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ABSTRACT

Increasing product and part variety is one of the most distinctive characteristics
of industrial competition today. It is generally accepted that proliferation of products
results in deterioration in manufacturing/logistics performance. Higher product variety
leads to higher forecast errors, excessive inventory for some products, and shortages for
others. In addition, high product overhead and administrative costs, higher
manufacturing costs due to more specialized process materials, changeovers and quality

assurance methods are encountered.

During a manufacturing process consisting of multiple stages products with high
degree of variety are produced. Product may start as a common single engine and takes
certain features or personalities at each stage. As more and more identities are added,
total number of end products increases. Due to the nature of end products’ demand,
especially the variation from period to period the production volumes of intermediate

stages in a production process vary.

Researchers have tried to eliminate the negative effects of high product variety.
The strategies produced for reducing product variety and the level of complexity it
possesses can be grouped into two categories, lead time reduction strategies and non-
lead time reduction strategies. This thesis is motivated to analyze a non-lead time
reduction strategy; operations reversal, which reengineers the manufacturing process by
reversing two consecutive stages of the process. It is observed that operation reversal
can lead to variance reduction and improves the efficiency of the process. Throughout
this thesis, models that characterize the impact of operations reversal are developed and

used to derive insights on when operations reversal would be beneficial.

v



OZET

Artan iiriin ve parga cesitliligi glinimiiz endiistriyel rekabet ortaminin en
belirgin 6zelligi olmaya baslamistir. Genel olarak iiriin ¢esitliligindeki artigin iiretim ve
lojistik alanindaki performansi diisiirdiigii bilinmektedir. Yiiksek iiriin ¢esitliligi ciddi
Ongorii hatalarina sebep olmakta, bunun sonucunda da envanter yonetiminde sorunlar
yasanmaktadir. Ek olarak, bu tiir iiretim 6zellesmis proses malzemeleri, teknikleri ve
kalite glivence metodlar1 gerektirdiginden genel gider ve yonetim maliyetlerinde de

artisa sebep olmaktadir.

Genellikle yiiksek iirlin ¢esitliligi ¢cok asamali liretim sistemlerini de beraberinde
getirir. Uriin, son iiriin haline gelirken {iretim sisteminin her asamasinda yeni &zellikler
kazanir. Son lriiniin talep yapisindan, 6zellikle de peryotlar arasindaki degiskenliginden
dolayi ara iiretim agamalarindaki {irtin hacimleri ¢esitlilik sergilemektedir. Bu durum da

yukarida bahsi gegen proses maliyetlerini olusturmaktadir.

Uriin ¢esitliligini ve beraberinde getirdigi zorluklar1 hafifletmek igin gelistirilen
yontemleri iki kategoriye ayirabiliriz. Bunlar Onsiire kisaltmaya yoOnelik olan ve
olmayan stratejiler diye ikiye ayrilir. Bu ¢alismanin konusu Onsiire kisaltmaya yonelik
olmayan operasyon sirast degistirme yontemidir. Bu yontem iiretim siirecindeki ardisik
iki iiretim asamasinin yerini degistirerek sistemi yeniden yapilandirmakta, boylece
varyans azalmakta ve sistemin verimliligi artmaktadir. Bu ¢alismada tiretim sistemleri
modellenerek  operasyon sirasi degistirme yOnteminin etkilerine bakilmakta ve

yontemin hangi durumlarda yararli oldugu arastirilmaktadir.
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1. INTRODUCTION

Driven by the market’s pull for increasingly differentiated products and by the
manufacturer’s push to seek finely targeted niche segments, the variety of products
offered in most industries has increased steadily over the last several decades. The pull
comes from customers who seem to reward companies that can offer high variety while
matching the price and quality of competitors with narrower product lines. Modern
marketing methods accelerate this trend by identifying once obscure specifics of
customer preferences. As more companies compete internationally, product markets
become more crowded and product differentiation more important. The push comes
from new firm capabilities as the increased sophistication and declining price of
flexible, programmable automation bring the opportunity for greater product variety

within the grasp of many companies. (Fisher, 1994)

Another approach defines product variety on two dimensions: the breadth of
products that a firm offers at a given time and the rate at which the firm replaces
existing products with the new products. Both dimensions of variety have steadily
increased in many industries so that the managerial challenge is to provide the high
degree of variety that seems necessary and also retain the scale of economies required

for low cost.

The approaches companies have taken in coping with this challenge can be
classified as process based or product based. Process based strategies are based on
enabling production and distribution processes with sufficient flexibility to accomodate
a high level of variety at a resonable cost. Product based strategies seek product designs
that allow high variety in the marketplace while representing the production and
distribution system with a relatively low level of component variety and assembly

complexity.



Important consideration is also being given to mass customization strategies by
companies today. Additional impetus is coming from mass merchandisers expecting
deliveries in small quantities directly to stores with extremely high service levels,
specialized packaging, and unique promotion combinations. These strategies result in
sales growth or higher prices and presumed profit gained by meeting more specialized
demands. However, such decisions can have adverse implications for manufacturing
and distribution systems that are not always captured in cost, margin, and non-financial

performance estimates for such strategies.

There is also an increasing evidence which reveals that achieving competitive
advantage through increased product variety is heavily dependent on ensuring the
proper alignment between the marketing and manufacturing strategies pursued by a

company.

Increasing product and part variety is one of the most distinctive characteristics
of industrial competititon today. Its increasing role as determinant of operations strategy
and performance has been noted by a series of studies. A survey of 1400 business units
suggested that broadening product lines have a positive impact in competitiveness and
that the firms in many businesses have to increase their product variety to remain

competitive. (Prasad, 1998)

Researchers from diverse fields such as economics, marketing, and operations
management have studied product variety and define it as the breadth and the depth of
product lines. The main focus is on the cost of variety within a company. Several
empirical studies showed that greater product variety increases the cost by making the
business more complex. The problem with this complexity is the uncertainty it brings.
Uncertainties in demand realization, delays in deliveries, etc., lead to either excess

inventories or stocks that are insufficient to meet customer demands.

In this thesis, the main purpose is to analyze non-lead time reduction strategies,
especially operations reversal to improve operating efficiency. It is generally accepted
that, higher product variety leads to higher forecast errors, excessive inventory for some
products and shortages for others, higher overhead and administrative costs, and higher

manufacturing costs due to more specialized process materials, changeovers, and



quality assurance methods. In discussion of how to deal with the operational problems
related to the complexity of product variety, the main starting point of the study is to
reduce a 2-by-N manufacturing system’s overall variance using operations reversal.
Multiple performance measures including service levels and inventory carrying costs
can be incorporated in the analysis of the system. However, for the sake of simplicity,
system’s variance is chosen as the main performance criterion for the base case. Then
other performance criteria such as backorder levels, queue length, and server capacities

are incorporated in the model.

The model under consideration is a manufacturing process that consists of two
stages. At each stage, a particular feature of the product is defined through an
installation or customization process. In one stage there are two features and in the other
stage, there are multiple features. The decision is how to sequence the stages to improve

system’s efficiency, namely to reduce overall variance of the system.

It is assumed that, the process operates like a pull system and order-up-to
inventory policy is used. In each time period, the production volumes for the second
stage are such that they equal the demands for the end products of the previous period.
Sum of variances of the production volumes at each stage will constitute the
performance measure. The main focus is on the variability of the production volumes in
the manufacturing process since it drives buffer inventory and high variability of
production volumes are often associated with degradation of quality, process yields,

machine down-times, and staff planning troubles.

In the next chapter a brief literature on product variety, its origins and
development is presented. Then the strategies to reduce the impact of product variety on
processes are investigated via various models, mostly emphasizing the terms delayed
differentiation, postponement, part commonality, process sequencing, and particularly

operations reversal.

In chapter 3, the model to which operations reversal is applied is discussed in
detail. The discussion begins with the description of the two-stage uncapacitated model,

which concentrates on the overall variability of the system. General system behavior for



two choice three feature (2-by-3) and two choice four feature (2-by-4) cases are
investigated in detail. Then a model is developed to include the more realistic
capacitated case using simulation. The new model concentrates on more than one
performance criterion: namely variance, queue lengths and backorder levels are also
incorporated. The discussion continues with the comparison of results for the

deterministic capacitated case and the uncapacitated case.

In chapter 4 the results of the study are briefly summarized and further research

opportunities in operations reversal methodology are discussed.



2. LITERATURE REVIEW

In today’s competitive global markets, marketing managers through strategies
such as market segmentation and niche marketing often suggest an increase in product
variety and range to satisfy specific groups of customers’ needs or wants. Variety can be
defined as the breadth of products that a firm offers at a given time and the rate at
which the firm replaces existing products with the new products. Both dimensions of
variety have steadily increased in many industries so that the managerial challenge now
is how to provide the high degree of variety that seems necessary for competitive

success while retaining the economies of scale required for low cost.

High degree of variety brings system complexity. Complexity starts at companies
with high product varieties having problems in acquiring accurate demand forecasts for
individual product groups. They also have to control proliferation of inventory and
provide a high service level for customers. Strategies for reducing the level of
complexity can be grouped into two categories: lead time reduction strategies and non-
lead time reduction strategies. It is known that short-term forecasts are more accurate
than long-term forecasts. Lead-time reduction is useful in the sense that it reduces
forecast horizon. As the error between actual demand and forecast gets smaller the
safety stock levels decrease. Production Line Structuring and Quick Response (QR) (A
strategy for reducing inventories by cutting lead times in production and improving
coordination between different stages of the supply chain) systems are two effective
means of reducing total lead times. The main objective of this class of strategies is to
reduce the complexity of the system by reducing the number of parts and processes and
by mitigating the effect of uncertainties on total cost in the system. Part commonality,
postponement, and process sequencing are some of non-lead time reduction strategies
that delay product differentiation. Since Anderson (1950) introduced the concept of
delayed product differentiation, it became an emerging means to address these

challenges.



In many manufacturing processes, multiple end products may share some
common components or processes at the initial stages of the process. At some point
work-in-process specializes into different end products. This point is known as the point
of differentiation. Doremalen and Fleuren (1991), Zinn and Bowersox (1988), and Zinn

(1990) use this concept extensively in logistics and distribution processes.

There exists a fixed and variable cost associated with delayed product
differentiation. Depending on the system settings, the unit processing cost and the unit
inventory holding cost as well as the cost of redesign may change. Lee and Billington
(1994) discuss the cost drivers of delayed product differentiation in detail. The benefit
of delayed product differentiation in the form of inventory reduction or service
improvement is similar to the pooling effect of multi-echelon inventory systems (Eppen
and Shrage, 1981; Federgruen and Zipkin, 1984; and Schwarz, 1989). In multi-echelon
inventory systems, a central warehouse procures products and in turn supplies multiple
retailers. Lee (1996) describes a model that captures the inventory reduction of delayed
product differentiation that is essentially an adaptation of the multi-echelon inventory
system. The model, however, assumes that no buffer inventories are held until the end
of production process. Hence, the only possible inventory savings can come from the
reduction of finished goods inventory. Lee (1994) studies the benefits of postponement
in make-to-order (MTO) and make-to-stock (MTS) systems that he defines. In the MTO
system an intermediate stage of the product is made to stock and is customized into
various end products on demand. In the production system it takes ¢ time units to
produce the generic intermediate product and 7-f time units to customize the
intermediate product into end products. He shows that the value added to the
intermediate product determines the cost effectiveness of postponement. The MTS
system operates under centralized control and stocks only finished products. The total
lead-time to manufacture each end product is 7 time units. Demand for the end product
is normally distributed with mean x and variance o”. The demand for each product is
independent across time but may be correlated within a time unit. He shows that
delaying product differentiation would always result in lower inventories of finished
products. The savings are greater in cases where demands for the end products are
negatively correlated. A real-world example of delayed product differentiation by

means of deferring the localization process for the



deskjet printer at Hewlett Packard, where inventories are kept in finished goods form, is

reported in Lee et al. (1993).

Lee and Tang (1997) consider a model that captures the costs and benefits of
redesign strategy. They consider a situation in which the company has determined its
product portfolio and focus on the concept of redesigning the product or the production
process so that the point of differentiation is delayed as late as possible. This redesign
increases the flexibility of the process to cope with market uncertainties and lower the
inventory for the same target level. They present the factors that are affected by product
differentiation, such as design cost, processing cost, inventory cost at intermediate
stages, lead times, etc. They formalize three basic approaches for delayed product
differentiation that some companies use: standardization, modular design, and process
resequencing. Standardization can be defined as replacing a family of products by a
standard product, and modularity is placing functionality in modules which can easily
be added to a product. Resequencing refers to modifying the order of product
manufacturing steps so that those operations that result in the differentiation of specific

items or products are postponed as much as possible.

Another way where reengineering the manufacturing process leads to better
operational performance in terms of inventories, customer service level, and operating
costs, is variance reduction. Since demands of the end products are highly variable from
period to period, production volumes of the intermediate stages in the manufacturing
process are also variable. Variability of the production volumes may add cost to the
process. One way in which variability can be controlled by reengineering is reversing
the sequence of two consecutive stages in a manufacturing process or supply chain. The
Benetton case (Harvard Business School Note, 1990; Daprian, 1992) depicts an

example of such an effort.

Benetton used to produce its sweaters by first dying yarns into different colors and
then knitting the colored yarns into different end products. Mismatch of inventory of

finished garments with different colors resulted in costly end of season markdowns.



Luciano Benetton reversed the dyeing and knitting operations in the supply chain
with his reengineering effort. Bleached yarns are knitted into the different styles and

sizes,

and then dyed into the different colors due to season’s fashion preferences. This change

significantly improved Benetton’s operational performance.

Gupta and Krishnan (1996) also describe how resequencing the steps in the
assembly of a fountain pen can lead to process improvements. In one sequence, the rib
is assembled to the nib head, followed by the assembly of inner and outer bodies. In
another sequence, the nib head is first assembled to the inner and outer bodies before
adding the nib. Gupta and Krishnan (1996) show how these two sequences can have

very different process flexibility and efficiency in the manufacturing of fountain pens.

Lee and Tang (1998) expand the study on postponement. Postponement results in
smaller standard deviations of production volumes at intermediate stages of the
manufacturing process primarily because of the risk pooling effect at the standardized
stages. Lee and Tang (1998) discuss operations reversal as a mechanism to reduce
variability of production volumes in the intermediate stages of a manufacturing process.
They also explore the conditions under which reversal of two process stages is

desirable.

In Lee and Tang (1998), a product is manufactured in two stages; at each stage a
particular feature of the product is added. The feature at each stage is supposed to have
only two variants. In the Benetton example, style and color may be the two features. In
general, these features are denoted by 4 and B. The aggregate demand of all products in
a period is a random variable N with mean g and standard deviation o. Each customer
has a probability p (g) of choosing variant 1 of feature 4 (B) and probability /-p (I-q) of
choosing variant two of feature 4 (B). In addition, a customer’s choice probabilities of 4
are independent of his/her choice probabilities of B. The system variance is defined as
the sum of the variances of in-process production volumes. Lee and Tang demonstrate
that if aggregate demand over all end products is relatively stable (u >o0°) and the
choice probabilities associated with feature A are more distinctive than the choice

probabilities associated with feature B (p(I-p) < q (I-q) ) then sequence A-B would



result in a lower system variance than sequence B-4 The reverse is true if (1 <o’). The
authors state that the nature of total demand uncertainty is very critical in determining
whether operations reversal is an effective means to reengineer the supply chain. They
expand their results for multiple choice-two feature, two choice-multiple feature, and
multiple choice-multiple feature systems. Also a model is developed in which the lead
times are included. This model is developed for the case where second stage choice

probabilities are independent.

The key limitation in Lee and Tang (1998) is the use of total variability as a
performance measure. Kapuscinski and Tayur (1999) show that if the analysis of the
model presented by Lee and Tang (1998) used standard deviation rather than variance

some nonintuitive predictions of their analysis would have been eliminated.

Jain and Paul (2001) generalize the operations reversal process of Lee and Tang
(1998) to explicitly incorporate two important characteristics of fashion goods markets:
heterogeneity among customers and unpredictability of customer preferences. They
present a new approach to modeling the operations reversal problem. Their model
explicitly captures the cost implications of production volume vulnerability by
permitting a direct comparison of safety stocks with and without operations reversal. In
addition, instead of requiring distributional information on customers’ choice
probabilities, the model utilizes macro-level data on the distribution of fraction of

aggregate demand for each variant.

Another approach to manage broader product lines through delayed differentiation
is using vanilla boxes (Swaminathan and Tayur, 1998). Their work is motivated by the
characteristics of an IBM product line. They argue that in an environment where
demands are stochastic, it seems a good strategy to store inventory in the form of semi-
finished products (vanilla boxes) that can serve more than one final product. Finding the
optimal configurations and inventory levels of vanilla boxes is a challenging task. In
their paper, they model the problem as a two-stage integer program with recourse. They
propose an effective solution procedure by utilizing structural decomposition of the
problem and (sub)gradient derivative methods. They provide insights on the effect of

demand variance, correlation, and capacity limitations on the optimal configuration and



inventory levels of vanilla boxes and the performance of a vanilla assembly process. In
addition, they compare the performance of the vanilla assembly process to MTS and

ATO (assemble-to-order) processes.

Another way to achieve delayed differentiation is to use part commonality /
component sharing approach. Component sharing using the same version of a
component across multiple products is increasingly viewed by companies as a way to
offer high variety in the marketplace while retaining low variety in their operations. The
commonality approach in automotive industry and including general structure of the
industry and strategies to reduce product variety in mass production and especially in
lean and craft production is examined by Fisher et al. (1994). Fischer et al.(1999),
critically examine component sharing in automotive industry. They attempt to answer
the following questions: What are the key drivers and trade-offs of component sharing
decisions? How much variation exists in actual component sharing practice? And how
can this variation be explained? To answer these questions they develop an analytical
model of component sharing and show through empirical testing that this model

explains much of the variation in sharing practice for automotive braking systems.

Aviv and Federgruen (2001) also explain and quantify the benefits of delayed
differentiation. The paper characterizes the benefits in a more general setting.
Parameters of the demand distribution fail to be known with accuracy or consecutive
demands are correlated. In such a situation it is necessary to revise estimates of the
parameters of demand distributions on the basis of observed demand data. They analyze
these systems in a Bayesian framework, assuming that their initial information about the
parameters of the demand distributions is characterized via prior distributions. They
also characterize the structure of close to optimal ordering rules in these systems for a

variety of types of order cost functions.

Another model by Mieghem and Dada (1999) examines postponement from a
comparative point of view. The authors compare price versus production postponement
and analyze possible postponement strategies in a two-stage decision model where firms

make three decisions: capacity investment, production (inventory) quantity, and price.

10



They show how competition, uncertainty, and the timing of operational decisions

influence the strategic investment decision of the firm. They also show that, in contrast

to production postponement, price postponement makes the investment and production
decisions relatively insensitive to uncertainty. The result is that managers can make
optimal capacity decisions by deterministic reasoning if they have some price
flexibility. They point out consideration of a flexible ex-post pricing before production

postponement reengineering is a high valued option.

A managerial approach to product variety by Da Silveira (1998) points out the
importance of understanding how product variety may influence different levels of
organizations, meaning to investigate the management of product variety from the
assessment of market requirements within operations. In the research Da Silveira
investigates five manufacturing companies, aiming to understand how they dealt with
product variety requirements within different systems levels. Research findings lead to a

framework for product variety management within strategy and operations.

Another approach to measure the success in managing product variety tries to
measure the match of product variety with the supply chain structure (Randall and
Ulrich, 2001). They examine the relation among product variety, supply chain structure,
and firm performance and analyze product variety at the product attribute level, noting
that the relative impact of variety on production and market median costs depends to a
large extend on the attribute underlying variety. They argue that there is a coherent way
to match product variety with supply chain structure. Empirical results suggest that
firms which match supply chain structure to the type of product variety they offer

outperform firms which fail to match such choices.

Berry and Cooper (1999) show that adding product variety can have adverse cost
and margin implications when marketing and manufacturing strategies are misaligned.
The critical strategic issues involve product pricing and manufacturing flexibility in the
product mix. They report methods which provide a means of empirically diagnosing the

degree of strategic mismatch using actual operating data.

11



Considering all these postponement strategies, results show that informational
considerations have a paramount effect on the effectiveness of postponement strategies.
Anand and Mendelson (1998) model a supply chain consisting of a production facility,
a distribution center, and two different markets. Demand information is used to mitigate
the effects of uncertainty in the output markets. They study the firm’s operational
performance under alternative business processes, comparing early and delayed product
differentiation. The comparison yields to the value of postponement. Results show that
informational considerations enable researchers and decision makers to perform cost-
benefit analysis and quantify the anticipated effects of implementing postponement
strategies. They also provide qualitative guidance regarding factors that affect the value

of postponement.

12



3. AN OPERATIONS REVERSAL MODEL

As mentioned in the previous chapter, Lee and Tang (1998) have discussed
operations reversal as a mechanism to reduce variability of production volumes in the
intermediate stages of a manufacturing process. This chapter is based on the model
presented by Lee and Tang (1998) which explores the conditions under which reversal
of two process stages is desirable. The model under consideration is a two-stage,

uncapacitated process where each stage adds a specific feature of the end product.

The chapter first describes the two-stage, uncapacitated model where the
variability of the end product options would not be affected by the operations reversal.
The model concentrates on the variability of the intermediate stages, namely the first
stage. Since each of the end products are being characterized by the choice defined on
two features, i.e., 4 and B, the decision to be made is whether to sequence the supply
chain such that 4 is installed first, followed by B, or vice versa. In Section 3.1, the
overall system variance formulation for 2-by-2 case is derived. Then, in Section 3.2, the
derivation is done for the 2-by-N case. The general behavior of 2-by-3 and 2-by-4
systems under this performance measure is investigated in Section 3.3. In Section 3.4,
the base model is simulated to include more realistic capacitated case using Arena
Simulation software. The new model has three performance criteria: variance,
backorder level, and average queue length. The behavior of the new system is discussed
in detail. Section 3.5 concentrates on comparison of the base model with the capacitated
one. Hence, Arena is run for specific end product mix and results are compared with the

formula derived in Section 3.1.
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3.1. An Uncapacitated Two Stage Model: 2-by-2 System

As mentioned earlier, the manufacturing process consists of two stages. At each
stage, a particular feature of the product is defined through an installation or
customization process. In this study, the basic model with two features, each possessing
two choices, is expanded with a more general case where one feature may have N
choices, namely a 2-by-N system. The behavior of the 2-by-N system is compared with
that of 2-by-2 system. To be able to analyze the results, one needs to know first the 2-

by-2 system in detail. Thus, the model by Lee and Tang (1998) is first reviewed.

J)
4, <
B, X,

P
4,
B, — X5,
%/—/ %/—/
Stage 1 Stage 2

Figure 3.1 A two-stage uncapacitated model : 2-by-2 system

Figure 3.1 illustrates that in the first stage, there are two feature choices under
consideration, 4; and A4,. In the second stage, there are also two possible features
choices, B; and B,. Hence, there are four distinct end products, each being characterized
by the choice defined on two features. The decision to be made is whether to sequence

the supply chain such that A4 is installed first, followed by B, or vice versa.

For the above case, demands for the end product options (X;; X5, X5, Xo;) are

random variables that are multinomially distributed with parameters (N, 6;, 6,2, 61, 6:2).
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N denotes the size of the total demand which follows a normal distribution with
mean u and standard deviation o It is also assumed that the total demands for different
periods are independent.

gj denotes the probability that the customer will purchase the product that has
choice i of feature 4 and choice j of feature B.

Then,;

Ex,|N)=No, varlx,|N)=N6,(1-6,)

y

Covlx,,X,, |N)=-N6,6 for ij # mn 3.1)

ij? mn i~ mn

The covariance formulation for the system shows that the demand is negatively

correlated, which is a realistic assumption since these are substitute products.
The following notation will be used throughout the thesis:

p is the probability that a customer will purchase a product with choice 1 of

feature 4 given that he/she will purchase a product.

f(p): Prob(B1|A1) is the conditional probability that the customer buys the product
with choice 1 of feature B, given that the customer has decided to purchase the product
with choice 1 of feature A4.

g(p): Prob(Bl|A2) is the conditional probability that the customer buys the
product with choice 1 of feature B, given that the customer has decided to purchase the
product with choice 2 of feature A.

C(p): The difference between the overall variances of the two sequences.

C(p) = Var(4-B)-Var(B-A) (3.2)
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Variance of a process sequence Var(A-B) or Var(B-A) can be calculated using the

following formula:
Var(X)= E(Var(X | N))+Var(E(X | N)) (3.3)
Using (3.1) and (3.2) C(p) value for the system can be calculated.

Given such a structure, the probabilities 3;; are as follows:

0, :pf(p) 0, =p[1—f(p)]
0, =(1-ple(p) 0,, =(1-p)l1-g(p)] (3.4)

To calculate Var(4-B), first E(Var(X | N)) is calculated. For the 2-by-2 system

there are four distinct end products and the calculation of variance for the end products
leaving A; of Stage 1 (upper branch) in Figure 3.1 is the same as end products leaving
A of Stage 1 (lower branch). Hence, the variance calculations are shown for upper

branch only.

E(Var(X | N)) = EVar(X,, + X,, | N)+ E(Var(X,, + X,, | N)
E(Var(X,, +X,,|N) = E0Var(X,, | N)+Var(X,, | N)+2Cov(X,,X,, | N)
= E(N6,,(1-6,)+(N6,(1-6,,)-2N8, 6,
= 1(6,,(1-6,)+6,,(1-6,,)—26,,6,,)

= u(p(-p) 3.5)

The total conditional variance for A-B is twice the conditional variance of the

upper branch, and it is calculated as 2Np(l— p). The expectation of the conditional

variance is 2 ,up(l - p) .
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To calculate Var(E(X | N), upper and lower branch conditional expectations are

calculated separately.

Var(E(X | N) =(E(X, + X,, | N)+ E(X,, + X,, | N))
(E(X,, +X, | N)) = Var(N6,, + NO,,) =Var(N(0,, +6,,)
202(611 "'612)2

=o'p’ (3.6)

Hence, the upper branch variance of the conditional expectation is o’ p°. The
lower branch variance of the conditional expectation is calculated similarly and is found

as 0" +(1-p).

Thus, the total variance measure for 4-B is :

2(y—02)p(l—p)+0'2 (3.7)

For the sequence B-A4 total variance is:

2(u-a*[pf(p)+(1- p)g(p))- [1-[of (p)+(1- p)g(p)]+ o2 (3.8)

Subtracting (3.6) from (3.5) it is observed that the sequence A-B has a smaller variance

than B-A4 if C(p)<0, where

C(p)=(u-c>Jpl1- p)~[pf(p)+ (1= p)g(p)]- I -[pr(p)+ (1= p)e(p)] (3.9)

From (3.7) it seen that due to (u-o°) factor the sequencing of features is immaterial

when u=0’ since C(p) equals zero.
The same model can be extended to include cases where the choice selection of

one feature is independent of that of the other feature. In the independent case,

f(r)=g(p)=q, where ¢ is the probability of a customer selecting choice 1 of feature B
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and is a constant and independent of p. Here, C(p)= (,u —azlp(l —p)—-q(1-q)].

Hence, when x> o’ the sequence 4-B has a lower total variance as long as the choice
probabilities associated with feature 4 are more distinctive than feature B. This implies
that one can lower the total variance of the system if the features with more distinctive

choice probabilities are processed first.

3.2. An Uncapacitated Two Stage Model: 2-by-/N System

In the 2-by-N system, second stage has N possible features. Therefore, there are
2N distinct end products each being characterized by the choice defined on two features.
Again the decision is whether to sequence the supply chain such that A4 is installed first,
followed by B, or vice versa. What makes a sequence preferable over another is the total
variability it possesses. As explained above, the variability measures of the two
sequences with constant demand parameters are calculated and then the difference is

calculated as C(p).

The general variance formula (3.3) used for the 2-by-2 depicted in Figure 3.2 case can

be formulated as follows:

(Var(ii X D _ E_Var(ii)( ;| N] + 2C0v(g§1)(h)(lj j_

1
+2Cov
i=l j=i+l

+ Var[(i E(X,+X,| N)ﬂ (3.10)

i=1

The formulation of the model for the 2-by-N system for sequence 4-B is:
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Var(X) = ﬂ[iﬁ‘ﬁy (1 —0; )_ 2% i@llﬂu - 2% ﬁ‘ﬁzﬂz;]

i=1 j=I i=1 j=l+1 i=] j=l+1

A o]

Given that
01j = pa; 92_/ = (l—p)bj (3.12)

a; and b; are the conditional end product probabilities of the second stage as shown in

Figure 3.2.
Demand
a B, &— X,
a
A4, 2 B, X,
p
al’l
By |e—— Xin
I-p

BN<7

Figure 3.2 The model of 2-by-N uncapacitated system

The formulation of the 2-by-N system for sequence B-A is the same as formula
(3.10), with new @ values. The derivation is carried out using conditional probability

analysis and is given in Appendix A. The new values are:

0,=pa, 0,=(01-pph, (3.13)

The formulation of the model for the 2-by-N system for sequence B-A4 is:
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N N 2
Var(X) = u>0,01-6,)+0,(1-6,,)-20,6,,+5*> (0, +6,,)  (3.14)
. ,-=1

Jj=1

The sign of C(p) indicates whether the operations reversal is beneficial or not. If
C(p)<0 then the sequence B-A has a larger variance so the reversal does not improve
system efficiency. If C(p)>0 then reversing the consecutive operations (A4-B to B-A)

decreases variability.

The area of the interest for the 2-by-N case is whether C(p) term includes
(y — 02) as a factor or not. The importance of the derivation is its assistance to guess

the behavior of a 2-by-N model since it also helps to distinguish the behavior of 2-by-2

model for end product demand and standard deviations.
The derivation of C(p) for the 2-by-N case is as follows:

Since C(p) is Var(A-B) -Var(B-A) it can be calculated by subtracting (3.14) from (3.11);

1

N N N N
$0,0-0)-25 300,25 3 0.0, |

j=1 i=l j=1+1 i=l j=1+1

C(p)=u[

2
=1

N 2

N
+u,0, (1- 0, )+ 0,2 (- 0, )- 20,0, +0° (‘9/1 +0), )
=

+az[(ﬁaij +(§92ij J (3.15)

Gathering all terms including s in one bracket and all terms including o in another

bracket gives:

N N N N
zeli _911'2 _22 zelielk +292i _021'2
i=1

C(p) = i i=1 i#l k=i+l

N N N 5 N 5 N
- 22 2021‘0% - 201‘1 - 91‘1 - Zeﬂ - 91‘2 +2Z 01‘101‘2
i=1 i=1 i=1

i#l k=i+l
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+02Kﬁ9”j +(N92,-j —i(@wen)z} (3.16)

It is known from (3.10) and (3.11) that &, = 6, . Thus the first, third, fifth and sixth

terms in the first bracket cancel out. The resulting equation is as follows:

N N
238 00,25 S0, 0,25 00,

i#l k=i+1 I#] k=i+]

N 2 N 2 N 2
02[(20”) +(292ij (Z (6, +6,) ] }

i=1 i=l i=l

Using the substitution,

(3.17)

(a;taxt..... +an)2 = (a12+a22+...+an2 +2a;a,+2aas+ ...+ 2a,.a,)

The term multiplied with o becomes,

201, +2z Z 6,0, +Zez, +2Z Z 0,,0,,

i#l k=i+l i#l k=i+1 (318)

N
_Zell 2021 - Z il lz
i=l i=1

The first, third, fifth and sixth terms cancel out and the resulting C(p) equation is as

follows:

C(p)=(u-o { (Z 3 6,6, +Z Z 0,0, ieﬂeﬂﬂ (3.19)

i#l k=i+l i=l k=i+l

Formula (3.19) shows that C(p) term includes (y—az) as a factor. Thus the
benefit of operations reversal can be related to the magnitude of 4 and o” values. In the
following section the overall variance of the system is calculated for different (,u - 0'2)

values and first and second stage branching probabilities. To be able to investigate the
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behavior of C(p) in detail the second stage with N different branching probabilities
is analyzed. For 2-by-3 and 2-by-4 systems all probability combinations within a step
size of 0.1 are investigated and the resulting average C(p)s are depicted in Figures 3.3

through 3.7.

3.3. Analysis of the 2-by-/N Uncapacitated System

In this section the outputs of the 2-by-N model is simulated using C++. The
objective of simulating the 2-by-N system is to investigate the behavior of C(p) with
respect to various parameter values. The main branch probabilities vary from 0.1 to 0.5
with 0.1 increment and the second branch probabilities are assigned as shown in the

flowing program routine covering the whole solution space with 0.01 increment.

The pseudo-code in Appendix B is a sample subroutine showing the probability
assignments of the first and second branches of the 2-by-4 model for a given demand
and variance combination of end product. The outmost loop assigns the p value, second
loop assigns first of the upper second branch’s four probabilities which is denoted as a;
in Figure 3.2. When «; gets the value 0.01 in the first run @,=0.01 @;=0.01 and a,=0.97
and the second branch probabilities, b, are also 0.01, 0.01, 0.01, 0.97 respectively. In
the second run all probabilities are same except b;= 0.02 and b,=0.96. 62720 runs are
made to cover all probability pairs for each of the (1, o°) pairs of (100,1), (100,5),
(100,20), (100,50) and (1,100), (5,100), (20,100), (50,100). Positive and negative C(p)

averages are calculated and overall averages are depicted in Figures 3.3 through 3.6.
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0,000 1

-5,000 1

-10,000

-15,000

£ 220,000 ]

-25,000 1

Main Branch Probability, p

‘ W variance=1 O variance=5 O variance=10 M variance=20 @ variance=50 ‘

Figure 3.3 Average C(p) values for a 2-by-3 system at constant demand mean

In Figure 3.3 it can be noticed that as o increases the absolute value of C(p)
decreases regardless of the value of the main branch probability. All combinations point
out that variance for sequence A4-B is smaller than B-4. Hence, no operations reversal is
beneficial. As seen in Table 3.1 that as p approaches to 0.5, the difference between two
sequences decreases. This is also an intuitive result since when p=0.5 different features

become almost interchangeable.

Table 3.1 Average C(p) values for a 2-by-3 system at constant demand mean

Vo p=0.1 p=0.2 | p=03 | p=04 | p=0.5
1 -35,61 23,87 | -1550 | -10,63 9,29
5 -34,17 22,90 | -14,21 9,42 -7,93
10 -32,37 21,60 | -13,65 | -8,76 -7,37
20 28,77 -19.29 | -11,63 7,75 -6,30
50 -17,98 -12,05 | -7,49 -5,00 -4,14

For the case of Figure 3.4, with the exception the case where the value of the

demand mean is equal to the demand variance, all combinations have positive C(p)s,
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pointing out that at this fixed o value, operations reversal decreases variance
considerably. Again, variance differences between two sequences decrease as p

approaches to 0.5.

35,000 +—7}

30,000 +—

25,000 +—

20,000 +—

15,000 +— _‘ 1

10,000 +—

C(p)

0,000

p=0.1 p=02 p=03 p=0.4 p=0.5
Main Branch Probabilitiy, p

Omean=1 M mean=5 [ mean=10 O mean=20 M mean=50

Figure 3.4 Average C(p) values for a 2-by-3 system at constant demand variance

For the case of 2-by-3 system at constant demand variance, the behavior of the

model can be seen from Table 3.2.

Table 3.2. Average C(p) values for a 2-by-3 system at constant demand variance

Y7, p=0.1 p=0.2 p=0.3 p=04 p=0.5
1 35,61 23,87 15,50 10,63 9,29
5 34,17 22,90 14,21 9,42 7,93
10 32,37 21,60 13,65 8,76 7,37
20 28,77 19,29 11,63 7,75 6,30
50 17,98 12,05 7,49 5,00 4,14
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Figure 3.5 Average C(p) values for a 2-by-4 system at constant demand mean

Figure 3.5 shows average C(p) values for the 2-by-4 system at constant demand
mean. The sign of C(p) for all p combinations is the same as that of 2-by-3 case. Hence,
Figure 3.5 looks very similar to Figure 3.3. The main difference is the increase in the
absolute value of C(p) which can be seen in Table 3.3. As N gets bigger, inappropriate
choice of sequence of features has a deeper impact on the overall system variance. This
is also an intuitive result since greater N means more end products and consequently the

total variance is greater.

Table 3.3 Average C(p) values for a 2-by-4 system at constant demand mean

Vo p=0.1 p=0.2 | p=03 | p=04 | p=0.5
1 -46,31 34,05 | -2529 | -20,04 | -1823
5 -44,44 32,67 | -2427 | -1923 | -17,55
10 42,01 -30,56 | -22,99 | -1821 | -16,62
20 37,42 27,51 | -2038 | -15,73 | -13,73
50 23,39 17,19 | -12,46 | -9.63 -8,36
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Figure 3.6 Average C(p) values for a 2-by-4 system at constant demand variance

Table 3.4 Average C(p) values for a 2-by-4 system at constant demand variance

U p=0.1 p=0.2 p=0.3 p=0.4 p=0.5
1 46,31 34,05 25,29 20,04 18,23
5 44,44 32,67 24,27 19,23 17,55
10 42,01 30,56 22,99 18,21 16,62
20 37,42 27,51 20,38 15,73 13,73
50 23,39 17,19 12,46 9,63 8,36

Figure 3.6 follows exactly the same trends with Figure 3.4. The values of C(p) as
can be seen from Table 3.4 are again larger then those of 2-by-3 model. From the
graphs another expected result of formulation (3.17) is observed: C(p) value with (=X
and o’=Y gives same absolute C(p) value with the pair z=Y and o*=X.

The values calculated above are average results for all possible combinations of

probability choices 4 and B. The general trends show that, when x> o, the system

has a lower variance with the sequence A-B and reversing the operations is not
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beneficial. However, when 1 < o, it is beneficial to reverse the operations at every

combination of probability, mean, and variance values.

When the individual C(p) values are further investigated, it is observed that at
some probability combinations, especially when one end product has a very high
probability to be produced than the other (such as Prob(B1|41)=0.8, Prob(B2|A1)=0.1,
and Prob(B3|A1)=0.1 for a 2-by-3 system), the C(p) value deviates from the general
trends. The reversal is not only affected by the relative magnitudes of the means and

variances but also by the homogeneity of the probabilities of the end products.

Another observation to mention is the change in the average value of C(p)s as the
main branch probability, p, changes. For all (y — 02) combinations the absolute value

of C(p) decreases as the value of p changes from 0.1 to 0.5.

3.4. A Capacitated Model Analysis by Simulation for 2-by-2 System

In this section, the 2-by-2 system is modeled considering capacity limitations of
the servers since individual features (4;, 4,, B, B) are added to the end products during
a period determined by the capacity and speed of the servers. Formula (3.11) is obtained
under the assumption of infinite capacity. However, in real life applications, capacity is
a vital problem having direct effects on queue lengths and work-in-process and buffer
inventories. All these intermediate products carried in the inventories add up to the
production cost, decreasing a firm’s competitive advantage. Another important issue
about the capacity limitation is the backorder level. High backorder levels are perceived
as a firm’s lack of liability, leading into customer dissatisfaction and loss of market
share. The models are simulated using Arena, a software by systems Modeling Corp.
The flow charts are displayed in Appendix C and Appendix D. These models consider
all these important concepts and the obtained data are used to derive comparative results
of manufacturing systems in terms of average queue length at each stage, backorder

level and overall system variance.
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The simulation model consists of a two-stage process and with two parallel servers
with the same speed and capacity in each stage is modeled. Simulation is carried out
covering 52-week production horizon. Demands for four different end products, (4,8},
A;B>, A>B;, A>B>) are created via normal distribution. A week is assumed to have 40

working hours and demands are created for each week of the production horizon.

The probabilities of end products are sampled from a uniform distribution for each
week. Average queue times, queue lengths, and server utilizations are measured.
Backorders are monitored for each end product. The system is run for three specific
demand sets with (1, 0)’ parameters of (100,5), (100,10), (100,20). Three specific server
times (38, 43, and 48) are used to meet 80, 90, and 100% utilization levels.

To calculate the resulting C(p) values for each simulation run, two stages are
reversed and the model is run with the initial seed for the given demand and server time
values. Periodic variance data are calculated via collecting number of items processed
by the servers of the first stage during each 480-minute period (a working day). Table

3.5 summarizes the parameters of the capacitated simulation model.

Table 3.5 Parameters of the capacitated model

# of Stages: 2

# of Servers: 4
Capacity of Servers: 1 item at a time
Speed of Servers: 38/ 43/ 48 minutes
Simulation Run: 1 production year/ 52 weeks
Demand Interval: 1 week
Demands:  N(100,5), N(100,10), N(100,20)
End Products: A;B;, A;B>, A>B;, A>B>

Product Choice Probabilities: U(0,1)

Throughout the thesis, the notation (x,y) is used to refer 4 and o parameters where x=u
and y=o
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3.4.1. Investigation of the C(p) values

Since capacity issues are not incorporated while deriving the model in Section 3.1,
it is of great interest to see if the result of the formulation of C(p) derived in the
previous chapter is still valid for the system. Figures 3.7 through 3.9 are the graphs of
the capacitated system’s behavior under operations reversal at different mean and

variations of demand.

2,500

2,000

1,500

C(p)

1,000

0,500

0,000 A

-0,500

Server Time

Figure 3.7 C(p) values for (100,5) case

Figure 3.7 shows how C(p) changes with changing server times for (100,5). C(p)
value is negative and close to zero for server times 38 and 43, preferring sequence 4-B
and positive for server time 48 favoring sequence B-A. The reversal is beneficial only

when server time is 48.

Figure 3.8 displays the outputs for (100,10) the system and exhibits the same
tendency to operations reversal for all server times. In this case, reversal is not favored,
C(p) value is very close to zero for server times 38 and 43, which is expected due to the

(1-0°) factor in the formulation of C(p).
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Figure 3.8 C(p) values for (100,10) case

Figure 3.9 indicates that as the value of o increases, the sequence B-4 has a
higher variance and operations reversal is less favored. For (100,20) case operations
reversal is not favored for all server times. Another point of interest is the distinct
increase in the absolute value of C(p). Since the variation of demand is larger than its
mean the sign of C(p) is negative and operations reversal is not favored in accordance
with formula (3.11). In addition, it is observed that server time, thus capacity limitation
has a direct impact on the systems variation. Although it does not change the preferred
sequence of the system, it affects the magnitude of overall variance of the system

directly. Summary of the results of this section is given in Table 3.6.

Table 3.6 Comparison of operations preferred sequences for the capacitated model

Iod Server Time

38 43 48
5 A-B A-B B-A
10 A-B A-B A-B
20 A-B A-B A-B
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Figure 3.9 C(p) values for (100,20) case

3.4.2. Queue Lengths

Another measure to examine whether operations reversal is beneficial is the
magnitude of the queue lengths of the servers. Although our model mainly focuses on
the variance caused during the intermediate stages, it is of interest to investigate the
number of items waiting in the queues due to the capacity of intermediate servers. In
Figures 3.10 through 3.13 average queue lengths of the four servers in the two stages of
the model are graphed for sequences 4-B and B-A for various values of o at constant

server times.
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Figure 3.10 Queue lengths for A-B and B-A4 sequences when server time is 38

Figure 3.10 shows that when standard deviation of the demand is 5 or 10, average
queue length for sequence 4-B is shorter than sequence B-A. In addition, negative C(p)
value also indicates that sequence A4-B is better and operations reversal is favored by
neither of the performance measures. However, for the case when standard deviation is
20, queue length for sequence A-B is longer than sequence B-A4, though positive C(p)

value favors sequence A-B.

In Figure 3.11, the server time is 43. For the set with a standard deviation of 5, the
difference between queue lengths of the sequences A-B and B-A is positive favoring
operations reversal, also positive C(p) value favors sequence B-A4. For the set with
standard deviation equal to 10, the length of the average server queues for sequence A4-B
is shorter than sequence B-A4, and also negative C(p) value indicates that sequence 4-B
has a lower variance. Here, it should be noted that (Figures 3.10 and 3.11) the
distinction between queue lengths and overall variance values for the two sequences is
very negligible when o=z When o>, it is observed that two performance measures

favor different sequences. Sequence B-A has a shorter queue but higher overall variance.
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Figure 3.11 Queue length for 4-B and B-A4 sequences when server time is 43
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Figure 3.12 Queue length for A-B and B-A4 sequences when server time is 48
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According to Figure 3.12, both measures indicate that sequence B-A is better when
standard deviation is 5. When this value increases to 10, the queue length of sequence
B-A is longer and also C(p) value favors A-B. For demand with standard deviation of 20,
C(p) value favors sequence 4-B although the queue length of 4-B is twice as long as the
queue length of B-A.

Table 3.7 shows the compliance of queue lengths and C(p) values for the
capacitated model at three different server utilizations. Letter Y designates that two
criteria agree and letter NV designates that they disagree. Since for the pair with server

time=48, =10 the calculated C(p) value is zero, that cell is left empty.

Table 3.7 Compliance of queue length and C(p) values for the capacitated model

o Server Time
38 43 48
5 Y Y Y
10 Y Y
20 N N N

When Figures 3.10, 3.11, and 3.12 are examined, it can easily be noticed that
operations reversal has nearly no effect when u=c". C(p) values are close to zero and
queue lengths are nearly equal for two sequences. In addition, when u<c’, it is
immaterial whether the queue length or C(p) value is taken as performance measure,
since they both point at the same sequence of feature installations. However, when
standard deviation is 20 the two performance measures disagree. For the three figures
mentioned above, when o”>u , the performance criteria conflict at all server utilization

levels. C(p) value favors the sequence with longer queue length.
To explore if the same situation holds for all server times between 43 and 48

(between 90% and 100% utilization) the model is again simulated in Arena. The results

are depicted in Figure 3.13.
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Figure 3.13 The effect of different server times when standard deviation is 20

Figure 3.13 shows that all C(p)s, except the one for server time 45, are negative,
preferring sequence 4-B. However, nearly in all combinations except when server time
is 45, the queue length for 4-B is longer than B-A4. The result is in accordance with what

is concluded for the above three server times.

3.4.3. Backorder

Another measure for the efficiency of operations reversal is the ability of the
process to meet demand. For that purpose, the backorder level is recorded for each
period (Figure 3.14) and the average backorder for each demand set is plotted at

constant server times.
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Figure 3.14 Backorder values when z=c> and server time = 38

Figure 3.14 illustrates that the average number of items backordered is smaller for
sequence A-B. The exact average backorder values for sequences are 11.59 and 12.94
items per demand, respectively. This result is in accordance with C(p) and queue length

measures. All three measures favor sequence A-B.

Individual results for server time 38 are depicted in Figure 3.14. To have a
broader view and generalize the behavior of the model under operations reversal Figure
3.15 is plotted for average backorder values at three different utilization levels. This
figure summarizes the behavior of the model when performance measure is taken as the
backorder level. For the demand of each week the backorder data of the two sequences
(4-B, B-A) are recorded. As clearly seen from the figure, when server time is 38 no
significant difference exists between backorder levels. Nevertheless, the backorder level
for sequence A4-B is higher and operations reversal seems useful. When higher
utilization levels, namely server times 43 and 48, are investigated, it is observed that
backorder level as a performance measure favors sequence A-B. The difference between

backorder levels of the two sequences becomes more distinct as server time increases.
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Figure 3.15 Average backorder values for different server utilizations

Table 3.8 Comparison of operations reversal for three performance criteria

Server time Sigma Queue Length Backorder | Cp
5 A-B B-A A-B

38 10 A-B B-A A-B

20 B-A B-A A-B

5 A-B A-B A-B

43 10 B-A A-B A-B

20 B-A A-B A-B

5 B-A A-B B-A

48 10 A-B A-B A-B

20 B-A A-B A-B

Table 3.8 summarizes the outputs depicted for =100 in section 3.4. Backorder
data is calculated for this demand level only since the aim is to take a snapshot of the
match of different performance measures at changing server times and end product
standard deviations. The sequences preferred by three performance measures differ in
all cases except when server time=43, o=5 and server time=48, o=10. It is also
observed that as server time (utilization) increases match between queue length and
backorder sequence preferences decreases. In addition, C(p) and queue length pair

prefer the same sequence more than C(p) and backorder pair.

37



3.5. A Deterministic Capacitated Two Stage Model by Arena: 2-by-2 System

The purpose of simulating the model of section 3.4 again with deterministic
server times is to check if there is a relation in the C(p) values between the
uncapacitated and capacitated model. In this section the only performance measure
under consideration is the overall variance of the system. Since the difference between
the overall variance of the two sequences generated by the operations reversal is
reflected by the sign of C(p), a closer look at the C(p) outcomes of the uncapacitated
and capacitated models are given. The primary objective in doing so is to investigate

whether C(p) as a performance measure gives same results for both models.

Parameter setting is the same as the model presented in Section 3.4. The only
difference lies in the creation of demand for four different end products, (4,B;, A;B>,
AB;, A,B;). In this model, the probability of the first stage, p, for sequence 4-B is taken
as either 0.1, 0.3, or 0.5. The second stage probability pairs f(p) and g(p) are: 0.2-0.2;
0.2-0.4; 0.4-0.2; 0.4-0.4. The probabilities of the corresponding B-A4 sequence are
calculated specifically for each p, f{p), g(p) set using conditional probability

calculations.

The system is run for three specific demand sets, namely (100,5), (100,10), and
(100,20) corresponding to (u > o), (1 = o°), and (u < o), respectively, and for
specific server times 38, 40, and 43 as in the model of Section 3.4. Periodic variance
data are calculated via collecting number of items processed by the servers of the first

stage during each 480-minute period (a working day).

Then the calculated overall variance data are compared with the formula of the
uncapacitated model derived in Section 3.1. A total of 216 runs are made with server
times mentioned. The results for server time 38 are depicted individually through
Figures 3.16 to 3.24 to give a general view about the compliance of capacitated and
uncapacitated models. The overall summary of the simulation runs with three specific
server times and match/mismatch with uncapacitated model formulation is given in the

table at the end of the section.
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3.5.1. Investigation of the C(p) Values

Figure 3.16 shows that for the given o-p pair, the sign of C(p) calculated by the
formula of uncapacitated model and by simulation are the same. Only the magnitude of
variance difference between two sequences is larger for the capacitated model. Both

models favor 4-B sequence regardless of the probability values of the second stage.

(0.2,0.2) (0.2,0.4) (0.4,0.2) (0.4,0.4)

Cp)

OC(p) BC(p)' f(p) - g(p) Pairs

Figure 3.16 Comparison of C(p) and C(p)’ values with =5 and p= 0.1
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> Throughout the section the notation C(p) " is used for the uncapacitated model and C(p)
is used for the capacitated model.



Figure 3.17 Comparison of C(p) and C(p)’ values with o=5 and p= 0.3

When probability of the main branch increases to 0.3, Figure 3.17 shows that the
signs of C(p) and C(p)’ do not match for second branch probabilities (0.4,0.2). Also due
to C(p) the sequencing is immaterial for second branch probabilities (0.2,0.2) although
C(p)’ suggests sequence B-A4. For the cases where capacitated and uncapacitated models
suggest different sequences a decision can be made considering other performance

measures such as queue length or backorder level.
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Figure 3.18 Comparison of C(p) and C(p)’ values with =5 and p= 0.5

In Figure 3.18, it is observed that as the probability of the first stage increases to
0.5, in other words when, on the average, half of the demand has feature 4; and the
other half has feature 4,, the two models totally disagree with each other. The general
trends for C(p) values is same in both figures except that the sequencing is important in
Figure 3.18 for second branch probabilities (0.2,0.2). The observed C(p) values prefer
sequence A-B for all second branch probability pairs. It is also observed that C(p) and
C(p)’ values are higher compared to the ones with p=0.3 in Figure 3.17.
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Figure 3.19 Comparison of C(p) and C(p)’ values with 0=10 and p= 0.1
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Figure 3.20 Comparison of C(p) and C(p)’ values with =10 and p= 0.3
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Figures 3.19 and 3.20 illustrate that as the main branch probability increases the
operation reversal becomes effective. When p=0.1 all C(p)’ values are negative,
favoring sequence 4-B. However when p increases to 0.3, keeping all other variables
constant, all C(p) values favor sequence B-4. When u= o’, comparing C (p)’ with C(p)
is immaterial because C(p)’ value is zero. Hence, Figures 3.19, 3.20, and 3.21 show

only the C(p) values calculated.

When Figure 3.21 is compared to Figure 3.20, it is seen that C(p) values change
sign. Therefore, probability 0.3 acts as a turning point of a concave function in a way. In
this simulation the absolute values of C(p)s obtained are less than those shown in Figure
3.20, meaning that the difference in the variance between two sequences is decreasing.
With these parameters at hand, it is still not beneficial to reverse the consecutive

operations 4 and B.

The strongest result that can be observed from Figures 3.19, 3.20, and 3.21 is that
in contrast with the uncapacitated model, capacitated model disproves the fact that

sequencing of the features is immaterial when p= o
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Figure 3.21 Comparison of C(p) and C(p)’ values with =10 and p= 0.5
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Figure 3.22 Comparison of C(p) and C(p)” values with =20 and p= 0.1
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Figure 3.23 Comparison of C(p) and C(p)’ values with 0=20 and p= 0.3

In Figure 3.22, the C(p) values for the two cases have nearly the same absolute

values but opposite signs.
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In Figure 3.23, both C(p) and C(p)’ have the same sign when second branch
probability pairs are (0.2,0.4) and (0.4,0.4) only. It is also seen that magnitudes of
C(p)’s are far greater than C(p)s.

In Figure 3.24, it is observed that both models propose the same sequence,
sequence 4-B. C(p) values are not close and for all cases accept the one with second

order probabilities (0.2,0.2), C(p) values are larger.
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Figure 3.24 Comparison of C(p) and C(p)’ values with o= 20 and p= 0.5

To make a summary of the behavior of the capacitated model throughout this
section three parameters of the model are selected. These parameters are standard
deviation, main branch, and second branch probabilities. For the specified 80%
utilization level the above graphs show how the formulation derived for the

uncapacitated 2-by-2 system is applicable to the capacitated 2-by-2 system.

In order to reach to general results more data are needed. Therefore, the

simulation carried for the above three parameters is enlarged to include %90 and 100%
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utilization levels. Although these high percentages may not be frequently applicable in
practice, it is known that the benefit of operations reversal comes from the absolute
value of C(p) gets larger with increasing utilizations since the system is more sensitive
to minor increase in variance. This is due to the fact that most emphasis is given to the
distinction of end products demand distributions to decide on whether to reverse
consecutive operations or not. In this step another grouping is made to strengthen the
previous comparisons on how far can one push utilization up and still apply the

formulation of uncapacitated system derived in section 3.1.

33%
34%

[080% utilization
W 90% utilization

[0100% utilization

33%

Figure 3.25 Percent correspondence of C(p) and C(p)’ values with different utilizations

It can be observed from the Figure 3.25 that there is no significant distinction
between different level of utilizations. The signs of C(p) and C(p)’ match only 33% in
the total 144 runs of 80% and 90% utilizations, and 34% in 100% mode. The obtained
results do not give conclusive clues about how to use operations reversal tool in

capacitated systems with moderate to high utilizations.

Another aspect to investigate is the percentage of compliance depending on the

standard deviation of demand. To what extent is Formula (3.11) reliable for capacitated
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systems and how does reliability change with altering standard deviations? The answers

for these questions are summarized in Table 3.9.

Table 3.9 Percent correspondence of C(p) and C(p)’ values with different main branch
probabilities and utilizations

o p=0.5 p=0.3 p=0.1 Total

5 4/36 4/36 8/36 44.4%

10 0/36 0/36 0/36 0.0%

20 12/36 8/36 0/36 55.5%
Total 44.4% 33.3% 22.2%

According to Table 3.9, the highest correspondence of C(p) signs for capacitated
and uncapacitated models belongs to p=0.5, o= 20 pair. In none of the runs when z=c’
the simulation gives a C(p) value of zero. The results are not even close to zero. Hence,
the argument that the sequencing of operations is immaterial when y=02 fails to hold for
capacitated systems. The column with the highest matching value is the one with p=0.5,
meaning that capacitated and uncapacitated models resemble most when the main
branch probability of the system is less distinctive. The result is intuitive since the
queue length, thus buffer inventories for the capacitated system is most homogeneous
for the p=0.5 case. The row with the highest matching value is the one with =5, which
points out that at all first branch probability levels the capacitated and uncapacitated
systems behave most similarly when the variance of the end product is smallest. This
result is in accordance with the theory of how overall system variance responds to
standard deviation and how capacity becomes more important as product variance
increases. However, it fails to explain why C(p) signs with highest match belong to

capacitated and uncapacitated models with p=0.5, o= 20 pair.
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4. CONCLUSION

In this thesis, the effects of operations reversal on multi-stage production systems
with high degree of product variety have been investigated. The results show that
reengineering efforts require careful planning, and understanding the nature of demand
variations, the choice probabilities of each product in the product mix, capacity

limitations of the manufacturing process and other characteristics of the supply chain.

Uncapacitated and capacitated systems have been modeled and analyzed under
demand uncertainty. The variability of production volumes in the intermediate stages of
production was proposed as a performance measure for such production systems. In
addition, the average queue lengths and backorder levels are considered in this study.

The specific results of this study can be summarized as follows.

First, using total variability as a performance measure 2-by-2 and 2-by-N
uncapacitated systems are modeled under demand uncertainty. It is observed that for
both models, performance measure C(p) includes (u-o°) as a factor. For 2-by-N case,
operations reversal is not favored when p>o?, except for cases when one end product
has a very high choice probability compared to the others. For end product demands
where u<o’, at every combination of choice probabilities it is found to be beneficial to

reverse the operations.

Then, since in real life applications, capacity is a vital problem having direct
effects on queue lengths, work-in-process and buffer inventories, models are simulated
using Arena considering all these important concepts and obtained data are used to
derive comparative results of manufacturing systems in terms of average queue length
at each stage, backorder level and overall system variance. The choice probabilities for

the end product mix are created via uniform distribution. The observations are as
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follows: Operations reversal has nearly no effect when u=0’. C(p) values are close to
zero and queue lengths are nearly equal for two sequences. In addition, when x< ¢, it is
immaterial whether the queue length or C(p) value is taken as performance measure,
since they both point at the same sequence of feature installations. However, when
1> there exists disagreement between two performance measures, the performance
criteria conflict at all server utilization levels. When backorder records are investigated
it is seen that, at high utilization levels, operations reversal is not favored for = o. In
addition, when three performance criteria are compared, it is observed that sequences
preferred by three performance measures differ in all cases except low utilizations and
demand variation. It is also observed that as utilization increases match between queue
length and backorder sequence preferences decreases. In addition C(p) and queue length

pair prefer the same sequence more than C(p) and backorder pair.

Lastly, a deterministic 2-by-2 capacitated model is created in order to find out
whether for fixed choice probabilities, similar results are obtained for capacitated and
uncapacitated cases. The results show that there is no compatibility between the two
cases. Only one in three systems behaves similarly under operations reversal at all
utilization levels. In addition an important argument that sequencing of operations is
immaterial when z=o’ fails to exist for capacitated systems. It is observed that
capacitated and uncapacitated models resemble most when the main branch probability
of the system is less distinctive. Another generalization can be made when variance of
the end product is smallest all first branch probability levels the capacitated and

uncapacitated systems behave most similarly.
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Further Study

Since it is observed that different performance measures conflict with each other,
one may argue that somehow the relevant performance measures should be combined
and turned into one global performance measure. In effect, one has to derive a total cost
function and try to find the impact of operations reversal in the production system. One
such model is proposed in Lee, Tang, (1997) which is discussed in Further Study
section. Actually the model tries to find the optimal point of differentiation. As an
extension of this study, this model can be applied in a real life case with relevant cost

data.

Consider a manufacturing system with two end products, where each end product
requires processes performed in N stages. The manufacturing system has a buffer that
stores the work-in—process inventory after each operation. To focus on the result of
operations reversal in a model with various parameters such as inventory, server times,
and set-up cost, we assume that the system will have the first k£ operations common to

both products and apply operations reversal for the k+7% and k+2" stages.

The model is a discrete time model. The assumptions are; at the beginning of each
period, unit size customer orders arrive for each end product. Intermediate product is
used to satisfy all orders, and excess is backlogged. Inventory position is defined as
inventory level plus work-in-process. At each review the inventory position is raised to

S by placing a new order.

The parameters of the model are:

S;  :average investment cost per period if operation i becomes a common operation.
n; (k) : lead time of operation ; when operation £ is the last common operation.

pi (k) : the processing cost per unit associated with operation i

hi(k) : inventory holding cost for holding one unit of inventory at buffer i for one period.
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z . safety factor

Z(k) : total relevant cost per period for the case when operation £ is the last common

operation.
A= 35,3 0N .+ S 06K+ )
+ ihi<k)|}li<k)<ﬂl + ﬂz)/z tz0y, W]

i=1
N

+zhi(k)[(ﬂ1 +qu)/2]+z(o'l +O—2)\/(”i(k)+1)

i=l

(3.18)
First term represents the total investment cost per period, the second term corresponds
to total processing cost per period, the third term represents the total WIP inventory
cost, and the fourth and fifth terms represent the total buffer inventory cost
per period. In this case the performance measure is Z(k+1)-Z(k+2). The sign of the

result shows whether operations reversal is beneficial or not.

It is expected to get trends in results for different settings such as server times,
reversal cost and variance values. Using these results, algorithms for systems can be
developed such that given parameters of the above model, the algorithm automatically

decides to reverse operations or not.

Another future research direction could be analyzing the capacitated case
analytically. To conduct such a research, one has to set up a framework to capture the
most relevant features of the capacitated case and at the same time make simplifying

assumptions to keep the model analytically tractable.

50



REFERENCES

. Anderson W., “Market Efficiency and the Principle of Postponement,” Cost and
Profit Outlook, No: 3, September 1950.

. Aviv Y., Federgruen A., “Design for Postponement: A Comprehensive
Characterization of Its Benefits Under Unknown Demand Distributions,”

Operations Research, Vol: 49, No: 4, July-August 2001.

. Berry W.L., Cooper M.C., “Manufacturing Flexibility: Methods for Measuring
the Impact of Product Variety on Performance in Process Industries,” Journal of

Operations Management, Vol: 17, 1999.

. Chakravarty A. K., “Achieving Product Variety Through Optimal Choice of
Module Variations,” IIE Transactions, No: 7, July 2001.

. Daprian P., “Benetton-Global Logistics in Action,” Asian Pacific International

Business Logistics, 7-11, 1992.

. Da Silveira G., “A Framework for the Management of Product Variety,”
International Journal of Operations and Production Management, Vol: 18, No: 3,

1998.

Eppen G. D., Schrage L., “Centralized Ordering Policies in a Multi-Warehouse
System with Lead Times and Random Demand” in Multi-Level Production/
Inventory Systems Theory and Practice, L. B. Schwarz, (Ed) North Holland,
1981.

51



10.

11.

12.

13.

14.

15.

16.

Federgruen A, Zipkin P., “Approximation of Dynamic Multi-Location

Production and Inventory Problems,” Management Science, No: 30, 1984.

Fischer M., Jain A., Macduffie J.P., “Strategies for Product Variety: Lessons
Learned from Auto Industry, in Redesigning the Firm , New York: Oxford
University Press, 1994

Fischer M., Ramdas K., Ulrich K., “Component Sharing in the Management of
Product Variety: A Study of Automotive Braking Systems,” Management
Science, No: 45, 1999.

Ganeshan R., Magazine M., Tayur S., Quantitative Models for Supply Chain
Management, Kuluwer Academic Publishers, 460-568, 1999.

Gupta S., Krishnan V., “Product Family-Based Assembly Sequence Design
Methodology,” IEE Transactions, Vol: 30, 933-945, 1996.

Harvard Business School Note, “Quick Response in the Apparel Industry,” N9-
690-038, February 1990.

Jain N., Paul A., “ A Generalized Model of Operations Reversal for Fashion
Goods,” Management Science, Vol 47, No: 4, April 2001.

Kapuscinski R., Tayur S., “Variance vs. Standard Deviation: Variability
Reduction Through Operations Reversal,” Management Science, Vol 45, No: 5,
May 1999.

Kim K., Chhajed D., “Commonality in Product Design: Cost Saving, Valuation

Change and Cannibalization,” European Journal of Operational Research, Vol:

25, 2000.

52



17.

18.

19.

20.

21.

22.

23.

24.

25.

Lee H. L., Billington C., Carter B., “Hewlett-Packard Gains the Control of
Inventory and Service through Design for Localization,” Interfaces, Vol: 23, No:

4,2-11, 1993.

Lee H. L., Billington C., “Designing Products and Processes for
Postponement,” Management of Design, Kluwer Academic Publishers, 105-122,
1994.

Lee H. L., “Effective Inventory and Service Management Through Product and
Process Redesign,” Operations Research, Vol: 44, No: 1, January-February

1996.
Lee H. L., Garg A., “Managing Product Variety: An Operations Perspective”,
Quantitative Models for Supply Chain Management, Kluwer Academic

Publishers, 460-490, 1999.

Lee H. L., Tang C. S., “Modeling Costs and Benefits of Delayed Product

Differentiation,” Management Science, Vol 43, No: 1, January 1997.

Lee H. L., Feitzinger E., “Mass Customization at Hewlett-Packard: Power of

Postponement,” Harvard Business Review, February 1997.

Lee H. L., Tang C. S., “ Variance Reduction Through Operations Reversal,”
Management Science, Vol 44, No: 2, February 1998.

Mieghem J. V., Dada M., “Price vs. Production Postponement: Capacity and
Competition,” Management Science, Vol 45, No: 12, December 1999.

Prasad B., “Designing Products for Variety and How to Manage Complexity”,
Journal of Product and Brand Management, Vol 7, No: 3, 1998

53



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Randall T., “Product Variety, Supply Chain Structure, and Firm Performance:
Analysis of U.S. Bicycle Industry,” Management Science, Vol 47, No: 12,
December 2001.

Schwarz L.B., “Model for Assessing the Value of Warehouse Risk Pooling:
Risk Pooling Over Outside-Supplier Leadtimes,” Management Science, No: 35,

1989.

Simchi-Levi D., Kaminsky P., Simchi-Levi E., Designing and Managing the
Supply Chain, Irwin/McGraw-Hill, 2000.

Swaminathan J. M., Tayur S., “Managing Broader Production Lines Through
Delayed Differentiation Using Vanilla Boxes,” Management Science, Vol 44,

No: 12, December 1998.

Swaminathan J. M., “Enabling Customization Using Standardized Operations,”

California Management Review, Vol: 43, No: 3, Spring 2001.

Thonemann U. W., “Optimal Commonality in Component Design,” Operations

Research, Vol 48, No: 1, January/ February 2000.

Vollmann T., Berry W., Whybark D.C., Manufacturing Planning and Control
Systems, Irwin/McGraw-Hill, 1997.

Zinn W., Bowersox D.J., “Planning Physical Distribution with the Principle of

Postponement,” Business Logistics, No: 9, 1988.

Zinn W., “Should you Assemble before order is Received?,” Business Horizons,

No:33, 1990.

Zipkin P.H., Foundations of Inventory Management, Irwin/McGraw-Hill, 2000.

54



APPENDIX A: Conditional Probability Derivations for Sequence B-4

According to Bayes’ Theorem:

Pl )= PBLAPA)

5) (A.1)

In Formula (3.4) the 9y values for sequence A4-B is given. Using these values and

Formula (A.1) 9j values for sequence B-4 are calculated as follows:

P(A |B)= P(B, | 4)P(4) _ S(p)p (A.2)
L P(B) pf (p)+(1-p)g(p)
P | 5) = PBLAP() __ gp)i=p) A3)
2 P(B) pf(p)+(1-p)g(p)
P4 |B,)= P(B, | 4)P(4) _ (1-f(p)p (A.4)
. P(B,) p-f(p)+1A-p)1-g(p)
P4, B,) = P(B, | 4,)P(4,) _ (d-g(p)d-p) (A.5)
P P(B,) p(=f(p)+(1-p)1-g(p)

Then 9;; values for sequence B-A are calculated as follows given in Formulation (3.11).
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APPENDIX B: C++ Pseudo-Code:

The code written for 2-by-3 system in Section 3.3 is as follows:

for z=1,...,6 do
probability =0.1* z

Assign Nu =50

Assign Sigma = sqrt(100)

for j=1,...,10do

ProbabilityArray (0,0) = probability * 0.1 * (j+1)

for i=1,.,10-(j+1) do

ProbabilityArray (0,1) = probability * 0.1* (i+1)

for w=0,.., (10-j+i+2) do

ProbabilityArray (0,2) = probability * 0.1 * (w+1)
ProbabilityArray (0,3) = probability *
(Z(0.1*(j+1)+0.1*(w+1)))

Assign second lower branch probabilities:

ProbabilityArray (1,0) = (1-probability) * 0.1 * ([+1)
for m=0,...,10-(/+1) do
ProbabilityArray (1,1) = (1-probability)*0.1* (m+1)
for v=0,.., v <(10-/-m-2) do
ProbabilityArray (1,2) = (1-probability) * 0.1 * (v+1)
ProbabilityArray (1,3) = (1-probability)*(1-(
0.1* (I+1) + 0.1 * (m+1) + 0.1* (v+1)))
end for
enf for

end for
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Second branch lower loop closes.

end for
end for

end for

Second branch upper loop closes.

end for

p loop closes.

57



3.4

10n

Flow Chart For Secti

10n

Arena Simulat

APPENDIX C

gLy

e tm%aH .

i

, , asi3
h T | 7 il
s i ubISSye— ‘QE ; LLped
1zued 2sooy) ziued
zeued : Z19junoa
L Lued Zieunos . zzwed
Sy 4 3 1zued
<UBISSY/a—O)Mb— <uBISSY [ e R s
7 - J way ZAiuenb ped fipuenb ped
| — 4 133unoo pouadul
== ; ,mocm;ofcm_mm<TLcm_mm$ ] . omenbyed
I : L [ ob==wan g . ; 4 Wm_nmtm>
[N vedeq- ﬁ Oz==way asods| i e
DAN0LQYT=>MONL Zza6ime B o
_|Nt , —_—— : 9S00YDn- < JoAleGs mozm:mi
, , o 18S00UDsl—<1oAIaG =
Icm_mmﬂ. mwoo;og ="
B ) 008¥ZL
|BSiaAal suonesado
ale|nuil
[SHEIntiiS
Lay [ ]
i yedaq rj :
y as|3
I:«%@E PZ=>MONL I
r uBissya - . :
_mwoozo - es3 3 as|3
. _ Oz==way | Ajigeqoid yym i
, E,N< |g amesy fhuenb yed 2 s puetap S J8junod
| wayl - . -
fo | tmamaj‘ — cm_mm<Ll

ey 9S00UDs-L.1aniags— OUBYDm ubissys <ubissy
. i e L wepdNOD povrunrzuol > MONL by 8imEe) as|3
83 Iqeqoid
_|_~nﬂ_§: e 8S00UQk <JonIaS Igeqoid :mema_ss 0vZ>MONL  JI
L<UBISSY s o i

lasooyn

oove

ﬁcmcw uBissy ‘umoo;o.lm“mmzoﬁ

zfhyuenb ped
Amuenb ped 13)unoa pouadul
2y indino

0s0dsIs—UBISSY a3l M~ ubissy,

58



3.5

10n

Flow Chart For Secti

10n

lat

1mu

Arena S

APPENDIX D

4184 @83

i w unoo,Prz=>MONL Il
o] tggigg wﬁ

Zhyed
L zued
zoued
L iped

L_ubissyn % 95001,

FAS

gy ndino

as|3

| 4
ﬁ J Ob==way
9500yD:

:O]J Og==wRy )

wmooco._

ZIUN02,0042=>MONL g anjesy
JEYVEI
2313
[E:1A% BN 0PrT=>MONL 4l
yedaq ed
{uBissya— 250D
N 8s|13
) [3:=144 213)un00,0PYZ=>MON. ]
pedoqe e :

fc@_mm( 9500UDn .H# T
1]

8500UQn

as3
20 WM

way

_wucm:m-|‘cm_mm<.lcm_mm<

253
VoM

|g ainjeay
JONBS L

050ds|(a— <UBISSYa——BJMb—«UBISSYa——

—
\ﬁ way

Zhwenb yed 2y ndino
Anuend ped

Lived
ziped
ZiaIunod
zowed
1eued e reterred
Jeunoo sonsneIs
puewsp
Auenb ped
J3juno2 pouadur 008vZ )
Zfuenb ped [esianas suopesado

sajqeuen ‘apInwIg

asods|qw
ZAyuenb ped

8si3
il

Jalunoa pouadul,ogy >MONL

2y ainjes)

mmoocow

Ajpuenb ped

1 A — Jajunod pouadyl.ogk > MONL
Q0UBYDN uBiSsyh——UBISSYa———|

”._maww

|

ESE]
] | 00ve

L Bimea; BOUBYDn A‘mwmw._oa
L

o 8500U0R ——Lianias

Jayunod pouadul

59



APPENDIX E: Sample Simulation Outputs

Outputs for capacitated model in Section 3.4:
A-B sequence for o =10, server time 38 is given first then followed by B-4 sequence for

o =10, server time 38.

ARENA Simulation Results
MFG1l - License: 1033

Summary for Replication 1 of 1

Project:operations reversal Run execution date
4/29/2002

Analyst:MFG1 Model revision date:
4/29/2002

Replication ended at time : 124800.0

TALLY VARIABLES

Identifier Average Half Width Minimum Maximum
A2B2 Ta 1068.3 46.128 76.000 2736.0
feature A1 R Q Queue T 952.74 44.980 .00000 2394.0
feature A2 R Q Queue T 940.92 55.178 .00000 2622.0
feature Bl R Q Queue T 59.411 (Corr) .00000 342.00
AlBl Ta 1095.2 47.053 114.00 2432.0
AlB2 Ta 1123.0 47.700 76.000 2394.0
feature B2 R Q Queue T 64.551 12.223 .00000 380.00
A2B1 Ta 1048.9 51.157 76.000 2660.0
DISCRETE-CHANGE VARIABLES
Identifier Average Half Width Minimum Maximum
feature Bl R Available 1.0000 (Insuf) 1.0000 1.0000
feature B2 R Available 1.0000 (Insuf) 1.0000 1.0000
# in feature A2 R Q 19.248 1.8177 .00000 69.000
# in feature B2 R Q 1.2460 .27483 .00000 10.000
feature Bl R Busy .69514 .03732 .00000 1.0000
feature B2 R Busy .73351 .02828 .00000 1.0000
feature Al R Available 1.0000 (Insuf) 1.0000 1.0000
feature A2 R Available 1.0000 (Insuf) 1.0000 1.0000
# in feature Al R Q 19.970 1.6746 .00000 63.000
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# in feature B1 R Q 1.0868 .27956 .00000 9.0000

feature Al R Busy .79623 .03170 .00000 1.0000
feature A2 R Busy .77705 .03504 .00000 1.0000
COUNTERS

Identifier Count Limit

A2B2 C 1184 Infinite

AlBl C 1132 Infinite

AlB2 C 1225 Infinite

A2B1 C 1151 Infinite

Simulation run time: 0.08 minutes.
Simulation run complete.

ARENA Simulation Results
MFGl - License: 1033

Summary for Replication 1 of 1

Project:operations reversal Run execution date
4/29/2002

Analyst:MFG1 Model revision date:
4/29/2002

Replication ended at time : 124800.0

TALLY VARIABLES

Identifier Average Half Width Minimum Maximum
A2B2 Ta 1062.2 58.560 76.000 2660.0
feature A1 R Q Queue T 962.87 (Corr) .00000 2470.0
feature A2 R Q Queue T 942.85 48.251 .00000 2546.0
feature Bl R Q Queue T 71.464 (Corr) .00000 456.00
AlBl Ta 1123.5 45.497 114.00 2660.0
AlB2 Ta 1136.1 54.429 114.00 2508.0
feature B2 R Q Queue T 68.991 11.571 .00000 418.00
A2B1 Ta 1072.0 58.459 76.000 2812.0
DISCRETE-CHANGE VARIABLES
Identifier Average Half Width Minimum Maximum
feature Bl R Available 1.0000 (Insuf) 1.0000 1.0000
feature B2 R Available 1.0000 (Insuf) 1.0000 1.0000
# in feature A2 R Q 19.408 1.7391 .00000 67.000
# in feature B2 R Q 1.2996 .25357 .00000 11.000
feature Bl R Busy .72042 .03732 .00000 1.0000
feature B2 R Busy .71585 .03464 .00000 1.0000
feature Al R Available 1.0000 (Insuf) 1.0000 1.0000
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feature A2 R Available 1.0000 (Insuf) 1.0000 1.0000

# in feature Al R Q 20.275 1.7180 .00000 65.000
# in feature B1 R Q 1.3548 .38032 .00000 12.000
feature Al R Busy .79989 .03674 .00000 1.0000
feature A2 R Busy .78192 .02863 .00000 1.0000
COUNTERS

Identifier Count Limit

A2B2 C 1170 Infinite

AlBl C 1187 Infinite

AlB2 C 1181 Infinite

A2B1 C 1179 1Infinite

Simulation run time: 0.07 minutes.

Simulation run complete.

The following two outputs are for the capacitated model with deterministic probability
values. The parameters are o =10, server time 38, p=0.1, f(p)=0.2,and g(p)=0.2. Again

the outputs for sequences A-B and B-A are given.

ARENA Simulation Results
MFG1l - License: 1033

Summary for Replication 1 of 1

Project:operations reversal Run execution date
5/16/2002

Analyst:MFG1 Model revision date:
5/16/2002

Replication ended at time : 124800.0

TALLY VARIABLES

Identifier Average Half Width Minimum Maximum
A2B2 Ta 18596. (Corr) 76.000 38702.
feature A1 R Q Queue T 189.49 18.384 .00000 570.00
feature A2 R Q Queue T 19468. (Corr) .00000 38626.
feature Bl R Q Queue T 3.1360 (Insuf) .00000 38.000
AlBl Ta 372.03 (Insuf) 152.00 646.00
AlB2 Ta 433.28 (Insuf) 114.00 814.00
feature B2 R Q Queue T 80.561 11.871 .00000 290.00
A2Bl1 Ta 19817. (Insuf) 456.00 38702.
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DISCRETE-CHANGE VARIABLES

Identifier Average Half Width Minimum Maximum
feature Bl R Available 1.0000 (Insuf) 1.0000 1.0000
feature B2 R Available 1.0000 (Insuf) 1.0000 1.0000
# in feature A2 R Q 728.37 (Corr) .00000 1457.0
# in feature B2 R Q .41184 .12065 .00000 8.0000
feature Bl R Busy .051406 (Insuf) .00000 1.0000
feature B2 R Busy .1942¢6 .03061 .00000 1.0000
feature Al R Available 1.0000 (Insuf) 1.0000 1.0000
feature A2 R Available 1.0000 (Insuf) 1.0000 1.0000
# in feature Al R Q .79715 .15950 .00000 15.000
# in feature Bl R Q .00425 (Insuf) .00000 1.0000
feature Al R Busy .15955 .01796 .00000 1.0000
feature A2 R Busy 1.0000 .00000 .00000 1.0000
COUNTERS
Identifier Count Limit
A2B2 C 427 Infinite
AlB1 C 58 1Infinite
AlB2 C 211 Infinite
A2B1 C 111 Infinite

Simulation run time: 0.13 minutes.
Simulation run complete.

ARENA Simulation Results
MFG1l - License: 1033

Summary for Replication 1 of 1

Project:operations reversal Run execution date
5/16/2002

Analyst:MFG1 Model revision date:
5/16/2002

Replication ended at time : 124800.0

TALLY VARIABLES

Identifier Average Half Width Minimum Maximum
A2B2 Ta 13112. (Corr) 76.000 25498.
feature A1 R Q Queue T 385.22 27.572 .00000 1102.0
feature A2 R Q Queue T 13604. (Corr) .00000 26392.
feature Bl R Q Queue T 1.6190 (Insuf) .00000 38.000
AlBl Ta 535.92 (Insuf) 152.00 1102.0
AlB2 Ta 780.81 52.234 114.00 1864.0
feature B2 R Q Queue T 269.05 21.621 .00000 722.00
A2B1 Ta 13307. (Insuf) 380.00 24922.
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DISCRETE-CHANGE VARIABLES

Identifier Average Half Width Minimum Maximum
feature Bl R Available 1.0000 (Insuf) 1.0000 1.0000
feature B2 R Available 1.0000 (Insuf) 1.0000 1.0000
# in feature A2 R Q 437.85 (Corr) .00000 851.00
# in feature B2 R Q 3.7576 .70243 .00000 19.000
feature Bl R Busy .05755 .00955 .00000 1.0000
feature B2 R Busy .53072 .05126 .00000 1.0000
feature Al R Available 1.0000 (Insuf) 1.0000 1.0000
feature A2 R Available 1.0000 (Insuf) 1.0000 1.0000
# in feature AL R Q 3.2750 .46484 .00000 29.000
# in feature B1 R Q .00245 (Insuf) .00000 1.0000
feature Al R Busy .32276 .03135 .00000 1.0000
feature A2 R Busy 1.0000 .00000 .00000 1.0000
COUNTERS
Identifier Count Limit
A2B2 C 1020 Infinite
AlB1 C 81 Infinite
AlB2 C 723 Infinite
A2B1 C 108 Infinite

Simulation run time: 0.12 minutes.
Simulation run complete.
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