (Ca-sufficient plants) Ca 

was always supplied as 2 mM Ca(NO3)2.4H2O.   

 Plants were harvested after 5 days growth in low Ca supplied nutrient solution.  

At harvest, roots and shoots were separated.  Roots were rinsed with 0.1 mM EDTA for 

about 10 min to remove surface adsorbed Ca and then deionised water throughly.  Then, 

roots and shoots were dried at 70 ˚C for determination of dry matter production and Ca 
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concentration.  For the analysis of enzymes and antioxidants, only roots were sampled 

and stored in liquid nitrogen until analysis.  

3.2 Methods 

3.2.1 Dry Matter Production and Measurements of Calcium Concentration 

 Shoot and root dry matter production was determined after drying plant samples at 

70 ˚C.  Approximately 0.2 g ground samples were ashed at 500 ˚C for 8 h and then 

dissolved in 3.3 % HCl.  The concentration of Ca was determined by atomic absorption 

spectrometry (AAS).  Calcium measurements in plant materials were checked against 

certified Ca values in different reference plant materials obtained from the National 

Institute of Standards and Technology (Gaithersburg, USA). 

3.2.2 Determination of Non-Protein SH-Groups 

 The levels of non-protein sulfhydryl groups were determined colorimetrically 

using 5-5’-dithiobis- (2 nitro benzoic acid) (DTNB) following extraction of 

approximately 0.5 g fresh root sample with 5 % meta-phosphoric acid as described in 

Cakmak and Marschner (1992).  The reaction mixture contained 0.5 ml aliquot of the 

5000 g supernatant, 2.5 ml 150 mM phosphate buffer (pH 7.5) containing 5 mM EDTA 

and 0.5 ml 6 mM DTNB.  After incubation at room temperature for 20 min, the color 

produced was measured at 412 nm using reduced glutathione as a standard in the range 

of 0 to 100 µg ml-1. 
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3.2.3 Determination of Total Ascorbate Levels 

 Total ascorbate was determined according to Cakmak and Marschner (1992) with 

some modifications.  Usually 0.5 g root samples were extracted with 5 ml 5 % meta-

phosphoric acid and centrifuged at 5000 g for 30 min.  Total ascorbate (AsA + DAsA) 

was measured after the reduction of DAsA (oxidized ascorbic acid) to AsA (reduced 

ascorbic acid) with DTT (1,4 dithiothreitol).  The reaction mixture for total ascorbate 

contained 0.2 ml aliquot of the 5000 G supernatant, 0.5 ml 150 Mm phosphate buffer  

(pH 7.4) containing 5 mM EDTA, 0.1 ml 10 mM DTT (dithioothreitol) and 0.1 ml 0.5 

% N-ethylmaleimide (NEM) to remove excess DTT.  In reaction mixture the color was 

developed after addition of the following reagents:  0.4 ml 10 % TCA, 0.4 ml 44 % 

ortho-phosphoric acid, 0.4 ml 4 % 2,2’-bipyridine in 70 % ethanole, and 0.2 ml 3 % 

FeCl3.  Then, the mixture was incubated at 40 ˚C for 40 min and the color produced was 

read at 525 nm using L(+) ascorbic acid as a standard in the range of 0 to 100 µg ml-1. 

3.2.4 Assays of Antioxidative Enzymes 

 For the preparation of the root extracts, root tissue was homogenized using mortar 

and pestle with 6-8 ml of ice-cold 50 mM phosphate extraction buffer (pH 7.6) 

containing 0.1 mM Na-EDTA, 0.5 mM dithiothreitol (DTT), 1 mM 

phenylmethylsulfonyl fluoride (PMSF), and 0.3 % (w/v) polyvinylpyrrolidone.  The 

homogenized samples were first centrifuged at 5000 g for 15 min (pellet discarded) and 

at 60,000 g for 120 min.  The resultant supernatant was used for assay of enzymes.  

With the exception of SOD, all enzyme activities were measured in a final volume of 1 

cm3 at 25 ˚C. 

3.2.4.1 Ascorbate Peroxidase Activity   

 Ascorbate peroxidase (AP) activity was determined according to Cakmak (1994) 

by following the decrease in absorbance at 290 nm (extinction coefficient 2.8 mM cm-1) 
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in a 1 ml of reaction mixture containing 50 mM phosphate buffer (pH 7.6), 0.1 mM 

EDTA, 12 mM H2O2, 0.25 mM ascorbic acid and the enzyme extract.  Correction was 

done for the very low, non-enzymatic oxidation of ascorbic acid by H2O2. 

3.2.4.2 Glutathione Reductase Activity 

 Activity of glutathione reductase (GR) was measured according to Cakmak and 

Marschner (1992) by monitoring the oxidation of NADPH at 340 nm (extinction 

coefficient 6.2 mM cm-1).  The reaction mixture (1 ml) contained 50 mM phosphate 

buffer (pH 7.6), 0.1 mM EDTA, 0.5 mM oxidized glutathione (GSSG), 0.12 mM 

NADPH, and the enzyme extract.  Corrections were made for the background 

absorbance at 340 nm without NADPH. 

3.2.4.3 Superoxide Dismutase Activity 

 Activity of superoxide dismutase (SOD) was assayed by a photochemical method 

described in Cakmak and Marschner (1992) and based on a SOD-inhibitable reduction 

of nitro blue tetrazolium chloride (NBT) by superoxide radicals. Assays were carried 

out under illumination in growth chamber.  For the SOD assay, the reaction medium (5 

ml) was consisted of 50 mM phosphate buffer (pH 7.6), 0.1 mM Na-EDTA, enzyme 

extracts (50-150 µl), 50 mM Na2CO3 (pH 10.2), 12 mM L-methionine, 75 µM p-nitro 

blue tetrazolium chloride (NBT) and 2 µM riboflavin was maintained in a glass vials.   

The assay was illuminated under a light intensity of about 400 µE m-2 s-1 for 10 min.  

The amount of enzyme extract that caused a 50 % decrease in the SOD-inhibitable NBT 

reduction was defined as 1 unit.   
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3.2.4.4 Catalase Activity 

 Catalase (CAT) activity was determined by following the consumption of H2O2 at 

240 nm (extinction coefficient 39.4 mM cm-1).  The reaction medium (1 ml) contained 

50 mM phosphate buffer (7.6), 0.1 mM EDTA, 0.1 ml 100 mM H2O2 and the enzyme 

extract (Cakmak and Marschner, 1992). 

3.2.5 Measurement of NADPH-dependent O2
.- Generation 

 The assay of NADPH-dependent O2
.- generation in the 60.000 g supernatants of 

root extracts was carried out as described by Cakmak and Marschner (1988) with some 

modifications.  In the present study we used NBT instead of cytochrome c, and we 

measured the rate of SOD-inhibitable NBT reduction in the presence of NADPH.  

Reaction mixtures in reference and sample cuvettes contained 50 mM phosphate buffer 

(pH 7.6), 0.1 mM EDTA, 1µM KCN, 0.5 mM NBT, root extract and 50 µM NADPH in 

a total volume of 1 ml.  Superoxide dismutase was added to the reference cuvette to a 

final concentration of 25 µg ml-1 (100 U/100 µl).  After a 1 min preincubation the 

reaction was started by the addition of NADPH to both cuvettes, and the absorbance 

changes at 550 nm was followed usually for 5 min.  Rates of O2
.- -generation was 

calculated using an extinction coefficient of 12.8 mM-1 cm-1.  Under same conditions, 

NADPH oxidation was measured at 340 nm, except that NBT was omitted from the 

reaction mixture.  Rate of NADPH oxidation was calculated using an extinction 

coefficient of 6.2 mM-1 cm-1.  
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4 RESULTS 

4.1 Calcium Deficiency Symptoms and Root and Shoot Dry Matter Production 

 The first visible characteristic reaction of bean plants to Ca deficiency was the 

decrease in root elongation (Figure 4.1).  Reduction in root elongation was observable 

within one day following transfer of Ca-adequate plants (2000 µM Ca supply) into Ca-

deficient (50 µM Ca supply) nutrient solution. The reduction in root elongation was 

followed by the development of brownish color along the roots (Figure 4.2). The roots 

of bean plants supplied with adequate Ca did not turn to brown color and not fail to 

elongate. Interestingly, during decreases in root elongation and brownish color 

formation on the roots, there was no change in shoot growth and no leaf symptoms of 

Ca deficiency at least within the first 2-3 days of Ca deficiency treatments. 

 Accordingly, root growth was much more affected by Ca deficiency than shoot 

growth (Figure 4.1 and 4.2).  As presented in Table 4.1, deficient supply of Ca distinctly 

reduced root growth but caused very little effect on shoot growth.  For example, by 

decreasing Ca supply in nutrient solution from 2000 to 50 µM, the root dry weight 

decreased by 36 % while the shoot dry weight decreased only by 5 % (Table 4.1).  Such 

differential response of root and shoot growth to low Ca supply caused a higher 

shoot/root dry weight ratio in Ca deficient plants (Table 4.1).  

 Re-supply of a sufficient Ca (2000 µM) to Ca-deficient plants enhanced dry 

matter production of plants within 2 days (Table 4.2). Increases in dry matter production 

due to Ca re-supply to Ca-deficient plants became more distinct with time especially for 
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the root dry matter production. The increase in root dry weight by Ca re-supply was 

around 36 % for the 48 h re-supply treatment while for shoots this increase was only 10 

% (Table 4.2).  Both root and shoot dry weight of plants was not affected within 8 hours 

re-supply of Ca. 

 

Figure 4.1 Effect of increasing Ca supply on shoot and root growth of bean plants 
grown for 13 days in nutrient solution.  Low Ca doses (50-250 µM) were applied when 
plants were 8 days old in nutrient solution. 

 

 

Figure 4.2 Inhibition of root elongation and formation of brownish color along the roots 
of Ca-deficient (50 µM) bean plants. 
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Table 4.1 Effect of increasing Ca supply on shoot dry weight and shoot to root ratio in 
bean plants grown for 13 days in nutrient solution.  Plants were exposed to low Ca (50-
250µM) treatments when they were 8 days old.  The data represent mean±SD from four 
independent replications. 
                 

Ca supply 

  

Shoot 

Dry weight  

Root 

Dry weight  

Shoot/Root

 

(µM)  (g plant-1)   

         

2000*  0.73±0.07  0.23±0.02  3.2 

250  0.71±0.07  0.20±0.01  3.6 

100  0.69±0.04  0.19±0.01  3.6 

50  0.69±0.05  0.15±0.02  4.7 

                 

*Adequate Ca supply. 

 

Table 4.2 Shoot and root dry weights and shoot to root ratio in 13-days-old bean plants 
treated with sufficient (2000 µM) and/or deficient (50 µM) Ca for different times.  
Resupply of Ca to Ca-deficient plants was realized at concentration of 2000 µM for 8h, 
24h and 48h before the harvest of plants.  The data represent mean±SD from four 
independent replications 

               

Ca supply 

  

Shoot 

Dry weight  

Root 

Dry weight  

Shoot/root

 

(µM)  (g plant-1)   

         

2000    0.81 ±0.01  0.20±0.03  4.2 

50    0.71 ±0.05  0.14±0.02  5.0 

        

     50+  8h Ca Resupply*    0.72 ±0.06  0.14±0.01  5.0 

     50+24h Ca Resupply    0.76 ±0.01  0.16±0.03  4.8 

     50+48h Ca Resupply    0.79 ±0.07  0.19±0.02  4.2 

                  

* Ca-resupply to deficient plants: 2000 µM. 
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4.2 Calcium Concentration and Content 

 There was a close relationship between the amount of Ca in nutrient solution and 

Ca concentration of bean plants.  With increasing supply of Ca from 50 µM to 200 µM 

Ca concentration of shoot was increased by a factor of 5 (Table 4.3).  When compared 

to shoot, root had much less Ca concentration indicating very high mobility and 

transport of Ca from root into shoot.  Similarly, total amount of Ca (Ca content) per 

plant was markedly enhanced by increasing Ca supply (Table 4.3). 

 Re-supply of Ca to Ca-deficient plants enhanced Ca concentration of plants very 

rapidly, especially in shoots (Table 4.4).  Already within 8 hours of Ca re-supply, shoot 

and root concentrations of Ca were clearly increased.  This increase was around 2-fold 

in root following 8 h re-supply of Ca.  However, there was no further increase in root 

Ca concentration after 24 h or 48 h Ca re-supply.  In contrast to roots, Ca concentrations 

of shoots progressively increased with duration of Ca re-supply to Ca-deficient plants 

(Table 4.4). 

 It seems that most of the re-supplied Ca was taken up and rapidly transported into 

shoots.  This can also be seen in shoot content of Ca.  During 48 h re-supply of Ca, 

shoot content was increased by around 8-fold, while for roots this increase was only 2.5 

fold (Table 4.4). 
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Table 4.3 Effect of increasing Ca supply on concentration and content (total amount) of Ca in shoots and roots of   bean plants grown for 13 
days in nutrient solution.  Plants were exposed to low Ca supplies (50-250µM) when they were 8 days old in nutrient solution.  The data 
represent mean±SD from four independent replications. 

 

 
           

Ca supply   Ca concentration Ca content 

(µM)  (%) (mg plant-1) 

    Shoot   

2000  1.54±0.10 11.14±0.74 

250  0.59±0.04 4.23±0.52 

100  0.41±0.03 2.83±0.18 

50  0.29±0.02 2.03±0.26 

    Root   

2000  0.27±0.01 0.61±0.03 

250  0.16±0 0.31±0.10 

100  0.13±0.01 0.25±0.02 

50   0.12±0.01 0.18±0.01 
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Table 4.4 The concentration and content of Ca in shoots and roots of 13-days-old bean plants treated with deficient doses of Ca.   Ca-deficient 
plants (50 µM) were exposed to Ca for 8h, 24h and 48h at concentration of 2000 µM before the harvest.  The data represent mean±SD from four 
independent replications. 

 

Ca supply   Ca concentration Ca content 

(µM)  (%) (mg plant-1) 

    Shoot   

2000  2.03±0.10 16.15±0.92 

50  0.23±0.02 1.64±0.10 

     

  50+  8h Ca Resupply*  0.32±0.04 2.28±0.29 

50+24h Ca Resupply  0.43±0.14 3.35±1.41 

50+48h Ca Resupply  1.48±0.01 11.63±1.12 

    Root   

2000  0.23±0.01 0.46±0.08 

50  0.08±0 0.12±0.02 

      

  50+  8h Ca Resupply*  0.16±0 0.23±0.02 

50+24h Ca Resupply  0.14±0.03 0.21±0.05 

50+48h Ca Resupply   0.16±0.01 0.30±0.03 

*Ca-resupply to deficient plants: 2000 µM 
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4.3 Non-Protein SH-Groups 

 The concentration of non-protein SH-groups showed a high sensitivity of 

decreasing Ca supply (Figure 4.3A).  With decreasing Ca supply a rapid decline in 

concentration of SH-groups was found in roots. The concentration of SH groups 

reduced from 66 to 27 mg g-1 FW by decreasing Ca supply from 2000 to 50µM (Figure 

4.3A). This decrease was especially found at 100 and 50 µM Ca applications.    As the 

root growth was severely decreased by Ca supply, the total amount of SH-groups per 

root could be much lower when compared to Ca-sufficient plants. 

4.4 Ascorbic Acid Concentration 

 In contrast to the non-protein SH-groups, varied Ca supply did not result in a 

consistent effect on ascorbic acid concentration of roots (Figures 4.3B).  Decreasing Ca 

supply tended to increase ascorbic acid concentration, but this effect was not clear due 

to large standard deviation at 100 µM Ca supply (Figure 4.3B).  The reason for irregular 

changes of ascorbic acid levels in Ca-deficient roots could not be understood. 
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Figure 4.3 Changes in the concentration of non-protein SH-groups (above) and ascorbic 
acid concentrations (below) in roots of 13 d-old bean plants exposed to increasing Ca 
supply from 50 µM to 2000 µM.  Bars represent the mean±SD of four independent 
replications. 
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4.5 Glutathione Reductase 

 Bean roots responded to enhanced Ca supply with a marked increase in the 

activity of glutathione reductase (GR) (Figure 4.4). A reduction in the activity of GR 

was already detected starting from the 250 µM Ca supply and became more distinct at 

the 50 µM Ca treatment.  The decrease in GR activity by severe Ca deficiency was 

approximately 3-fold (Figure 4.4).   
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Figure 4.4 Changes in the activity of glutathione reductase (GR) in roots of 13 d-old 
bean plants exposed to increasing Ca supply from 50 µM to 2000 µM.  Bars represent 
the mean±SD of four independent replications. 

4.6 Ascorbate Peroxidase 

 Similar to ascorbic acid concentration also ascorbate peroxidase (AP) activity was 

not affected by different Ca treatments (Figure 4.5).  There was a slight tendency to 

decrease in AP activity by increasing Ca supply. 
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Figure 4.5 Changes in the activity of ascorbate peroxidase (AP) in roots of 13 d-old 
bean plants exposed to increasing Ca supply from 50 µM to 2000 µM.  Bars represent 
the mean±SD from four independent replications. 

4.7 Catalase 

 Also catalase activity did not show any consistent change by increasing Ca supply 

(Figure 4.6). 

4.8 Superoxide Dismutase 

 Varied supply of Ca did not affect the activity of superoxide dismutase (SOD) in 

roots of bean plants (Figure 4.6). 

 



 

 24

0

10

20

30

40

50

50 100 250 2000
Ca supply

(µM)

C
at

al
as

e 
(n

m
ol

 m
g-1

Pr
t.m

in
-1

)

 

Figure 4.6 Changes in the activity of catalase (CAT) in roots of 13 d-old bean plants 
exposed to increasing Ca supply from 50µM to 2000 µM.  Bars represent the mean±SD 
from four independent replications. 
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Figure 4.7 Changes in the activity of superoxide dismutase (SOD) in roots of 13 d-old 
bean plants exposed to increasing C supply from 50 µM to2000 µM.  Bars represent the 
mean±SD from four independent replications. 
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4.9 NADPH-dependent O2
.- Generation 

 Calcium deficiency depressed the activity of NADPH oxidase and NADPH 

dependent O2
.- generation in the cytosol fraction of bean roots (Table 4.5).  The 

decreases were more distinct in the case of NADPH oxidase.  With the lowest Ca supply 

(50 µM) NADPH oxidase activity of roots was decreased by around 50 % while 

NADPH-dependent O2
.- generation showed a decrease of around 30 %.  There was a 

very close positive relationship between Ca concentration in nutrient solution and 

activity of NADPH oxidase (Table 4.5).  Activities of both NADPH oxidase and 

NADPH-dependent O2
.- generation were sensitive to treatment with DPI (Diphenylene 

iodonium), an inhibitor of O2
.- generating NADPH oxidase activity.  DPI was effective 

to depress activity of enzymes by around 50 % (data not shown). 

Table 4.5 Changes in the activity of NADPH-dependent O2
.- generation and NADPH 

oxidase in cytosolic fraction of roots of 13 d-old bean plants exposed to increasing Ca 
supply from 50 µM (deficient) to 2000 µM (sufficient).  The data represent the 
mean±SD from four independent replications. 

      

Ca supply  

NADPH-dependent O2
.- 

generation  NADPH oxidase activity 

  (µmol mg-1 prt. min-1)  (µmol mg-1 prt. min-1) 

         

2000  6.6 ± 1.2  33.6 ± 9.2 

250  5.5 ± 0.6  25.3 ± 9.9 

100  5.5 ± 1.2  20.0 ± 7.7 

50  4.7 ± 1.0  17.6 ± 2.6 
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 In the second experiment, effect of Ca deficiency on O2
.- generating NADPH 

oxidase was studied over time and monitored during 5 days of Ca deficiency stress 

(Table 4.6).  Also in this experiment with the severity of Ca deficiency stress, O2
.- 

generation rate and NADPH oxidase activity showed a very clear decrease.  These 

decreases were also closely associated with appearance of brownish color formation 

along the roots.  These results together with those presented in Table 4.5 indicate the 

involvement of Ca in NADPH-dependent O2
.- generation process. 

 

Table 4.6 Changes in activities of NADPH-dependent O2
.- generation and NADPH 

oxidase in cytosolic fraction of root extracts over 5 days of Ca deficiency stress (50 
µM).  Low Ca supply was started following the growth of plants at 2000 µM Ca for 3 
days.  The data represent the mean±SD from four independent replications. 

                  

    

 Days of 

deficiency*  NADPH-dependent O2
.- generation   NADPH oxidase activity

  (µmol mg-1 prt. min-1)  (µmol mg-1 prt. min-1) 

         

    0**  8.8 ± 0.6  30.2 ± 8.1 

2  6.9 ± 0.4  25.1 ± 7.4 

3  6.4 ± 0.6  23.3 ± 1.2 

4  5.7 ± 1.1  19.0 ± 4.2 

5  4.6 ± 0.4  20.9 ± 3.8 

                  

** Control plant with adequate Ca supply (2000 µM) 

* Control plant  (2000 µM) transferred into solution containing 50 µM Ca 

  

 Resupply of 2000 µM Ca to Ca-deficient plants was highly effective to reverse the 

decrease in both NADPH oxidase and NADPH-dependent O2
.- generation in roots 

(Table 4.7).  As found in other experiments (Tables 4.5 and 4.6), at low Ca supply (50 

µM) activities of NADPH oxidase and O2
.- generation were severely depressed when 

compared to sufficient Ca supply (Table 4.7).  Resupply of Ca (2000 µM) to Ca-
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deficient plants enhanced activities of O2
.- generation and NADPH oxidase already 

within 8 hours.  This increase in activities by resupplied Ca continued and became 

pronounced after 48 h of Ca resupply, especially in the case of NADPH oxidation.  

Within 8 h  of Ca resupply, NADPH oxidase activity was enhanced by 2.3 fold (Table 

4.7). 

 

Table 4.7 Effect of varied Ca supply on NADPH-dependent O2
.- generation and 

NADPH oxidase in cytosolic fraction of root cells.  Resupply of Ca to Ca-deficient 
plants was started after 5 days growth at 50 µM Ca supply.  The data represent the 
mean±SD from four independent replications. 

 

                 

   

Ca supply  

NADPH-dependent O2
.- 

generation  NADPH oxidase activity

  (µmol mg-1 prt. min-1) (µmol mg-1 prt. min-1) 

         

2000  11.2 ± 0.8  27.9 ± 6.6 

50  5.9 ± 0.4  6.5 ± 2.5 

        

  50+  8h Ca Resupply*  6.3 ± 0.7  15.1 ± 5.1 

50+24h Ca Resupply  6.6 ± 0.4  13.6 ± 2.7 

50+48h Ca Resupply  8.0 ± 0.4  20.5 ± 2.6 

                

* Adequate Ca (2000 µM) resupplied to Ca deficient plants (50 µM) 
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5 DISCUSSION 

5.1 Leaf Symptoms and Growth 

 When compared to shoot growth, root growth showed much higher sensitivity to 

Ca deficiency (Figure 4.1 and 4.2).  The reason for higher sensitivity of roots to Ca 

deficiency can be related to the fact that Ca is essential for root elongation, density and 

length of the roots which are necessary for nutrient absorption (Juanin and Hofer, 1988; 

Marschner, 1995).  Additionally, once Ca is deposited in older leaves it cannot be 

mobilized to the growing tips (root tips, shoot apex) and the rate of downward 

translocation of Ca is extremely low due to the fact that Ca is transported in only very 

small concentrations in the phloem (Marschner, 1995).  When taken up by roots, Ca is 

very rapidly transported to shoot by xylem transport.  Consequently roots contain much 

lower Ca than shoots (Tables 4.3 and 4.4).  Therefore, in the case of resupply of Ca to 

Ca-deficient plants root growth was much stronger and earlier affected than shoot 

growth (Table 4.2). 

 Shoot growth remained more or less the same during Ca deficiency stress under 

given conditions (Table 4.1).  Therefore, shoot to root ratios showed an increase with 

increasing severity of Ca deficiency stress (Tables 4.1 and 4.2).  A similar behavior of 

shoot and root growth was also found in Mg- and K-deficient plants and attributed to 

lower transport of carbohydrates from shoot into root (Cakmak et al., 1994; Cakmak, 

1994).  There was no clear relationship between the shoot dry matter production and 
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shoot Ca concentration in bean plants. In the present study, shoots contained 81 % less 

Ca compared with the control plants but their dry matter production remained almost 

the same when compared with control plants (Table 4.1 and 4.3).  It seems that shoots 

may accumulate (store) more Ca than they need for their growth, and thus, when they 

are exposed to Ca deficiency conditions, they may provide physiologically available Ca 

from their stocks.  Consequently, their dry matter production may not be so affected in 

comparison to root growth.  

 With the begin of Ca deficiency treatment; there was a brown coloring formation 

along the roots.  This may be probably due to the brown melanin compounds resulting 

from polyphenol oxidation, which are associated with the deficient tissues.  DeKock et 

al. (1975) claimed that in tissues containing adequate amounts of Ca, this oxidation is 

inhibited by the chelation of the phenolic compounds by Ca.  A similar dark-browning 

of roots is also caused by B deficiency, and accumulation and oxidation of phenols is 

considered as a major reason for dark-browning of B-deficient roots (Cakmak and 

Römheld, 1997).  Also, Seling et al (2000) claimed that in potato plants containing 

inadequate amount of Ca tended to enhance the activity of polygalacturonase, which 

could control the breakdown of pectic polysaccharides in the cell wall and, thus, might 

lead to the occurrence of browning color formation along the roots.  

5.2  Calcium Uptake 

 Besides the differences in severity of Ca deficiency symptoms between shoots and 

roots, bean plants had different Ca concentrations in shoots and roots (Table 4.3).  As 

indicated above, shoots accumulated more Ca than roots under given conditions, 

especially at adequate Ca supply (Table 4.3).  Following exposure of plants to low Ca 

supply, shoots tended to decrease Ca uptake more clearly than the roots when compared 

with control plants (Table 4.3).  On the other hand, root growth was more distinctly 

inhibited than shoot growth, and the concentration of Ca in roots was lesser than the 

shoot Ca concentration.  As mentioned before, it seems likely that differential sensitivity 
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of shoots and roots to Ca deficiency may be related to the concentrations or contents of 

Ca accumulated in shoots and roots.   

 When re-supplied to deficient plants Ca was taken up and accumulated at greater 

amounts in shoots than roots (Table 4.4).  During the adequate re-supply of Ca to Ca-

deficient plants, shoots tended to take up 3-fold more Ca than roots.  Despite huge 

amount of Ca uptake and accumulation in shoot after resupply of Ca to Ca-deficient 

plants shoot dry matter production of Ca-deficient plants was increased by only 11 % 

(Table 4.4).  This indicates again that rates of shoot growth and Ca accumulation in 

bean plants are not proportional.  It seems likely that irrespective of growth, bean can 

accumulate higher amount of Ca in shoot.  After resupply of Ca to Ca-deficient plants, 

roots were not able to accumulate Ca in tissue in contrast to shoots (Table 4.4).  This 

indicates that Ca taken up by roots was translocated exclusively to the upper plant 

organs via xylem, and Ca in shoot cannot be translocated into root tips from shoot apex 

by floem transport (Marschner, 1995). 

5.3 Antioxidative Defense System 

5.3.1 Non-Protein SH-Groups (Glutathione) 

 Exposure of plants to decreasing concentration of Ca resulted in a rapid decrease 

in concentration of non-protein SH-compounds (thiols) in roots of bean plants (Figure 

4.3).  The decrease in level of non-protein SH-compounds in Ca-deficient roots was 

around 61 % when compared to the control plants.  Glutathione comprises the major 

fraction of the total non-protein SH-compounds in various plant species, for example 95 

% in spruce needles, and more than 80 % in other different plant species (Grill et al., 

1979; Maas et al., 1987).  Therefore, the SH-groups measured in the roots can be 

ascribed to glutathione.  Glutathione is a key factor of the ascorbate-glutathione 

detoxification pathway, as being the substrate of GR (Foyer et al., 1994).  The decrease 

in SH-containing compounds (i.e., glutathione) may be responsible for reduced activity 
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of glutathione reductase (GR).  As discussed below, GR activity is also depressed by Ca 

deficiency possibly due to reduced substrate availability (see section 5.3.3 and Fig. 4.3).  

Alternatively, reduced levels of SH-compounds can be related to their extensive use in 

oxidation process caused by Ca deficiency.  It is well-known that SH-compounds are 

able to interfere with the oxidation of phenols, which leads to the formation of brown 

colors in tissues (Golan-Goldhirsh and Whitaker, 1984).  Similarly, in potato plants Ca 

deficiency was found to be responsible for browning of roots, and the reason for tissue 

browning in Ca deficient plants was attributed to enhanced activity of cell wall-bound 

polygalacturonase (Seling et al., 2000).  Enhancement in polygalacturonase activity is 

responsible for breakdown of pectic polysaccharides in cell wall and the degradation 

products of pectic substrates are involved in tissue browning.  It seems highly possible 

that Ca deficiency is associated with oxidation of phenolic compounds, which in turn 

results in browning of tissue.  As found in B-deficient plants extensive oxidation of 

phenolics can be responsible for use of reducing compounds such as SH-containing 

compounds (Cakmak and Römheld, 1997).  In future studies, a special attention should 

be paid to understanding the relationship between SH-compounds and phenol oxidation 

in Ca-deficient plants. 

5.3.2 Ascorbic Acid 

 Despite the significant decline in concentrations of SH-containing compounds, 

roots showed irregular changes in ascorbic acid concentrations in response to varied Ca 

supply.  The reason for such irregular changes in levels of ascorbic acid is not well 

understood.  To our knowledge, there is no information in literature concerning the 

relationship between ascorbic acid and Ca deficiency in roots of plants.  Ascorbic acid 

plays a major role for detoxification of H2O2 in ascorbate-glutathione pathway acting as 

a substrate for AP or involves in regeneration of reduced α-tocopherol (Conklin, 2001).  

The irregular changes of ascorbic acid concentration during Ca deficiency may due to 

the non-consistent formation of oxidative stress conditions.  However, in tomato leaves 

Ca deficiency was found to be responsible for decreases in ascorbic acid concentration.  

This decrease was associated with decreases in α-tocopherol concentration and increase 

in lipid peroxidation (Schmitz-Eiberger et al., 2002). 
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5.3.3 Antioxidative Defense Enzymes 

 As with levels of SH-compounds, there was a particular decrease in levels of 

glutathione reductase (GR) activity in response to Ca deficiency.  As compared with Ca-

sufficient plant, the decrease in activity of glutathione reductase caused by Ca 

deficiency was about 64 % (Figure 4.4).  By contrast, activities of other protective 

enzymes (AP, SOD and CAT) were not affected by Ca deficiency (figures 4.5, 4.6 and 

4.7).  Glutathione reductase (GR) is essential for maintenance of high concentrations of 

reduced glutathione, and directly involved in H2O2 detoxification (Figure 2.1; Foyer et 

al., 1994).  Also glutathione reductase plays an important role in maintaining the 

cellular antioxidant/prooxidant ratio.  The reason for decrease in GR by Ca deficiency is 

not well understood at present.  The decrease in glutathione reductase (GR) by Ca 

deficiency might be critical because, glutathione reductase (GR) is one of the AsA-

dependent H2O2 scavenging enzymes, thus, Ca-deficient plants might be so susceptible 

to peroxidative damage triggered by enhanced production of toxic O2 species.  

Accordingly, Schmitz-Eiberger et al (2002) showed that Ca deficiency is associated 

with enhanced lipid peroxidation in tomato leaves.  Heat stress-induced lipid 

peroxidation in arabidopsis was found to be highly sensitive to low Ca supply 

(Larkindale and Knight, 2002).  In the case of sufficient Ca supply to plants grown at 

40˚C lipid peroxidation was markedly inhibited and survival of plants at heat stress was 

significantly enhanced.  The results indicate that Ca deficiency can induce oxidative 

damage in root cells, at least by affecting glutathione reductase and, thus, glutathione in 

roots.  The reason for decreased GR activity could not be understood, and needs to be 

studied in future studies. 

5.4 NADPH-dependent O2
.- Generation 

 By generating superoxide radicals (O2
.-) the membrane-bound NADPH oxidases 

in plants are involved in different cellular processes in plants such as defense against 

pathogen attack or cell damage under abiotic stress.    It is well documented that O2
.- -

generating NADPH-oxidases are activated by different biotic and abiotic stress 
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conditions.  Cell damage caused by low temperature stress in plants has been found to 

be well related to increases in activity of O2
.--generating NADPH-oxidase (Shen et al., 

2000).  Similarly, impairments in structural and functional integrity of root cell 

membranes under Zn deficiency (Cakmak and Marschner, 1988; Pinton et al., 1993) and 

Cu deficiency or toxicity (Quartacci et al., 2001) were related to enhanced activity of 

O2
.--generating NADPH oxidase.   

 Impairments in structural integrity of cell membranes under Ca deficiency is a 

well-known phenomena (Marschner, 1995; Mengel and Kirkby, 2001).  The results 

presented in Tables 4.5, 4.6 and 4.7 show that O2
.--generating NADPH oxidase is not 

involved in Ca deficiency-induced impairments in membrane stabilization.  In the 

present work, Ca deficiency caused a remarkable decrease in the activity of NADPH- 

dependent O2
.- generation.  The decrease in the O2

.- generating activity with Ca 

deficiency was closely paralleled by decreased rates of NADPH oxidation (Table 4.5) 

suggesting  that Ca might be involved in the generation of O2
.- via an NADPH-

dependent oxidase.  Pretreatment of the root extracts with DPI (Diphenylene iodonium 

chloride) which is used as an inhibitor of NADPH oxidase in mammalian system 

(Babior, 1999), inhibited the activity of NADPH-dependent O2
.- generation more or less 

50 % indicating the production of O2
.- via NADPH oxidases and not by other 

peroxidases.  The decrease in the activity of NADPH oxidase and, thus NADPH-

dependent O2
.- generation during Ca deficiency can be due to the inactivation of Ca 

binding domains located on NADPH oxidase subunit (gp91phox) (Keller et al., 1998; 

Torres 1998).  Therefore, exposure of inadequate Ca supply might not be sufficient to 

activate the “EF-hand motifs” (Ca binding domains) located on the subunit of NADPH 

oxidase, thus causes a decrease in the generation of O2
.- through NADPH oxidase.  Re-

supply of Ca to Ca deficient roots enhanced the activity of NADPH oxidase and 

NADPH-dependent O2
.- generation, suggesting that Ca can stimulate the activity of 

NADPH oxidase through activating its subunit (Table 4.7).  The decrease in the activity 

of NADPH oxidase in Ca-deficient roots may be also caused by the loss of membrane 

structure and integrity of root cells.  NADPH oxidases are generally membrane-bound 

enzymes and any change in membrane structure can affect activity of NADPH oxidases. 
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 Superoxide generating NADPH oxidases are closely involved in pathogen-

induced oxidative stress in plants similar to neutrophil NADPH oxidases (Levine et al., 

1994; Doke et al., 1996; Babior, 1999).  Plants exposed to various pathogens develop 

adaptive mechanisms to resist or avoid pathogens attacked.  The most well-known 

adaptive response is the hypersensitive reaction where reactive oxygen species (ROS) 

are the major component of this resistance mechanism operating against pathogens 

(Lamb and Dixon, 1997; Babior, 1999).  These indicate that an adequate supply of Ca to 

plants is essential for protection of plants from pathogenic attack.  Recently, Ca was 

shown to be essential for activation of O2
.- generating NADPH oxidases in tobacco 

plants infected by tobacco mosaic virus (Sagi and Fluhr, 2001).  Recently Lecourieux et 

al. (2002) showed that in Nicotiana plumbaginifolia cell suspension elicitors secreted by 

pathogens were effective to activate O2
.- generating NADPH oxidases, and this 

activation was associated by enhanced cytosolic Ca concentration.  Increases in 

cytosolic Ca concentrations caused by different environmental stress factors can induce 

O2
.- generating NADPH oxidase and contribute physiological response of plants (Yang 

and Poovaiah, 2002).  Abscisic acid (ABA) is increased as a consequence of water 

stress and involved in closing of stomatal pores.  Increasing evidence suggest that O2
.- 

generating NADPH oxidases are needed for ABA signaling effects (Murata et al., 2001; 

Jiang and Zhang, 2002).  In well agreement with these results it has been shown that 

cold-induced stomatal closure needs high amount of Ca (Wilkinson et al., 2001).  All 

these results together indicate that by affecting NADPH oxidase Ca nutritional status of 

plants may play critical roles in adaptive response of plants to environmental stress 

factors especially in development of resistance to pathogen attack and regulation of 

stomatal closure.   
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6 CONCLUSIONS 

 In the present study, the effects of varied Ca supply on shoot and root growth, 

activity of O2
.--generating NADPH oxidase and antioxidative defense systems were 

investigated in roots of bean plants grown in nutrient solution under controlled climatic 

conditions 

 Calcium deficiency decreased root growth more severely than the shoot growth 

causing higher shoot to root ratio (Figures 4.1, 4.2 and Table 4.1).  Irrespective of Ca 

supply shoots contained much more Ca than roots, particularly at sufficient Ca supply.  

At sufficient Ca supply shoots accumulated Ca up to 18-fold more than roots, while at 

deficient supply of Ca, shoots had 11-fold more Ca than roots.  One possible reason of 

such distinct difference in Ca concentration between root and shoot might be ascribed to 

rapid transport of Ca into shoots via xylem by transpiration.  According to Marschner 

(1995) Ca taken up by roots is very rapidly transported and accumulated in shoots 

because there is no resorption of Ca by xylem tissues in roots and no retranslocation of 

Ca from shoot into root via phloem.  

 Of the antioxidative defense systems studied in the present work only glutathione 

reductase (GR) and non-protein SH-groups (predominantly glutathione) were 

significantly affected by Ca deficiency.  There was a marked decrease in both GR 

activity and SH levels in roots by Ca deficiency.  The reason for such distinct decreases 

by Ca deficiency could not be understood.  It seems likely that in Ca deficient roots with 

intense dark-brown formation, an enhanced oxidation of phenolic compounds by 

polyphenol oxidase (PPO) occurs causing accumulation of quinones, which are 

supposed to reduce levels of SH-containing compounds and inactivate GR activity 

(Cakmak and Römheld, 1997).  The relationship between Ca nutrition and glutathione 
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metabolism is an important area for future research.  In this regard a special attention 

should be paid to phenol metabolism. 

 Calcium was also essential for activity of O2
.--generating NADPH oxidase.  

Deficient supply of Ca resulted in distinct decreases in both NADPH oxidation and O2
.--

generating NADPH oxidase.  Two major reasons were discussed for decreases in 

NADPH oxidase by Ca deficiency.  Superoxide generating NADPH oxidase is a 

membrane-bound enzyme, and any structural modification in biological membranes 

caused by Ca deficiency may result in a negative effect on the activity of NADPH 

oxidase.  Secondly, in mammalian systems it has been shown that binding of Ca to 

acertain subunits of NADPH oxidase is essential for a proper activity (Keller et al., 

1998).  The role of Ca in activation of NADPH oxidase seems to be of fundamental 

importance for adaptive response of plants against environmental stress factors, such as 

pathogenic attack and for regulation of stomatal closure at extreme temperatures or 

drought stress (Sagi and Fluhr, 2001; Murata et al., 2001; Yang and Poovaiah, 2002).  

The protective role of Ca against pathogenic infection is generally ascribed to its role in 

cell wall structure and controlling membrane permeability (Marschner, 1995).  Based on 

the results presented in this study together with results obtained by Sagi and Fluhr 

(2001), it can be suggested that Ca also protects plant cells from pathogen attack by 

contributing to oxidative burst via activation of O2
.--generating NADPH oxidase. 
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