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EFFECTS of FREQUENCY-TIME OFFSETS on SMART ANTENNA

ALGORITHMS for W-CDMA

Abstract

The CDMA and smart antennas are two promising approaches to increase system

capacity and spectrum efficiency for mobile communication services. In a CDMA

system, frequency offset between local oscillator and the carrier of impinging sig-

nal, timing offset between local generated PN sequence and received PN sequence,

imperfect power control may exist and this degrades the performance of the smart-

antenna algorithms. In this thesis, the effects of frequency and timing offsets on

smart antenna performance is presented. A smart antenna system has been set

up to implement blind adaptive algorithms for W-CDMA in a laboratory envi-

ronment. The blind adaptive algorithms implemented on the smart antenna sys-

tem are Least- Squares Despread-Respread Multi Target Array (LS-DRMTA) and

Least- Squares Despread-Respread Multi Target Constant Modulus Algorithm (LS-

DRMTCMA). Since both LS-DRMTA and LS-DRMTCMA algorithms utilize users

PN sequence, they have several advantages compared to other blind adaptive al-

gorithms for CDMA. BER and beamforming performances of LS-DRMTA and LS-

DRMTCMA algorithms in a two-user and two- element-antenna array system is

evaluated for systems with timing offset and frequency offset. Experimental re-

sults show that frequency and timing offset degrades the performance, however they

still give reasonable BER. In all test conditions LS-DRMTA and LS-DRMTCMA

outperforms conventional receiver, moreover LS - DRMTCMA can generate deeper

nulls and outperforms LS-DRMTA.
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Chapter 1

Introduction

In the future there will be a huge demand for mobile communication services that

requires high capacity communication systems. The 3rd generation (3G) systems

are based on wideband CDMA (W-CDMA) technology to satisfy the increasing

demand for mobile communication services [1]. To increase the system capacity

further, some techniques that reduces the co-channel interference (CCI) in the W-

CDMA system must be implemented, since interference is the major contributor that

reduces the capacity of a W-CDMA system. Smart antennas is such an approach

that eliminates the CCI by locating the nulls in the direction of the interferers while

steering the main lobes toward the desired mobile [2]. Smart antenna system is an

adaptive antenna array that comprises an antenna array and beamforming module

that calculates the antenna weights using smart antenna algorithms.

Frequency offset, timing offset between local generated PN sequence and received

PN sequence and imperfect power control are the three major factors that can de-

grade the performance of the smart antenna algorithms for CDMA systems. The

aim of this thesis is to investigate the effects of timing and frequency offset. For

that reason a smart antenna system has been set up to implement blind adaptive

algorithms for W-CDMA in a laboratory environment. The set up is a simple imple-

mentation of a W-CDMA system that consists of two transmitters, representing two

mobile users , and a receiver system. One of the transmitters represents the desired

user and the other one is the interferer. In the receiver system, a half-wavelength

spaced two-element antenna array is used, and each array element is connected to
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a different digital receiver that makes the convertion from RF to baseband . The

output of the receivers, sampled and digitized baseband data, is sent to a computer

to implement the smart antenna algorithms.

Since, multiple users share the same RF band in a CDMA system, the algorithms

should be multitarget-type algorithms having the ability to separate and extract each

user’s signal simultaneously. There are four main blind smart antenna algorithms,

• Multitarget Least Squares Constant Modulus Algorithm (MT-LSCMA) [3]

• Multitarget Decision-Directed (MT-DD) Algorithm [4]

• Least- Squares De-spread Resepread Multitarget Array (LS-DRMTA) [4]

• Least- Squares De-spread Resepread Multitarget Constant Modulus Algorithm

(LS - DRMTCMA). [4]

These algorithms are blind since there is no need to use training signal. LS-

DRMTA and LS - DRMTCMA developed by Rappaport and Rong [4], and imple-

mented in our test-bed.

This thesis is organized as follows. Chapter 2 introduces the basic concepts

of adaptive antenna arrays and beamforming, then overviews smart antenna algo-

rithms. Beamforming is discussed in two parts as switched-beam systems and adap-

tive arrays. Smart antenna algorithms are explained in three subsections as direction

of arrival-based beamforming, temporal-reference beamforming and signal-structure

based beamforming. In direction of arrival-based beamforming section, direction of

arrival-based algorithms and direction of arrival (DOA) estimation techniques are

introduced. In temporal-reference beamforming section, Least Mean Square (LMS)

and Recursive Least Squares (RLS) algorithms are examined. In signal-structure

based beamforming section, constant modulus algorithm (CMA) and Least-Squares

CMA (LS-CMA) algorithms are presented. Finally implementation aspects of smart

antennas are discussed briefly.
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In Chapter 3, key specifications of W-CDMA and W-CDMA uplink is discussed

briefly since in our test-bed only the W-CDMA uplink is used. In the following

sections, smart antenna algorithms for CDMA systems, MT-LSCMA, MT-DD, LS-

DRMTA and LS-DRMTCMA, are presented . MT- LSCMA utilizes the constant

modulus property of the transmitted signal in a CDMA system, and uses LS-CMA.

MT-DD employs decision directed (DD) algorithm, i.e detected symbols are used as

reference signal for beamforming. LS-DRMTA utilizes spreading signal of each user

used in CDMA system. LS-DRMTCMA utilizes both spreading signal of each user

and constant modulus property of the transmitted signal in a CDMA system. The

properties, advantages and disadvantages of these algorithms are discussed in this

chapter.

In chapter 4, the properties of the set-up is presented in the first section. The

properties of the receivers, transmitters, and the structure of the transmitted signal

are given in this section. Then, the outputs of the set-up are analysed. Bit error

rate (BER) performance of LS-DRMTA, LS-DRMTCMA and conventional receiver

are compared in three cases. BER performance without frequency and timing offset

case, BER performance in timing offset case, BER performance in frequency offset

case are discussed in this chapter.

A brief summary and conclusions are provided in Chapter 5.
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Chapter 2

Introduction to Adaptive Antenna Arrays and Beamforming

Antenna arrays is the crucial part of the beamformers, since it generates the

directional antenna pattern. In an antenna array several antennas are arranged in

space to produce a directional radiation pattern. Each element of the array may

be fed with excitation currents having different phase and amplitude. The elements

then combine with different phases in the far field, and then the radiation pattern

can be controlled.

Figure 2.1: Some of the array configurations. (a)Circular (b) Linaer (c) Planar

Arrays can be arranged in various geometrical configurations as shown in Figure

2.1. The most basic and elemantary array structure is Uniform Lnear Array (ULA),
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, depicted in Figure 2.1.a.

control.

In the array if identical antennas is used, total pattern of the array is then the

product of the array factor and the individual element pattern [5]. The array factor

of an array is determined by the array arrangement in space, and the amplitude

and phase of the feeding currents. Thus, by controlling these variables the response

of antenna arrays in any direction can be controlled. Here, this will be shown by

examining the uniform linear arrays. A typical structure of linear array is shown in

Figure 2.2. The output of each element can be controlled in amplitude and phase

as indicated by attenuators and phase shifters in Figure 2.2.

Figure 2.2: Typical linear array structure.

Figure 2.2 can be simplified more, if the attenuators and phase shifters are re-

placed by the complex weights as shown in Figure 2.3. In Figure 2.3, xi(k) is the

kth sample of the complex envelope of signal at the ith sensor, and wi is the com-

plex weight of that branch. Then, the array output of an L element ULA can be
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calculated as :

y(k) =
L∑

i=1

w∗
i xi(k) (2.1)

where * denotes complex conjugate. xi(t)’s and wi’s may be expressed as column

vectors,

w =




w1

...

wK

...

wL




(2.2)

and

x(k) =




x1(k)
...

xK(k)
...

xL(k)




(2.3)

. The vector w is called the complex weight vector and the vector x(k) is called

array input data vector. Then, Equation 2.1 can be written in matrix form as

y(k) = wHx(k), (2.4)

and H denotes the Hermitian transpose. Before continuing to find x(t), assume

a plane wave reaches the array from a direction θ with carrier frequency fc. The

angle θ called the direction-of-arrival(DOA) of the received signal, and is measured

as shown in Figure 2.3. At the first element of the array, complex envelope of the

received signal can be represented by the equation below,

x1(t) = a(t)ej2πfct+ψ(t) + n1(t). (2.5)

where a(t),is the amplitude of the signal, ψ includes digital information. n1(t) is the

complex envelope of the noise. As shown in Figure 2.3, wavefronts does not reach all

of the array elements at the same time, and there exists a path difference between

the first and second element. Thus, a phase shift e−j2π∆d/λ appears between them.

6



Figure 2.3: A plane wave incident on a ULA form direction θ.

As a result, continuing in the same way, complex envelope of the signal at any array

element K, can be expressed in terms of the first element,

xk(t) = x1(t)e
−j 2π

λ
(K−1)dsinθ + nk(t). (2.6)

where λ is the free-space wavelength of the carrier. Then, Equation 2.3 can be

rewritten as

x(t) = s(θ)x1(t) + n(t). (2.7)

where n(t) is the noise vector containing the noise samples of the array elements,

and s(θ) is called the steering vector and given by the following equation,

s(θ) =




1
...

e−j 2π
λ

(K−1)dsinθ

...

e−j 2π
λ

(L−1)dsinθ




(2.8)
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Substituting Equation 2.7 to Equation 2.4, we get the following equation

y(k) = wHs(θ)x1(t) + n̄(t). (2.9)

The first two term in the equation determines the response of the array to signal

coming from the direction θ, and named as array response that is expressed as in

the following equation,

r(θ) = wHs(θ). (2.10)

As seen from the Equation 2.10, the response of the array, r(θ), in any direc-

tion θ can be controlled by adjusting the weight vector, w, in an appropriate way.

This is the idea behind the beamformers. Controlling the weights, the pattern of

the antenna array can be steered to location where the desired user takes place.

Consequently, antenna gain in that direction in increased, while in other directions

decreased and that results in increased signal quality for the desired user. Thus, a

beamformers (BF) behaves like a directional filter. There are two types of beam-

formers, narrowband beamformer and wideband beamformer. The scheme in the

Figure 2.3 is a narrowbanb beamformer structure. A wideband beamformer struc-

ture is shown in Figure 2.4. A wideband beamformer uses more than one array

input vector sample, and in Figure 2.4 K sample is used.

The direcitonal discrimination capability of a beamformer depends on the ratio

of d
λ

where d is the distance between the array elements. As the ratio increases

discrimination improves [2], as shown in Figure 2.5. However, increasing d
λ

results

in higher array size and for spacings larger than a half wavelength there may be

more than one major lobe [2]. Additional major lobes called grating lobes and in

most situations it is undesirable. As a result, generally ULA antennas are separated

by a half wavelength.

There are basicly two types of beamforming which are being investigated by

independents or cellular companies to enhance the performance of their systems

namely, switched-beam and adaptive array types.
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Figure 2.4: A wide band beamformer.

2.0.1 Switched-beam Systems

A switched-beam system consists of generating a multiplicity of adjacent beams

whose output may be switched to receiver or a bank of receivers [7]. The cell is

therefore covered with a cluster of contiguous beams.

The most popular network to form the beams in switched-beam technology is

the Butler matrix. The topology of the Butler beam-forming for an eight contiguous

beam system is shown in Figure 2.6. There are eight input ports and eight output

ports(N=8). The matrix consists of quad hybrids, or directional couplers and fixed

phase shifters. The amount of each depends on the number of beams generated.

For example, for a linear array of L elements, the number of couplers is

n = (
L

2
)log2L (2.11)

where N is the number of beams, and the number of phase shifters is

n = (
L

2
)(log2L− 1) (2.12)
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.

Butler arrays can be built to have any power of two beams : 2, 4, 8 ,16, 32, and

so forth. The number of beams is equal to the number of array elements .The beams

are equally spaced and the peaks are located at the nulls of the other beams.

Since the Butler array is uniformly illuminated, this gives the smallest beamwidth

possible and maximum gain. This follows from array theory.

For a practical array operating at about 3 GHz, the gain is about 11 dB for the

center beams.

2.0.2 Adaptive Arrays

The location of a mobile user may changes continously, and that requires the

change of array weighths continously for real-time tracking. If the weights are al-

lowed to vary in time, the array becomes an adaptive array. Therefore an adaptive

array can dynamically modify its antenna pattern structure to place a directional
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Figure 2.6: A Butler matrix.

beam in the direction of SOI and nulls in the direction of interferers. Typically this

would be done by means of an internal feedback control and estimating the desired

weights using a digital signal processor (DSP) as shown in Figure 2.7 .

If a base station in a cellular system uses an adaptive array to direct its radiation

pattern towards the mobile which it is communicating, then several benefits are

produced.

• The transmit power for a given signal quality can be reduced in both uplink

and downlink directions, or the cell radius can be increased, thereby reducing

the number of base stations required to cover a given area.

11



• Since the mobile transmit power is reduced, its battery life can be extended.

• The channel delay spread is reduced since off-axis scatters are no longer illu-

minated.

• Depending on the direction of the mobile, the probability of base stations

causing interference to co-channel mobiles in surrounding cell is reduced.

• Similarly, the probability of mobiles causing interference to co-channel base

station is reduced.

This last point is known as spatial filtering for interference reduction (SFIR).

The average level of interference between co-channel cells is reduced so the reuse

distance D can be decreased , thereby increasing the system capacity. Notice that

the interference reduction is statistical, the level of interference will depend on the

positions of the mobiles in each cell at any time.

Most adaptive algorithms determines the weights by optimizing some measure

of the system performance [8], such as signal-to-interference-and-noise ratio(SINR),

minimum noise variance, minimum output power.

Figure 2.7: Adaptive array.
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There will be a detailed discussion about the adaptive array algorithms in the

next section.

2.1 Smart Antenna Algorithms

There are several algorithms for adaptive arrays, or Smart Antennas (SA),

presented in literature. According to the side information used for beamforming,

the algorithms can roughly be divided into three groups [9].

• Algorithms based on DOA estimation of the incoming signal, direction of

arrival based beamformer (DOB) .

• Algorithms exploiting a training sequence, which can be considered as a tem-

poral reference beamformer (TRB).

• Algorithms based on signal structure, signal-structure-based beamformer (SSBF).

SSBF exploits the temporal and/or spectral properties of the received signals

such as finite alphabet structures of digital signals or constant modulus property of

PSK signals. In the mobile scenario, a DOB requires AOA tracking. Since TRB

uses a training signal, spectral efficiency is reduced.

2.1.1 Direction of Arrival-Based Beamforming

In the DOB, the DOAs of the received signals are determined first using DOA

estimation techniques, then the beamformer (BF) weights are calculated. There are

three main types of optimum BF’s: BF’s based on signal-to-interference-plus noise

ration (SINR) maximization, maximum likelihood (ML) and minimum variance dis-

torsionless response (MVDR). Another group of DOB’s is data-independent BF’s,

conventional beamformer (CBF) and null-steering beamformer. DOB techniques

analytically more tractable, but these methods needs calibration. Also, DOA es-

timation requires that the number of signals incident on the array should be less

than the number of antenna elements. DOB performance can be seriously degraded

13



in the presence of coherent multipath, producing signal cancellation at the array

output.

A conventional beamformer is the simplest beamformer. If a desired signal from

a known DOA is chosen, then the main beam can be steered towards this direction

by simply multiplying each element by a complex weight, corresponding to a delay,

so that when the signals are combined the signals from the desired direction at each

element add completely in phase. With s0 denoting the steering vector in the desired

direction, the array weights are given by

w =
1

L
s0 (2.13)

where L is the number of array elements. In an environment consisting of only

uncorrelated noise and no directional interferences, this beamformer provides max-

imum SNR. For uncorrelated noise, the noise power at the array output is L times

less than that present on each element.

The limiting factor in the performance of this method is that it has no control

over its side lobes, where the antenna pattern allows the interfering signal to reach

the receiver after the weights are applied. The null steering beamformer adapts the

weight vector to steer the main beam towards the desired signal and place nulls

in the direction of interfering user. Assume that s0 is the steering vector in the

direction of desired signal and that s1,...., ak, are k steering vectors in the direction

of interferers, desired weight vector is the solution of following equations.

wHs0 = 1

wHsi = 0, i = 1, .....k
(2.14)

Using matrix notation , this becomes

wH S = eT
1 . (2.15)

where S is the matrix of steering vectors and e1 is a vector of all zeros except the

first element is one, that is

S = [s0, s1, ...., sk] (2.16)

14



e1 = [1, 0, ..., 0]T . (2.17)

the solution for the weight vector is given by

wH = eT
1 S−1. (2.18)

The null-steering scheme described above requires knowledge of the directions of

interference sources, and the BF using the weights estimated by this scheme does

not maximize the output SINR. Optimum DOB’s overcome this limitation.

Let w represent the weights of the BF, which maximizes the output SINR. For

an array that is not constrained, an expression for w is given by

w = µ0R
−1
N s0. (2.19)

where RN is the array correlation matrix of the interference plus noise alone, that

is, it does not contain any signal arriving from the look direction (φ0 ,θ0) , and µ0 is

a constant. For an array constrained to have a unit response in the look direction,

this constant becomes

µ0 =
1

sH
0 R−1

N s0.
(2.20)

then the weight vector becomes

w =
R−1

N s0

sH
0 R−1

N s0

(2.21)

This is also known as ML filter [10], as it finds the ML estimate of the power of the

signal source, assuming all sources as interferences.

In practice, when the estimate of the interference-plus-noise- alone matrix is not

available, the total R (signal + interference + noise), array correlation matrix, is

used to estimate the weights. In this case , the weight vector calculated as,

w =
R−1s0

sH
0 R−1s0

(2.22)

These weights are the solution of the following optimization problem :

min
w

(wH R w) subject to wHs0 = 1 (2.23)
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The constraint ensures that the signal passes through the processor undistorted.

The minimization process then minimizes the total noise, including interferences and

uncorrelated noise. Therefore this algorithm is also known as Minimum Variance

Distorsionless Response (MVDR).

MVDR minimizes the total output power while keeping the output signal con-

stant, it is the same as maximizing the output SINR. Therefore, it can be proved

that the weights of ML filter and MVDR , equation 2.21 and 2.22, are identical [11].

DOA estimation is an important part of DOB’s. The high-resolution techniques

for DOA estimation include MUSIC and ESPRIT.

DOA Estimation Techniques

Spectral estimation methods estimate the DOA by computing the spatial

spectrum and then determining the local maximas. One of the earliest methods is

the Bartlett method. By steering the array in θ direction, this method estimates

the mean power, which is given by

PB(θ) =
sH
0 Rs0

L2
(2.24)

where L is the number of array elements. MVDR estimator uses the array weights,

which are obtained by minimizing the mean output power subject to unity constraint

in the look direction. An expression for the power spectrum is given by

PMV (θ) =
1

sH
0 R−1s0

(2.25)

This method has better resolution properties than Bartlett method.

One of the other methods for DOA estimation, having good resolution properties,

is eigenstructure methods. These methods rely on the following properties of R:

1)The space spanned by its eigenvectors may be partitioned into two subspaces,

namely the signal subspace and the noise subspace, and 2) the steering vectors

corresponding to the directional sources are orthogonal to noise subspace. As the

noise subspace is orthogonal to the signal space, these steering vectors are contained
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in the signal subspace. The noise subspace is spanned by the eigenvectors associated

with the smaller eigenvalues of the correlation matrix, and the signal subspace is

spanned by the eigenvectors associated with its larger eigenvalues [11].

In principle, the eigenstructure-based methods search for the directions such that

the steering vectors associated with these directions orthogonal to the noise subspace

and are contained in the signal subspace. In practice, first find a weight vector that

is contained in the noise subspace , then search for the directions such that the

associated steering vectors are orthogonal to this vector. Two of the most important

eigenstructure methods are Multiple Signal Classification algorithm (MUSIC) [12],

and Estimaton of Signal Parameters via Rotational Invariance Technique (ESPRIT)

[13] .

Spectral MUSIC estimates the noise subspace from the available samples. This

can be done by either eigenvalue decomposition of the estimated array correlation

matrix.

In a L element antenna array, once the noise subspace has been estimated, DOA

for D directions is estimated by searching for peaks in the MUSIC spectrum given

by

PMUSIC(θ) =
1

|sH
θ UN |2 (2.26)

where UN is a matrix and its columns are the eigenvectors corresponding to the

L-D smallest eigenvalues of the array correlation matrix, and sθ denotes the steering

vector corresponding to direction θ.

The advantage of this algorithm is that it exhibits high resolution. However, it

can be computationally intensive, since it requires a search through the entire array

manifold for the steering vectors that are orthogonal to noise subspace. Furthermore,

the MUSIC works on the premise that the signals impinging on the array are not

fully correlated. The performance of MUSIC degrades severely in a highly correlated

signal environment as encountered in multipath propagation. This problem is solved
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by modification of covariance matrix through a processing scheme called spatial

smoothing [14].

Other types of MUSIC are Root-MUSIC and Cyclic-MUSIC algorithms [15].

The Root-MUSIC applicable when a ULA is used. It solves a polynomial rooting

problem, the poles of PMUSIC(θ), in contrast to the identification and localization of

spectral peaks using MUSIC. Root-MUSIC has a better performance than spectral

MUSIC. Cyclic MUSIC computes the cyclic autocorrelation matrix Rα
xx of the array

input data vector x(t), since only the desired signals exhibit spectral correlation at

a particular frequency α. Then works in a similar way to spectral-MUSIC.

ESPRIT is a computationally efficient and robust method of DOA estimation

[13]. It uses two identical arrays. Second array, y, is obtained by shifting the each

element of the first array, x, by the same displacement vector, 40, to form matched

pairs. The working principle of ESPRIT based on that, the matrices Ux and Uy

respectively, containing the eigenvectors of two array correlation matrixes Rxx and

Ryy in its columns, related by the transformation matrix ψ

Uxψ = Uy (2.27)

and the eigenvalues of ψ are equal to

Φl = e2π40cosθl (2.28)

where θl is the direction of the incoming signal l. An eigendecomposition of ψ gives

its eigenvalues, λl and by equating them to Φl leads to the DOA estimates

θl = cos−1{Arg(λl)

2π40

}, l = 1, ..., L. (2.29)

How one obtains an estimate of ψ from the array signal measurements has led to

many versions of ESPRIT. This class of algorithms also provides the high resolution

of MUSIC, but it does not require a costly search. The ESPRIT algorithm allows the

DOAs to be computed directly, and has been used with different array geometries.
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How one obtains an estimate of ψ from the array signal measurements has

led to many versions of ESPRIT. This class of algorithms also provides the high

resolution of MUSIC, but it does not require a costly search. The ESPRIT algorithm

allows the DOAs to be computed directly, and has been used with different array

geometries.

Maximum Likelihood (ML) method estimates the DOA’s from a given set of

array samples by maximizing the log-likelihood function that tries to find the best

fit with the received array inputs and the array response . Since ML techniques

were computationally intensive, they were less popular than subspace based tech-

niques. However, in terms of performance, the ML techniques are superior to the

subspace techniques , especially in low SNR conditions. Moreover, unlike subspace

based techniques, ML based techniques can also perform well in correlated signal

conditions [16].

2.1.2 Temporal Reference-Based Beamforming (TRB)

Beamforming based on training signal or time reference beamforming is a compu-

tationally effective method at the expense of spectrum efficiency. Spatial information

such as an DOA or array manifold are not necessary. The reference signal may con-

sist of an a priori known signal or reconstructed signal obtained from the detected

symbols. The use of training signals requires prior carrier and signal recovery, which

is difficult due to the presence of co-channel interference (CCI).

The adaptive algorithms Least-Mean-Squares (LMS) and Recursive-Least-Squares

(RLS), are used for tracking and discussed in [11]. The TRB overcomes interfer-

ence by nulling its spatial signatures and shows greater robustness in the mobile

environment where the channel characteristics are continuously varying. The TRB

technique optimally combines multipath components to increase SNR and reduce

the effect of fading.

In a noncoherent multipath environment, both the DOB and TRB have the
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same ability to overcome ISI since two different symbols for the same user will be

uncorrelated and will look like noise[9].

Instead of calibration in the DOB, the TRB technique require accurate synchro-

nization.

TRB is based on Wiener solution, which gives the optimum weights that mini-

mizes mean-squared error(MSE) between the reference signal samples, r(t), and the

array output samples, y(k). Optimum weight, found according to Wiener solution,

is given by,

MSE = E[|y(k)− r(k)|2] (2.30)

wMSE = R−1z. (2.31)

where R is the array correlation matrix, R = E[xxH ], and z is the cross-corelation

between r∗ and array input vector x, z = E[r∗x]. In practice, neither R nor z is

available to calculate the optimal weights of the array, and the weights are adjusted

using the available information derived from the array output.

Least Mean Squares (LMS) algorithm updates the weights at each iteration by

estimating the gradient of the mean-square error, g, and then moving the weights in

the negative direction of the gradient by a small amount, determined by the constant

step size µ,

w(k + 1) = w(k)− µg(w(k)) (2.32)

The instantaneous estimate of gradient is computed as in the following equation,

[11],

g = 2x(k)e∗(k) (2.33)

Substituting Equation 2.33 into Equation 2.32, we get the weights in the LMS

algorithm ,

w(k + 1) = w(k)− 2µx(k)e∗(k) (2.34)

where e is the error signal, e=y(k)-r(k).

LMS algorithm is easy to implement, however its convergence and stability char-

acteristics is strictly dependent on the eigenvalues of R. For µ < 1/λmax, with λmax
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denoting the maximum eigenvalue of R, the algorithm is stable and the mean value

of the estimated weights converges to the optimal weights. The convergence speed

of the algorithm is characterized by the eigenvalue spread of the R matrix. The

larger the eigenvalue spread, the longer it takes for the algorithm to converge.

Normalized LMS algorithm is a variation of the constant-step-size LMS algorithm

and uses a data-dependent step size at each iteration. At the nth iteration the step

size is given by

µ(n) =
µ0

xH(n)x(n)
(2.35)

where µ0 is a constant. It avoids the need for estimating the eigenvalues of the

correlation matrix for the selection of the maximum step size. The algorithm has

better convergence performance compared to the normal LMS algorithm [17].

The convergence speed of the LMS algorithm depends on the eigenvalues of R.

RLS, [18], solves this problem by replacing step size µ in LMS algorithm with a

gain matrix R−1(k) at the kth iteration, producing the weight update equation,

w(k) = w(k − 1)−R−1(k)x(k)e∗(k) (2.36)

The RLS algorithm updates the required inverse of R(n) using the previous inverse

and the present sample as

R−1(k) =
1

δ0

[R−1(k − 1)− R−1(k − 1)x(k)xH(k)R−1(k − 1)

δ0 + xH(k)R−1(k − 1)x(k)
] (2.37)

where δ0, a real scaler smaller than but close to one, is used for exponential weighting

of the past data and de-emphasize the old samples.

The RLS algorithm minimizes the cumulative square error [15]

J(k) =
k∑

n=0

δk−n
0 |e(k)|2 (2.38)

and its convergence is independent of the eigenvalue distribution of the correlation

matrix. The resulting rate of convergence is faster than the simple LMS algorithm.

2.1.3 Signal-Structure Based Beamforming (SSBF)

In signal-structure-based beamforming, adaptive processors exploit temporal

and/or spectral structures and properties of the received signal to compute the
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weight vector, w. Many SSBF’s try to restore the signal property, for example, a

constant modulus(CM) for several modulation schemes or finite alphabet property of

digital signals. This blind BF method is very robust against different propagation

conditions, but its convergence and capture characteristics can be problematic.

Constant Modulus Algorithm (CMA) is a gradient-based algorithm that works

on the premise that the existence of interference causes fluctuation in the amplitude

of the array output, which otherwise has a constant modulus. Phase-shift keying

(PSK ), frequency-shift keying (FSK) signals have this constant modulus property.

In CMA, the weights are updated by minimizing the MSE cost function [19]

MSE = E[||y(k)|p − |α|p|q]. (2.39)

where α is the desired signal amplitude at the array output. The exponents p and

q are each equal to either 1 or 2. Using different values of p and q , it is possible

to develop several different algorithms which have different characteristics. In [3],

for p = 1, q = 2 form, using the instantaneous estimate of the gradient vector of

Equation 2.39 the following algorithm is obtained,

w(k + 1) = w(k)− µx(k)e∗(k) (2.40)

where e is

e(k) = (y(k)− y(k)

|y(k)|) (2.41)

Also in [11], for p = 2, q = 2 form, using the same gradient method, a different

algorithm is reached,

w(k + 1) = w(k)− 2µx(k)e(k) (2.42)

where e is

e(k) = (|y(k)|2 − 1|)y(k) (2.43)

CM type of algorithms simply captures the strongest constant envelope signal

present at the input, which may be an interfering signal. It has been shown that

CMA converges under a wide range of conditions.
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Another approach is that, instead of iterating weights using input vectors one

by one, block by block basis can be used for a faster convergence. This method is

known as LS-CMA, [20], and minimizes the total error over K samples using the

cost function

J(w) =
K∑

k=1

||y(k)| − 1|2 =
K∑

k=1

||wHx(k)| − 1|2 (2.44)

In [3], the weight, minimizing the cost function above, is found as follows,

w = [X XH ]−1Xr∗. (2.45)

where X denote the input data block, consists of K snapshots of array input vectors

and r is the complex-limited output data vector,

r = [
y(1)

|y(1)| ,
y(2)

|y(2)| , .....,
y(K)

|y(K)| ]
T . (2.46)

Since the LS-CMA can utilizes the information in a data block, it converges faster

than the gradient-based CMA algorithm.

Other types of SSBF are the algorithms that utilizes the signal constellation of

digital modulated signals . At baseband, digital modulated signals can take only

limited values on complex plane if there were no noise and this information is used

by Iterative Least Squares Projection (ILSP) algorithm and Irative least squares

with enumeration (ILSE) algorithm [21]. Instead of updating the weight vector the

idea is to visit the received data iteratively until a best fit with the channel (array

response) and finite alphabet of the signal is obtained.

The FA property is stronger than CM for digital signals since the signals are

restricted to lie on the discrete points in a disk.

The ILSP algorithm performs well with no prior estimate of the array responses,

and can be used to initialize ILSE. For a sufficiently good initialization ILSE algo-

rithm converges rapidly to the ML estimate of the array responses and signal symbol

sequences [21]. However these algorithms have two impotant deficiency, the number

of signal impinging on the array is required and they must be synchronous.
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2.2 Implementation Aspects of Smart Antenna Systems

Generally all signal processing in the adaptive array antenna are performed in the

baseband since the adaptive algorithms require the input vector. Then, it is required

to have the same number of frequency converters and analog-to-digital converters

as the number of array elements to perform baseband signal processing. It will

lead to more occupied area, higher weight and costs than omnidirectional antennas.

Furthermore, a DSP or application specific integrated circuits (ASICs) calculates

and applies weights to baseband samples. However, current DSP technology has a

speed bottleneck in data I/O.

Another difficulty is mutual coupling. Due to mutual coupling between array

elements the actual response of the antenna array can deviate significantly.

Recently, researchers have focused on the problems above for practical imple-

mentation of smart antennas. To relieve the DSP I/O congestion, in [22] a novel

smart antenna system is proposed based on analog beamformer at IF (intermedi-

ate frequency) stage. In [23], a novel algorithm is proposed to reduce the receiver

chains in a smart antenna system. In [24], [25], methods to compensate the mutual

coupling effects, experimental results and simulation results can be found.
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Chapter 3

Smart Antenna Algorithms Used in CDMA system

3.1 Introduction

The increasing demand for mobile communication services entails new techniques

to improve spectrum utilization. The Code Division Multiple Access (CDMA) and

smart antennas are two promising approaches to increase the system capacity and

spectrum efficiency for mobile communication services [15].

The 3rd generation (3G) systems are based on wideband CDMA (W-CDMA)

technology. The 3G systems will have to handle multi-rate mixed traffic, comprising

not only plain noise users, but also the high-rate multimedia users. To maintain

acceptable system capacity and network performance, tight power control must be

carried out both for the data users and for the voice users since a serious power

imbalance between high and low data rate users may exists. However tight power

control is not only expensive but also difficult to achieve. Furthermore, power control

alone cannot address the issue of power imbalance between high rate and low rate

users.

The above problems in 3G systems can be effectively tackled by using smart

antennas. Since there are normally only a few high rate users but many low rate

users, nulls can be directed towards the high data rate users, as a result, the signal

quality for the low data rate users will be greatly improved. Alternatively, more can

be accommodated in the same network. On the other hand, main beams can also
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be directed towards high data rate users to reduce the interference from the mass

of low data rate users. Similarly, high and low data rate users from the same angle

can be separated using vertical beamforming. Finally, the accuracy requirement for

the overall power control will be relaxed.

3.2 W-CDMA

In this section, W-CDMA and W-CDMA uplink will be discussed briefly since

in our test-bed only the W-CDMA uplink is used.

W-CDMA is a code-division multiple access technology that separates the user’s

voice and data information by multiplying pseudo-random bits called ”chips”. The

pseudo-random bit sequences have a chip rate of 3.84 Mcps, resulting the narrow-

band information of the user being spread across a wider bandwidth of approxi-

mately 5 MHz.

In the spreading process, information symbols are multiplied by a high-rate

spreading code consisting of chips as shown in Figure 3.1. The resulting signal

has a wider bandwidth dependent on the number of chips per second. In the de-

spreading process, the spreading codes is multiplied by the received signal to recover

the original data symbols. Spreading codes are specially designed to allow the sym-

bols from multiple users to occupy the same spectrum at the same time, while still

allowing the original information to be retrieved.

Key specifications of W-CDMA technology are [1] :

• Multiple access technique : Direct-spread code division multiple access.

• Chip rate of spreading codes : 3.84 Mcps.

• Bandwidth : 4.4 - 5 MHz.

• Duplexing options :Frequency division and time division duplex.

• Multipath reception : Due to wide bandwidth, can resolve multipath signals

,and provides diversity gain
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Figure 3.1: W-CDMA spreading and power spectrum.

• Power control : 1500 Hz on both links, to overcome near-far problem.

• Frequency reuse of 1 : Every base station in the CDMA system operates on

the same frequency

• Soft capacity : By setting the allowed interference threshold lower, coverage

will improve at the expense of capacity. By setting the threshold higher,

capacity will increase at the expense of coverage.

W-CDMA defines two dedicated physical channels in both uplink and downlink

[1] :

• Dedicated Physical Data Channel (DPDCH) : to carry dedicated data.

• Dedicated Physical Control Channel (DPCCH) : to carry dedicated control

information.
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Spreading is applied after data modulation in two stages. First, the bipolar data

symbols on I and Q channels are independently multiplied by different channelization

codes known as Orthogonal Variable Spreading Factor (OVSF) codes. The resultant

signal is multiplied by a complex scrambling codes. The complex scrambling code

is a unique signature of the mobile station. Next, the scrambled signal is passed

through the pulse shaping filter, Square-Root-Raised Cosine filter with roll-off factor

of 0.22, that determines the final spectrum properties of the modulation scheme, and

then upconverted as shown in Figure 3.3.

The most important purpose of the spreading codes to provide the orthogonality

between different physical channels of the uplink user. OVSF codes generated by

using the code-tree shown in the Figure 3.2. Each level on the code tree defines

spreading codes of length SF(Spreading Factor). All the codes of the same level

constitute a set and orthogonal to each other. Any two codes of different levels are

orthogonal to each other as long as one of them is not the mother of the other code

[1].

The tree-structured OVSF codes at level 2n, as shown in Figure 3.2, are generated

using the following equation [1]:

C2n =




C2n,1

C2n,2

...

C2n,2n




=




Cn,1 Cn,1

Cn,1 −Cn,1

...

Cn,n Cn,n

Cn,n −Cn,n




(3.1)

3.3 Smart Antenna Algorithms for CDMA Systems

In this section SA algorithms, developed for CDMA [3], are presented. Any algo-

rithm developed for CDMA must have the property of separating user’s operating at

the same frequency and blind algorithms are preferred for further spectral efficiency.

Multitarget Least Squares Constant Modulus Algorithm (MT-LSCMA) [2], Mul-

titarget Decision-Directed (MT-DD) Algorithm [3] are the first two algorithms
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Figure 3.2: Code tree for generation of OVSF codes.

thought to be convenient for CDMA. MT-LSCMA [2], is a multitarget adaptive

algorithm using dynamic LS-CMA CMA is constant modulus based algorithm, ex-

ploiting the constant modulus envelope of the CDMA signals, and may yields weight

vectors converged to same value . MT-DD algorithm has the same problem, more-

over both algorithms have the phase ambiguity problem. In [3], Gram-Schmidt Or-

thogonalization (GSO) is proposed to prevent the weights from converging to same

value. However this method limits the number of output ports and having ensured

that weight vectors at each port converges to different values, a sorting procedure

must be performed to determine which port belongs to which user. Also phase am-

biguity problem must be solved appliying appropriate methods as suggested in [3],

using DPSK (Differential Phase Shift Keying) or sending pilot signal to compensate

the phase rotation.

Least- Squares De-spread Resepread Multitarget Array (LS-DRMTA) [3] and

Least- Squares De-spread Resepread Multitarget Constant Modulus Algorithm (LS

- DRMTCMA) [3] are developed by Rappaport and Rong [3]. Both algorithms have

neither phase ambiguity problem nor the problem of weight vectors converges to

same value and implemented in our test-bed software. In the following subsections

they will be discussed in more detail.
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Figure 3.3: Uplink spreading and de-spreading for W-CDMA having carrier fre-

quency w0.

3.3.1 Least Squares De-spread Re-spread Multitarget Array

Neither MT-DD nor MT-LSCMA utilizes the user specific spreading signals that

is known by the base station in a CDMA system. However this information can be

used for an efficient BF. LS-DRMTA is such an algorithm that utilizes spreading

signals. Utilizing the user’s spreading signal renders LS-DRMTA more adventageous

than MT-LSCMA and MT-DD algorithm. In LS-DRMTA each user’s weight vector

is found by minimizing a cost function special to that user, since the cost function

in Equation 3.2 is directly related to the user’s spreading signal. This property

circumvents it from the necessity of performing GSO and sorting procedures, that

causes increased complexity and limits the number of output ports by the number

of array elements in MT-DD and MT-LSCMA. As a result LS-DRMTA has a lower

computational complexity with respect to MT-DD and MT-LSCMA, and the num-

ber of output ports can be greater than the number of array elements. Figure 3.4

demonstrates the structure of a BF using LS-DRMTA algorithm.
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LS-DRMTA block diagram is shown in Figure 3.5, after a bit detection, it is

respread again to obtain the received signal. LS- DRMTCMA works on the premise

that, if the bit is detected correctly, then received signal and respread signal must

be similar to each other. As a result in [3], this information is used to generate the

BF weights and LS-DRMTA tries to minimize the cumulative square error over K

samples of array output, yi(t), and re-spread signal, ri(t)

J(w) =
K∑

k=1

|yi(k)− ri(k)|2

=
K∑

k=1

|wH
i x(k)− ri(k)|2

(3.2)

and 3.2 leads to least squares solution and the weight vector in the lth iteration can

be found as,

w(l + 1) = [X XH ]−1Xr∗i . (3.3)

where X is a matrix containing K snapshot of array input data vector in each column.

If the iteration is done after each bit detection, K will be equal to the number of

samples per bit.

For any user i, the algorithm is implemented as follows. First using the block of

array input data snapshots the matrix X is generated. The array output is despread

and the bit is detected , then it is spread again by the PN sequence belongs that

user to obtain ri(t). Finally using ri(t) and X, the weigths are adjusted according

to Equation 3.3 until the algorithm converges.

3.3.2 Least Squares De-spread Re-spread Multitarget Constant Mod-

ulus Algorithm

Similarly, LS-DRMTCMA utilizes the spreading signal of each user like LS-

DRMTA, so it possesses all the advantages of LS-DRMTA. But in addition to PN

sequence, LS-DRMTCMA also utilizes the CM property of the transmitted signal

that brings additional advantages and complexity. . The most prominent advan-
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Figure 3.4: Structure of a BF using LS-DRTMA.

tage is that, since LS-DRMTCMA can generate deeper nulls in the antenna array

pattern it has a better performance than LS-DRMTA . Structure of BF using LS-

DRMTCMA is given in Figure 3.6

LS-DRMTCMA block diagram is shown in Figure 3.7. Similar to LS-DRMTA,

LS-DRMTCMA tries to minimize the following cost function, but ri(k) now becomes

the weighted sum of re-spread signal, ri1(k), and complex-limited output, ri2(k)

J(w) =
K∑

k=1

|yi(k)− ri(k)|2

=
K∑

k=1

|wH
i x(k)− (a1ri1(k) + a2ri2(k))|2

(3.4)

a1 and a2 determines the contribution of each part and satisfys the following

equation

a1 + a2 = 1 (3.5)

and the term ri2 is obtained by dividing the output to its absolute value

ri2(k) =
yi(k)

|yi(k)| . (3.6)
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Figure 3.5: LS-DRMTA block diagram.

Similarly, the solution to Equation 3.4 is found by least squares solution and the

weights are iterated by the following equation,

w(l + 1) = [X XH ]−1Xr∗i . (3.7)

where X is a matrix containing K snapshot of array input data vector in each

column. After each bit detection, the weigths are adjusted by the Equation 3.7

until the algorithm converges.
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Figure 3.6: Structure of a BF using LS-DRMTCMA.

Figure 3.7: LS-DRMTCMA block diagram.
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Chapter 4

Results and Discussions

4.1 Introduction

As it was stated in the preceding chapters, a smart antenna test-bed has been set

up in a laboratory environment to evaluate the effects of frequency and time offsets

on LS-DRMTA and LS-DRMTCMA experimentally. In this chapter, the properties

of the set-up and the experimental results will be presented. Analysing the results,

the performance of LS-DRMTA and LS-DRMTCMA in timing and frequency offset

cases will be discussed.

4.2 The Smart Antenna Test-Bed

The smart antenna test-bed consists of two transmitters, representing two mobile

users, and the receiver system as shown in Figure 4.1. In the receiver system, there

is a two-element antenna array and each element is connected to a digital receiver

that makes the conversion from RF to baseband. The transmitters generate RF

signal at 2.125 GHz using signal generators as shown in Figure 4.2. The set up is a

simple implementation of a W-CDMA system.

The position of the transmitter that radiates the SOI, Tx-1, is fixed, however

the position of interferer, Tx-2, was changed as shown in the Figure 4.1. The angles

between Tx-1 and Tx-2 are 70 ,45, 30, 15 degrees. For each angle the samples were

taken for SIR, the ratio of signal power radiated by Tx-2 to interferer power radiated

by Tx-1, values of 0, -2, -4, -6, -8, -10 dB.
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Figure 4.1: The test-bed includes two transmitters and a receiver system.

The digital receivers, in Figure 4.3 are wideband (BW = 20 MHz) and the

operating frequency is set to 2.125 GHz. After converting RF signal to baseband,

the baseband signal is sampled at 40Msample/s with 10 bit precision. Then the

samples are sent to computer for post processing in Matlab.

All the antennas used in the test-bed are microstrip inset-patch antennas. The

antennas are designed to operate at 2.125 GHz. In the antenna array used in the

receiver side, the antennas are separated by half-wavelength, 7 cm. The antennas

are rectangular patch with the dimensions 4mm× 4.7mm.

The processing gain, number of chips per bit, used in the system, Nc, is 8. OVSF

codes are chosen as , at

• DPDCH : 1 1 1 1 1 1 1 1

• DPCCH : 1 -1 1 -1 1 -1 1 -1.
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A known data sequence is transmitted repeatedly to facilitate calculation of BER,

for DPDCH channel 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 1 -1

1 -1 -1 1 -1 -1 1 1 1 -1 1 -1 1 -1 and in DPCCH channel, always 1 is transmitted.

Scrambling code is not used since generation and detection of scrambling codes

increases the complexity of the set-up. The modulation scheme used in the set-up

is Quadrature Phase Shift Keying (QPSK). The carrier frequency of the signal is

2.125 GHz and the chip rate is 2.5 Mcps. The sampling rate is four times the chip

rate. The block size, K, used in the LS-DRMTA and LS-DRMTCMA is, 8 × 4 =

32. In LS - DRMTCMA, parameter αCM was set to 1/3 and αPN was 2/3. since

these are the optimum weights as shown in [3].

The baseband pulse shape used in the system is a Gaussian pulse with BT =

0.5, where B is the bandwidth of the Gaussian pulse and T is the symbol period.

Figure 4.2: The transmitter.

LS-DRMTA and LS-DRMTCMA are first designed for DS-CDMA, but it can be

adapted for W-CDMA easily. The only difference is that in W- CDMA, spreading
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Figure 4.3: The receiver system.

de-spreading operations are done at both I and Q channels.

The digitized data is sent to the computer. After downloading the data, it

is transferred to Matlab environment. In Matlab, first the phase rotation on the

baseband samples, caused by the slight frequency offset, is removed. Then the two

receivers are synchronized using the correlation between the known data sequence

and the received data. Then the LS-DRMTA and LS-DRMTCMA are applied to

the received data.

4.3 Results

After the implementation of LS-DRMTA and LS-DRMTCMA, according to the

computed weights,w, baseband samples from the two receivers are combined, as

shown in the Figure 4.4. As seen in Figure 4.4.a and 4.4.b , the baseband outputs of

the antennas are quite corrupted due to interference, however combined signal using

LS-DRMTA, 4.4.c, has a better signal quality since the interference is suppressed
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by the algorithm.

Using the weights it is possible to plot the corresponding array pattern, as shown

4.5, or using the combined signal, bit error rate (BER) curves can be plotted. In

this section, according to the test-bed output BER curves in three cases, frequency

offset, timing offset and without frequency and timing offset case are plotted and the

performance of conventional receiver, LS-DRMTA and LS-DRMTCMA is compared.

In conventional receiver, only one antenna output is used and after despreading the

bits are detected directly.
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Figure 4.4: (a) Baseband I channel output of the first antenna. (b) Baseband I

channel output of the second antenna. (c) Combined signal. In this case SIR = -

8dB, the angle between SOI and interferer is 450

4.3.1 BER Performance without Frequency and Timing Offset

In this section the BER performance of conventional receiver, LS-DRMTA and

LS-DRMTCMA will be compared in the condition when there is no timing and no
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Figure 4.5: Antenna array pattern corresponding to the weights computed by LS-

DRMTA and LS-DRMTCMA. In this figure the angle separation is 450, and SIR =

-4dB.

frequency offset exists. BER vs SIR curves will be plotted for SIR values of -4, -6,-8

and -10.

BER performance of the LS-DRMTA and LS-DRMTCMA, respectively, is shown

in Figure 4.6 and Figure 4.7 and in Table 4.1. From the Figures 4.6 and 4.7 it

can be seen that the BER increases as the SIR decreases, and LS-DRMTA and

LS-DRMTCMA have much better performance than a conventional receiver. The

reason for this is that, in a conventional receiver only one antenna output is used to

detect the symbols, however in LS-DRMTA and LS-DRMTCMA two antenna out-

puts are combined before detection, in order to block the interfering signal. As seen

in the Figure 4.5, using the weights computed by LS-DRMTA and LS-DRMTCMA,

the interference can be suppressed by 15 dB and 20 dB, respectively.

As shown in the Figures 4.6 and 4.7, as the angle separation between SOI and

interfering signal decreased, BER increases. This is due to peak to null BW of the
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antennas, from the equation ??, the peak to null beamwidth of the main beam of

the 2-element ULA is approximately

θH = sin−1(
λ

Md
) = sin−1(

λ

2λ/2
) = 900 (4.1)

Since the angles 150, 300, 450 are smaller than 900, the interfering signal falls into

the main beam. Then, as the angle separation between SOI and interfering signal

decreased, the array response in the direction of the interfering signal increases. As

a result SIR decreases and BER increases.
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Figure 4.6: BER vs. SIR of conventional receiver and LS-DRMTA for different angle

separations.

For all angle separations, 150, 300 and 450, LS-DRMTCMA has a better BER per-

formance then LS-DRMTA. As it was stated in the preceding chapter, LS-DRMTA

utilizes PN sequence of the user’s only, however LS-DRMTCMA utilizes both the

PN sequence and constant modulus property of the transmitted signal. Therefore,

LS-DRMTCMA can generate deeper nulls resulting better SIR value. For the same
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Figure 4.7: BER performance of conventional receiver and LS-DRMTCMA for dif-

ferent angle separations

SIR values, LS-DRMTCMA has lower BER.

As seen from the Table 4.3.1, LS-DRMTCMA performs averagely three times

better than LS-DRMTA.

4.3.2 BER Performance with Timing Offset

One of the factors that degrades the smart antenna performance is the timing

offset. In a CDMA system due to imperfect synchronization caused by interference

and low SNR, a timing offset T0 exists between local generated and the received

PN sequence. In this section, performance of LS-DRMTA and LS-DRMTCMA

algorithms in timing offset case will be investigated. Since we have four samples

per chip, by shifting the samples, we can investigate , %25, %50, %75 ,%100 timing

offset cases.

In Figure 4.8 and 4.9 ,accordingly, the BER performance of the LS-DRMTA

and LS-DRMTCMA for %25 timing offset case is shown for different separation
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Table 4.1: BER values in the case without timing and frequency offset.

SIR=-10 dB Angle Separation LS-DRMTA LS-DRMTCMA

150 2.10−2 7.10−3

300 1, 34.10−2 3, 2.10−3

450 8, 09.10−4 3, 2.10−4

SIR = -8 dB 150 5, 2.10−3 2, 2.10−3

300 2.10−3 9, 1.10−4

450 1, 34.10−4 -

angles. Comparing the Figures 4.8, 4.9 and Figures 4.6, 4.7 BER performance of

both algorithms degrades with respect to the case without timing offset. In LS-

DRMTA, for the same BER , in 25% timing offset case, SIR values must be 2-3 dB

more than as it is for without timing offset case, however for LS-DRMTCMA, this

can be 1-2 dB.

Comparing Figure 4.8 and 4.9, it can be deduced that LS-DRMTCMA outper-

forms the LS-DRMTA in 25% timing case, BER’s for the same SIR are presented

on Table 4.2 . However, as the timing offset is increased, the improvement of LS-

DRMTCMA over LS-DRMTA decreases, and their BER curves resembles to each

other as shown in Figure 4.10. Because, as the timing offset is increased, BER is

dominated by timing offset.

In the Figure 4.10 for LS-DRMTA, BER increases drastically, from 1, 2.10−3 to

0.16, when timing offset is %50. Since, we have chosen OVSF as alternating 1’s and

-1’s, for %50 timing offset local generated and the received PN sequence becomes

orthogonal. Increasing timing offset as much as %75, %100 causes local generated

and the received PN sequence to be reverse of the each other. Then, detected data

sequence becomes completely the reverse of the received data sequence. Therefore,

for %75, %100 timing offsets, the results get worse and BER’s close to 1 as shown

in Figure 4.10.

Figure 4.11 shows the variation of array pattern with the changing timing offset
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Figure 4.8: BER performance of LS-DRMTA and conventional receiver in %25

timing offset case.

values in LS-DRMTCMA. Comparing Figures 4.11.a and b, for %25 timing offset,

suppression rate is 5 dB less than as it is for without the timing offset case. Al-

though the timing offset is increased as much as %50, %75 and %100, interference

suppression rate approximately stays the same around 15 dB. As a result, in spite

of the serious timing offset , a reasonable SIR can be achieved for a better PN

synchronization.

4.3.3 BER Performance with Frequency Offset

In a CDMA system, there may exists a frequency offset f0 between local os-

cillator and the carrier of the impinging signal. This will cause a phase rotation

in baseband samples with the frequency related to f0. If the frequency offset is

not compensated, the BER performance of the receiver will be degraded seriously.

In this section the BER performance of the conventional receiver, LS-DRMTA and

LS-DRMTCMA will be investigated under the frequency offset conditions where
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Figure 4.9: BER performance of LS-DRMTCMA and conventional receiver in %25

timing offset case.

F0 = 100Hz and F0 = 500Hz. In order to have a frequency offset effect on the

baseband samples, baseband samples are multiplied with the corresponding discrete

frequency ωd , exp(jωdn), where n is an integer.

The frequency offset will cause the signal constellation to rotate along the unit

circle with a speed proportional to the value of the frequency offset. If the frequency

is not compensated, this leads to very high BER in PSK modulation schemes. In

fact, the adaptive algorithm tries to restore the rotated signal constellation to the its

closest one. Therefore, for the W-CDMA signal having QPSK constellation, Figure

4.12, if the adaptive algorithm can update the weight vector before the phase rota-

tion exceeds π/4, i.e, before the constellation passing through the imaginary axis,

then the constellation will be restored to the right one. So, for the W-CDMA the

maximum allowable phase shift, denoted by φa, between two consecutive adaptation

may be given as

φa < π/4. (4.2)
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Table 4.2: BER values in %25 timing offset case

SIR=-10 dB Angle Separation LS-DRMTA LS-DRMTCMA

150 0.33 1, 18.10−2

300 1, 87.10−2 6, 1.10−3

450 5, 18.10−3 8.10−4

SIR = -8 dB 150 0.23 4, 7.10−3

300 1, 03.10−2 1, 9.10−3

450 1, 5.10−3 -

The choice of φa determines the weight update frequency, and affects the perfor-

mance of LS-DRMTA and LS-DRMTCMA.

In the Figure 4.13 and 4.14, the BER performance of LS-DRMTA and LS-

DRMTCMA is shown for different separation angles. BER’s in the Figure 4.13

and 4.14 is tabulated in Table 4.3. In these figures, the frequency offset is 100 Hz

and φa is set at 0.1π. Comparing the Figures 4.13, 4.14 and Figures 4.6, 4.7 the BER

performance of the conventional receiver degrades drastically. Also the performance

of the LS-DRMTA and LS-DRMTCMA degrades, however they still give reason-

able BER values since the weight update is sufficiently fast to restore the rotated

signal constellation. For the same BER, in frequency offset case the performance

of the both algorithms degrades 6-7 dB with respect to the case without timing or

frequency offset. LS-DRMTCMA outperforms the LS-DRMTA in frequency offset

condition.

As shown in the Figure 4.15, the BER does not change significantly with the

frequency offset. In the figure increasing frequency offset from 100 Hz to 200Hz

BER increases a little for both of the algorithms. Increasing the frequency offset

beyond 300 Hz doesn’t change BER significantly only it fluctuates weakly. Since

increasing the frequency offset, will also increase the weight update frequency, as a

result the BER performance of the algorithms will not change significantly.
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Figure 4.10: BER vs. timing offset . In this figure SIR = -8dB and angle separation

is 450

In the Figure 4.16 and 4.17, the relation between the BER performance of the

algorithms and the φa can be seen. It can be seen that reducing the φa, we can

get lower BER values. For example, while angle separation is 300 and frequency

offset is 100Hz, for LS-DRMTA BER decreases from 9, 8.10−3 to 5, 2.10−3 or for

LS-DRMTCMA decreases from 4, 7.10−3 to 2.10−3, if φa is reduced from 0.1π to

0.05π. However reducing φa from 0.1π to 0.05π means increasing the weight update

frequency two times, that results in a higher computational complexity. Therefore,

there is a trade off between φa and BER.
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Figure 4.11: Array patterns for different timing offsets. (a) To = 0, (b) To = %25Tc,

(c) To = %50Tc, (d) To = %75Tc, (e) To = %100Tc. In this figure SIR = -10 dB and

angle separation is 450
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Figure 4.12: (a) QPSK Constellation. (b) Rotated QPSK constellation due to

frequency offset.

48



−10 −9 −8 −7 −6 −5 −4 −3 −2
10

−4

10
−3

10
−2

10
−1

10
0

SIR (dB)

B
E

R

LS−DRMTA

Conventional Receiver 

150 
300 

450 700 

Figure 4.13: BER performance of conventional receiver and LS-DRMTA. In this

figure the frequency offset is 100 Hz and φa is set at 0.1π
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Figure 4.14: BER performance of conventional receiver and LS-DRMTCMA. In this

figure the frequency offset is 100 Hz and φa is set at 0.1π
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Table 4.3: BER values in frequency offset case. In this table frequency offset is 100

Hz.

SIR = -10 dB Angle Separation LS-DRMTA LS-DRMTCMA

150 9, 6.10−2 6, 2.10−2

300 7, 3.10−2 2, 8.10−2

450 2, 8.10−2 1, 04.10−2

700 3, 5.10−3 10−3

SIR = -8 dB 150 7, 1.10−2 4, 96.10−2

300 5, 2.10−2 1, 07.10−2

450 6, 7.10−3 2, 2.10−3

700 9, 32.10−4 5, 12.10−3

SIR = -6 dB 150 4, 4.10−2 2, 24.10−2

300 1, 8.10−2 8.10−3

450 3, 8.10−3 1, 1.10−3

700 - -
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Figure 4.15: BER vs frequency offset. In this figure, angle separation between the

users is 450, SIR = -4 dB and φa is set at 0.1π.
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Figure 4.16: BER vs φa for the LS-DRMTA algorithm. In this figure, SIR = -4 dB,

the angle separation is 300 and 450.
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Figure 4.17: BER vs φa for the LS-DRMTCMA algorithm. In this figure, SIR = -4

dB, the angle separation is 300 and 450
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Chapter 5

Conclusion

In this thesis, BER performance of LS-DRMTA, LS-DRMTCMA and conven-

tional receiver are compared using the outputs of a set-up in a laboratory environ-

ment. The set up is a simple implementation of a W-CDMA system that consists

of two transmitters, representing two mobile users , and a receiver system including

a half-wavelength spaced two-element antenna array connected to digital receivers.

The output of the receivers, sampled and digitized baseband data, is sent to a

computer to implement the smart antenna algorithms. BER performance of LS-

DRMTA, LS-DRMTCMA and conventional receiver compared in three cases, with-

out frequency and timing offset case, frequency offset case and timing offset case.

In each case, the samples are taken for the angle separation of 150, 300, 450 and 700

between interferer and desired user. Furthermore, for each angle the samples are

taken for the SIR values of -10 , -8 ,-6, -4 ,-2 and 0 dB.

It was shown from the BER curves, in all test conditions LS-DRMTA and LS-

DRMTCMA outperforms conventional receiver. LS-DRMTA and LS-DRMTCMA

can suppress the interference 15-20 dB, but LS-DRMTCMA can generate deeper

nulls in the antenna array pattern than LS-DRMTA as a result LS-DRMTCMA

outperforms LS-DRMTA in all test conditions. Frequency offset and timing offset

degrades the performance of the LS-DRMTA and LS-DRMTCMA, however they

still have reasonable BER and performs better than a conventional receiver. In-

creasing the frequency offset effects BER slightly if the weight update frequency
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is increased proportional to the frequency offset, on the other hand increasing the

timing offset beyond %25Tc causes the BER to increase drastically although inter-

ference suppression rate is good enough, this is because of the BER is dominated

by the timing offset. In all test conditions, decreasing the angle separation from 700

to 150 increases the BER for both of the algorithms. Moreover, decreasing the SIR

value causes the BER to increase for both of the algorithms in all test conditions,

however they can still work at low SIR conditions as much as -10 dB .

In conclusion, smart antennas can be a good solution for capacity increase, since

it lessens the effects of interference between the users, that is the major handicap

limiting the capacity of the CDMA systems.

A few possibilities for future works based on the results of this thesis can be

enumerated as follows.

• In this thesis, BER performance of LS-DRMTA, LS-DRMTCMA and con-

ventional receiver are compared using the outputs of a set-up in a laboratory

environment. A similar system can be simulated and the results can be com-

pared.

• We only used a set-up involving 2-user and 2-element antenna array. A larger

antenna array having more than 2 elements can be used. Similarly, a set-up

having more than 2 users can be used to examine the overloaded case.

• In this research, a full implementation of W-CDMA is not used. Scrambling

code is not used and short OVSF code (only 8 chips per bit) is used. The

performance of the algorithms can be investigated in a set-up using fully im-

plemented W-CDMA signal.

• The antennas in this research are linearly configured and rectangular patch

antennas. The performance of different antenna types and array configuration

schemes can be examined.

• In this thesis, only the algorithms are examined for W-CDMA uplink. The
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performance of the algorithms can be evaluated for downlink. The relation

between uplink and downlink BF weights can be examined, because generally

uplink and downlink carrier frequencies are different.
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